Search tips
Search criteria

Results 1-25 (60)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Origins of a 350-Kilobase Genomic Duplication in Mycobacterium tuberculosis and Its Impact on Virulence 
Infection and Immunity  2014;82(7):2902-2912.
In the present study, we have investigated the evolution and impact on virulence of a 350-kb genomic duplication present in the most recently evolved members of the Mycobacterium tuberculosis East Asian lineage. In a mouse model of infection, comparing HN878 subclones HN878-27 (no duplication) and HN878-45 (with the 350-kb duplication) revealed that the latter is impaired for in vivo growth during the initial 3 weeks of infection. Furthermore, the median survival time of mice infected with isolate HN878-45 is significantly longer (77 days) than that of mice infected with HN878-27. Whole-genome sequencing of both isolates failed to reveal any mutational events other than the duplication that could account for such a substantial difference in virulence. Although we and others had previously speculated that the 350-kb duplication arose in response to some form of host-applied selective pressure (P. Domenech, G. S. Kolly, L. Leon-Solis, A. Fallow, M. B. Reed, J. Bacteriol. 192:4562–4570, 2010, and B. Weiner, J. Gomez, T. C. Victor, R. M. Warren, A. Sloutsky, B. B. Plikaytis, J. E. Posey, P. D. van Helden, N. C. Gey van Pittius, M. Koehrsen, P. Sisk, C. Stolte, J. White, S. Gagneux, B. Birren, D. Hung, M. Murray, J. Galagan, PLoS One 7:e26038, 2012), here we show that this large chromosomal amplification event is very rapidly selected within standard in vitro broth cultures in a range of isolates. Indeed, subclones harboring the duplication were detectable after just five rounds of in vitro passage. In contrast, the duplication appears to be highly unstable in vivo and is negatively selected during the later stages of infection in mice. We believe that the rapid in vitro evolution of M. tuberculosis is an underappreciated aspect of its biology that is often ignored, despite the fact that it has the potential to confound the data and conclusions arising from comparative studies of isolates at both the genotypic and phenotypic levels.
PMCID: PMC4097636  PMID: 24778110
2.  Contribution of increased ISG15, ISGylation and deregulated Type I IFN signaling in Usp18 mutant mice during the course of bacterial infections 
Genes and immunity  2014;15(5):282-292.
Host genetics plays a key role in susceptibility to Salmonella Typhimurium infection. We previously used N-ethyl-N-nitrosourea (ENU) mutagenesis to identify a loss of function mutation within the gene ubiquitin specific peptidase 18 (Usp18Ity9), which confers increased susceptibility to Salmonella Typhimurium. USP18 functions to regulate type I IFN signaling and as a protease to remove ISG15 from substrate proteins. Usp18Ity9 mice are susceptible to infection with Salmonella Typhimurium and have increased expression and function of ISG15, but Usp18Ity9 mice lacking Isg15 do not show improved survival with Salmonella challenge. Type I IFN signaling is increased in Usp18Ity9 mice and inhibition of type I IFN signaling is associated with improved survival in mutant mice. Hyperactivation of type I IFN signaling leads to increased IL-10, deregulated expression of autophagy markers, and elevated IL-1β and IL-17. Furthermore, Usp18Ity9 mice are more susceptible to infection with Mycobacterium tuberculosis, have increased bacterial load in lung and spleen, elevated inflammatory cytokines and more severe lung pathology. These findings demonstrate that regulation of type I IFN signaling is the predominant mechanism affecting the susceptibility of Usp18Ity9 mice to Salmonella infection and that hyperactivation of signaling leads to increased IL-10, deregulation of autophagic markers and increased proinflammatory cytokine production.
PMCID: PMC4111656  PMID: 24807690 CAMSID: cams4329
USP18; innate immunity; Salmonella; mycobacteria; type I IFN; ISGylation; autophagy
3.  Quantiferon Gold-in-tube assay for TB screening in HIV infected children: influence of quantitative values 
BMC Infectious Diseases  2014;14(1):516.
HIV infected children are at increased risk of TB disease and require annual TB screening. Data on use of IGRA for TB screening in them are limited. We retrospectively evaluated the usefulness of Quantiferon Gold-in-tube test (QFT), an IGRA in screening for LTBI in relatively healthy, immunologically stable HIV infected children.
HIV infected children with no prior history of TB were screened for latent TB as part of routine care. They underwent risk of TB assessment, TST and QFT. QFT was repeated twice or three times depending on the quantitative values. Independent test validation was also performed.
Eighty one children had 109 QFT tests. All had adequate mitogen responses. The initial QFT was positive in 15 (18.5%) children; quantitative IGRA responses were 0.35-1.0 IU/mL in 9 (60%), 1.0-10 IU/mL in5 (33.3%) and >10 IU/mL in 1 (6.7%). None that tested positive had documented TB exposure or TB disease. Baseline characteristics in the QFT positive and negative groups were similar. Repeat testing within 17 weeks demonstrated reversion to negative in 79% of cases. Repeat blinded independent testing of all QFT positive results and a random selection of initial negative tests demonstrated concordance in 96% of cases. Seven children (QFT > 1.0 IU/mL or positive TST) were offered INH preventive therapy. In no case has TB disease developed in 2 years of close follow-up.
QFT is a valid method for LTBI screening relatively healthy, immunologically stable HIV infected children. However, reversion to negative on repeat testing and lack of correlation with TST results and risk of TB exposure makes interpretation difficult.
PMCID: PMC4181619  PMID: 25248406
HIV; Tuberculosis; Screening; IGRA; Quantiferon
4.  Disruption of Mycobacterium avium subsp. paratuberculosis-specific genes impairs in vivo fitness 
BMC Genomics  2014;15(1):415.
Mycobacterium avium subsp. paratuberculosis (MAP) is an obligate intracellular pathogen that infects many ruminant species. The acquisition of foreign genes via horizontal gene transfer has been postulated to contribute to its pathogenesis, as these genetic elements are absent from its putative ancestor, M. avium subsp. hominissuis (MAH), an environmental organism with lesser pathogenicity. In this study, high-throughput sequencing of MAP transposon libraries were analyzed to qualitatively and quantitatively determine the contribution of individual genes to bacterial survival during infection.
Out of 52384 TA dinucleotides present in the MAP K-10 genome, 12607 had a MycoMarT7 transposon in the input pool, interrupting 2443 of the 4350 genes in the MAP genome (56%). Of 96 genes situated in MAP-specific genomic islands, 82 were disrupted in the input pool, indicating that MAP-specific genomic regions are dispensable for in vitro growth (odds ratio = 0.21). Following 5 independent in vivo infections with this pool of mutants, the correlation between output pools was high for 4 of 5 (R = 0.49 to 0.61) enabling us to define genes whose disruption reproducibly reduced bacterial fitness in vivo. At three different thresholds for reduced fitness in vivo, MAP-specific genes were over-represented in the list of predicted essential genes. We also identified additional genes that were severely depleted after infection, and several of them have orthologues that are essential genes in M. tuberculosis.
This work indicates that the genetic elements required for the in vivo survival of MAP represent a combination of conserved mycobacterial virulence genes and MAP-specific genes acquired via horizontal gene transfer. In addition, the in vitro and in vivo essential genes identified in this study may be further characterized to offer a better understanding of MAP pathogenesis, and potentially contribute to the discovery of novel therapeutic and vaccine targets.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-415) contains supplementary material, which is available to authorized users.
PMCID: PMC4058006  PMID: 24885784
Mycobacterium avium; M. avium subsp. paratuberculosis; Transposon insertion sequencing; Horizontal gene transfer; Mycobacterial pathogenesis
5.  Novel Feature of Mycobacterium avium subsp. paratuberculosis, Highlighted by Characterization of the Heparin-Binding Hemagglutinin Adhesin 
Journal of Bacteriology  2013;195(21):4844-4853.
Mycobacterium avium subsp. paratuberculosis comprises two genotypically defined groups, known as the cattle (C) and sheep (S) groups. Recent studies have reported phenotypic differences between M. avium subsp. paratuberculosis groups C and S, including growth rates, infectivity for macrophages, and iron metabolism. In this study, we investigated the genotypes and biological properties of the virulence factor heparin-binding hemagglutinin adhesin (HBHA) for both groups. In Mycobacterium tuberculosis, HBHA is a major adhesin involved in mycobacterium-host interactions and extrapulmonary dissemination of infection. To investigate HBHA in M. avium subsp. paratuberculosis, we studied hbhA polymorphisms by fragment analysis using the GeneMapper technology across a large collection of isolates genotyped by mycobacterial interspersed repetitive-unit–variable-number tandem-repeat (MIRU-VNTR) and IS900 restriction fragment length polymorphism (RFLP-IS900) analyses. Furthermore, we analyzed the structure-function relationships of recombinant HBHA proteins of types C and S by heparin-Sepharose chromatography and surface plasmon resonance (SPR) analyses. In silico analysis revealed two forms of HBHA, corresponding to the prototype genomes for the C and S types of M. avium subsp. paratuberculosis. This observation was confirmed using GeneMapper on 85 M. avium subsp. paratuberculosis strains, including 67 strains of type C and 18 strains of type S. We found that HBHAs from all type C strains contain a short C-terminal domain, while those of type S present a long C-terminal domain, similar to that produced by Mycobacterium avium subsp. avium. The purification of recombinant HBHA from M. avium subsp. paratuberculosis of both types by heparin-Sepharose chromatography highlighted a correlation between their affinities for heparin and the lengths of their C-terminal domains, which was confirmed by SPR analysis. Thus, types C and S of M. avium subsp. paratuberculosis may be distinguished by the types of HBHA they produce, which differ in size and adherence properties, thereby providing new evidence that strengthens the genotypic differences between the C and S types of M. avium subsp. paratuberculosis.
PMCID: PMC3807500  PMID: 23974028
6.  Building a better bacillus: the emergence of Mycobacterium tuberculosis 
The genus Mycobacterium is comprised of more than 150 species that reside in a wide variety of habitats. Most mycobacteria are environmental organisms that are either not associated with disease or are opportunistic pathogens that cause non-transmissible disease in immunocompromised individuals. In contrast, a small number of species, such as the tubercle bacillus, Mycobacterium tuberculosis, are host-adapted pathogens for which there is no known environmental reservoir. In recent years, gene disruption studies using the host-adapted pathogen have uncovered a number of “virulence factors,” yet genomic data indicate that many of these elements are present in non-pathogenic mycobacteria. This suggests that much of the genetic make-up that enables virulence in the host-adapted pathogen is already present in environmental members of the genus. In addition to these generic factors, we hypothesize that molecules elaborated exclusively by professional pathogens may be particularly implicated in the ability of M. tuberculosis to infect, persist, and cause transmissible pathology in its host species, Homo sapiens. One approach to identify these molecules is to employ comparative analysis of mycobacterial genomes, to define evolutionary events such as horizontal gene transfer (HGT) that contributed M. tuberculosis-specific genetic elements. Independent studies have now revealed the presence of HGT genes in the M. tuberculosis genome and their role in the pathogenesis of disease is the subject of ongoing investigations. Here we review these studies, focusing on the hypothesized role played by HGT loci in the emergence of M. tuberculosis from a related environmental species into a highly specialized human-adapted pathogen.
PMCID: PMC3982062  PMID: 24765091
Mycobacterium tuberculosis; Mycobacterium kansasii; M. tuberculosis-specific genes; horizontal gene transfer; comparative genomics
7.  atpE gene as a new useful specific molecular target to quantify Mycobacterium in environmental samples 
BMC Microbiology  2013;13:277.
The environment is the likely source of many pathogenic mycobacterial species but detection of mycobacteria by bacteriological tools is generally difficult and time-consuming. Consequently, several molecular targets based on the sequences of housekeeping genes, non-functional RNA and structural ribosomal RNAs have been proposed for the detection and identification of mycobacteria in clinical or environmental samples. While certain of these targets were proposed as specific for this genus, most are prone to false positive results in complex environmental samples that include related, but distinct, bacterial genera. Nowadays the increased number of sequenced genomes and the availability of software for genomic comparison provide tools to develop novel, mycobacteria-specific targets, and the associated molecular probes and primers. Consequently, we conducted an in silico search for proteins exclusive to Mycobacterium spp. genomes in order to design sensitive and specific molecular targets.
Among the 3989 predicted proteins from M. tuberculosis H37Rv, only 11 proteins showed 80% to 100% of similarity with Mycobacterium spp. genomes, and less than 50% of similarity with genomes of closely related Corynebacterium, Nocardia and Rhodococcus genera. Based on DNA sequence alignments, we designed primer pairs and a probe that specifically detect the atpE gene of mycobacteria, as verified by quantitative real-time PCR on a collection of mycobacteria and non-mycobacterial species. The real-time PCR method we developed was successfully used to detect mycobacteria in tap water and lake samples.
The results indicate that this real-time PCR method targeting the atpE gene can serve for highly specific detection and precise quantification of Mycobacterium spp. in environmental samples.
PMCID: PMC4219376  PMID: 24299240
Mycobacteria; atpE gene; Environmental samples
8.  The Critical Role of DNA Extraction for Detection of Mycobacteria in Tissues 
PLoS ONE  2013;8(10):e78749.
Nucleic acid-based methods offer promise for both targeted and exploratory investigations of microbes in tissue samples. As the starting material for such studies is a mixture of host and microbial DNA, we have critically evaluated the DNA extraction step to determine the quantitative and qualitative parameters that permit faithful molecular detection of mycobacteria in infected tissue. Specifically, we assessed: 1) tissue disruption procedures; 2) DNA extraction protocols; and 3) inhibition of bacterial PCR by host DNA.
Principal Findings
Regarding DNA extraction, we found that 1) grinding was not necessary if bead-beating is done, 2) the reference mycobacterial DNA extraction method recovered more pure DNA than commercial spin column kits, 3) lysozyme digestion of 1 hour was sufficient, and 4) repeated steps of phenol:chloroform:isoamyl alcohol offered minimal gain in DNA quality. By artificially mixing mycobacterial DNA with DNA extracted from uninfected mice, we found that bacterial real-time quantitative PCR was only reliable when the quantity of host DNA was < 3 µg in a final volume of 25 µl and the quality was high (260/280 nm ratio = 1.89±0.08). Findings from spiked DNA studies were confirmed using DNA extracted from mice infected with different intracellular pathogens (M. tuberculosis, M. avium subsp. paratuberculosis).
Our findings point to the most appropriate methods for extracting DNA from tissue samples for the purpose of detecting and quantifying mycobacteria. These data also inform on the limits of detection for two mycobacterial species and indicate that increasing the sample mass to improve analytic sensitivity comes at the cost of inhibition of PCR by host DNA.
PMCID: PMC3806855  PMID: 24194951
9.  Reductions in intestinal Clostridiales precede the development of nosocomial Clostridium difficile infection 
Microbiome  2013;1:18.
Antimicrobial use is thought to suppress the intestinal microbiota, thereby impairing colonization resistance and allowing Clostridium difficile to infect the gut. Additional risk factors such as proton-pump inhibitors may also alter the intestinal microbiota and predispose patients to Clostridium difficile infection (CDI). This comparative metagenomic study investigates the relationship between epidemiologic exposures, intestinal bacterial populations and subsequent development of CDI in hospitalized patients. We performed a nested case–control study including 25 CDI cases and 25 matched controls. Fecal specimens collected prior to disease onset were evaluated by 16S rRNA gene amplification and pyrosequencing to determine the composition of the intestinal microbiota during the at-risk period.
The diversity of the intestinal microbiota was significantly reduced prior to an episode of CDI. Sequences corresponding to the phylum Bacteroidetes and to the families Bacteroidaceae and Clostridiales Incertae Sedis XI were depleted in CDI patients compared to controls, whereas sequences corresponding to the family Enterococcaceae were enriched. In multivariable analyses, cephalosporin and fluoroquinolone use, as well as a decrease in the abundance of Clostridiales Incertae Sedis XI were significantly and independently associated with CDI development.
This study shows that a reduction in the abundance of a specific bacterial family - Clostridiales Incertae Sedis XI - is associated with risk of nosocomial CDI and may represent a target for novel strategies to prevent this life-threatening infection.
PMCID: PMC3971611  PMID: 24450844
Intestinal microbiota; Clostridium difficile infection; 16S rRNA gene sequencing; Clostridiales Incertae Sedis XI
10.  Evaluation of a Semi-Automated Reporter Phage Assay for Susceptibility Testing of Mycobacterium tuberculosis Isolates in South Africa 
In a prospective study conducted by laboratory technologists in a diagnostic laboratory in Cape Town, South Africa, a semi-automated phage-based antibiotic susceptibility assay was implemented and the performance of the luciferase reporter mycobacteriophage (LRP) system for susceptibility testing of clinical Mycobacterium tuberculosis complex (MTC) isolates against rifampin and isoniazid was evaluated. Two hundred consecutive clinical MGIT cultures of MTC species were included in this study. Antibiotic susceptibility assays were setup manually for the LRP and BACTEC radiometric systems and read in a plate luminometer and the BACTEC 460 instrument, respectively. Discrepant susceptibility results were resolved by the conventional agar proportion method. Of the 200 secondary cultures prepared for this study, 9 (4.5%) were lost to contamination (LRP 4, BACTEC 1, both 4). All of the remaining 191 cultures underwent susceptibility testing by both methods and the overall agreement between the LRP and BACTEC was 98.4% (rifampin 100%; isoniazid 96.9%). Of the 6 discrepant cultures tested by the agar proportion method, 2 gave results in agreement with the LRP. The sensitivity of the LRP for detection of drug-resistant isolates was 100% for both rifampin (n=9) and isoniazid (n=12). The median turnaround time for susceptibility testing was 2 days with the LRP and 9 days with BACTEC. In conclusion, the semi-automated LRP-based assay offers a rapid and practical approach for accurate susceptibility testing of Mycobacterium tuberculosis cultures in diagnostic laboratories with limited financial resources but with competent technologists.
PMCID: PMC3677954  PMID: 17980664
Mycobacterium tuberculosis; drug susceptibility testing; luciferase reporter mycobacteriophages; drug resistance
11.  Vitamin D Induces Interleukin-1β Expression: Paracrine Macrophage Epithelial Signaling Controls M. tuberculosis Infection 
PLoS Pathogens  2013;9(6):e1003407.
Although vitamin D deficiency is a common feature among patients presenting with active tuberculosis, the full scope of vitamin D action during Mycobacterium tuberculosis (Mtb) infection is poorly understood. As macrophages are the primary site of Mtb infection and are sites of vitamin D signaling, we have used these cells to understand the molecular mechanisms underlying modulation of the immune response by the hormonal form of vitamin D, 1,25-dihydroxyvitamin D (1,25D). We found that the virulent Mtb strain H37Rv elicits a broad host transcriptional response. Transcriptome profiling also revealed that the profile of target genes regulated by 1,25D is substantially altered by infection, and that 1,25D generally boosts infection-stimulated cytokine/chemokine responses. We further focused on the role of 1,25D- and infection-induced interleukin 1β (IL-1β) expression in response to infection. 1,25D enhanced IL-1β expression via a direct transcriptional mechanism. Secretion of IL-1β from infected cells required the NLRP3/caspase-1 inflammasome. The impact of IL-1β production was investigated in a novel model wherein infected macrophages were co-cultured with primary human small airway epithelial cells. Co-culture significantly prolonged survival of infected macrophages, and 1,25D/infection-induced IL-1β secretion from macrophages reduced mycobacterial burden by stimulating the anti-mycobacterial capacity of co-cultured lung epithelial cells. These effects were independent of 1,25D-stimulated autophagy in macrophages but dependent upon epithelial IL1R1 signaling and IL-1β-driven epithelial production of the antimicrobial peptide DEFB4/HBD2. These data provide evidence that the anti-microbial actions of vitamin D extend beyond the macrophage by modulating paracrine signaling, reinforcing its role in innate immune regulation in humans.
Author Summary
In 2010 there were ∼9 million cases of tuberculosis and 1.4 million deaths, representing the second largest cause of death worldwide and the leading cause of death from a curable disease. M. tuberculosis (Mtb) replicates within cells of the immune system called macrophages over an approximate 72 hour period, ultimately inducing cell death. Notably, macrophages are sites of vitamin D signaling, and there is broad evidence that vitamin D modulates macrophage responses to Mtb. Elevated levels of TB have long been associated with vitamin D deficiency, strongly suggesting that vitamin D supplementation may be of therapeutic benefit. In this study we profile the host macrophage response to Mtb infection through the use of high-throughput genomics techniques. From this we have discovered that the dominant function of vitamin D is the modulation of the levels of specific cytokines, mediators of immune cell to cell signaling. Of particular interest was the increase in IL-1β signaling, which we show to be directly regulated by vitamin D. We also show that this increase in IL-1β is critical for driving a signaling cascade between macrophages and lung epithelial cells leading to epithelial antimicrobial peptide production that helps to contain Mtb infection in our model culture system.
PMCID: PMC3675149  PMID: 23762029
12.  Repeat IGRA Testing in Canadian Health Workers: Conversions or Unexplained Variability? 
PLoS ONE  2013;8(1):e54748.
Although North American hospitals are switching from tuberculin testing (TST) to interferon-gamma release assays (IGRAs), data are limited on the association between occupational exposure and serial QuantiFERON-TB Gold In-Tube (QFT) results in healthcare workers (HCWs).
In a cohort of Canadian HCWs, TST and QFT were performed at study enrolment (TST1 and QFT1) and 1 year later (TST2 and QFT2). Conversion and reversion rates were estimated, and correlation with TB exposure was assessed.
Among 258 HCWs, median age was 36.8 years, 188/258 (73%) were female and 183/258 (71%) were Canadian-born. In 245 subjects with a negative QFT1 we found a QFT conversion rate of 5.3% (13/245, 95% CI 2.9–8.9%). Using more stringent definitions, QFT conversion rates ranged from 2.0 to 5.3%. No TST conversions were found among the 241 HCWs with negative TST1, and no measure of recent TB exposure was associated with QFT conversions. In the 13 HCWs with a positive QFT1, 62% reverted.
Using the conventional QFT conversion definition, we found a higher than expected rate of conversion. Recent occupational exposures were not associated with QFT conversions, and no TST conversions occurred in this cohort, suggesting the ‘conversions’ may not reflect new TB infection.
PMCID: PMC3561382  PMID: 23382955
13.  Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency 
Science (New York, N.Y.)  2012;337(6102):1684-1688.
ISG15 is an interferon (IFN)-α/β-inducible, ubiquitin-like intracellular protein. Its conjugation to various proteins (ISGylation) contributes to antiviral immunity in mice. We describe human patients with inherited ISG15 deficiency and mycobacterial, but not viral diseases. The lack of intracellular ISG15 production and protein ISGylation was not associated with cellular susceptibility to any viruses tested, consistent with the lack of viral diseases in these patients. By contrast, the lack of mycobacterium-induced ISG15 secretion by leukocytes — granulocytes in particular — reduced the production of IFN-γ by lymphocytes, including natural killer cells, probably accounting for the enhanced susceptibility to mycobacterial disease. This experiment of Nature shows that human ISGylation is largely redundant for antiviral immunity, but that ISG15 plays an essential role as an IFN-γ-inducing secreted molecule for optimal antimycobacterial immunity.
PMCID: PMC3507439  PMID: 22859821
14.  Inter- and Intra-subtype genotypic differences that differentiate Mycobacterium avium subspecies paratuberculosis strains 
BMC Microbiology  2012;12:264.
Mycobacterium avium subspecies paratuberculosis (Map) is the aetiological agent of Johne’s disease or paratuberculosis and is included within the Mycobacterium avium complex (MAC). Map strains are of two major types often referred to as ‘Sheep’ or ‘S-type’ and ‘Cattle’ or ‘C-type’. With the advent of more discriminatory typing techniques it has been possible to further classify the S-type strains into two groups referred to as Type I and Type III. This study was undertaken to genotype a large panel of S-type small ruminant isolates from different hosts and geographical origins and to compare them with a large panel of well documented C-type isolates to assess the genetic diversity of these strain types. Methods used included Mycobacterial Interspersed Repetitive Units - Variable-Number Tandem Repeat analysis (MIRU-VNTR), analysis of Large Sequence Polymorphisms by PCR (LSP analysis), Single Nucleotide Polymorphism (SNP) analysis of gyr genes, Pulsed-Field Gel Electrophoresis (PFGE) and Restriction Fragment Length Polymorphism analysis coupled with hybridization to IS900 (IS900-RFLP) analysis.
The presence of LSPA4 and absence of LSPA20 was confirmed in all 24 Map S-type strains analysed. SNPs within the gyr genes divided the S-type strains into types I and III. Twenty four PFGE multiplex profiles and eleven different IS900-RFLP profiles were identified among the S-type isolates, some of them not previously published. Both PFGE and IS900-RFLP segregated the S-type strains into types I and III and the results concurred with those of the gyr SNP analysis. Nine MIRU-VNTR genotypes were identified in these isolates. MIRU-VNTR analysis differentiated Map strains from other members of Mycobacterium avium Complex, and Map S-type from C-type but not type I from III. Pigmented Map isolates were found of type I or III.
This is the largest panel of S-type strains investigated to date. The S-type strains could be further divided into two subtypes, I and III by some of the typing techniques (IS900-RFLP, PFGE and SNP analysis of the gyr genes). MIRU-VNTR did not divide the strains into the subtypes I and III but did detect genetic differences between isolates within each of the subtypes. Pigmentation is not exclusively associated with type I strains.
PMCID: PMC3546927  PMID: 23164429
15.  High yield of culture-based diagnosis in a TB-endemic setting 
BMC Infectious Diseases  2012;12:218.
In most of the world, microbiologic diagnosis of tuberculosis (TB) is limited to microscopy. Recent guidelines recommend culture-based diagnosis where feasible.
In order to evaluate the relative and absolute incremental diagnostic yield of culture-based diagnosis in a high-incidence community in Cape Town, South Africa, subjects evaluated for suspected TB had their samples processed for microscopy and culture over a 21 month period.
For 2537 suspect episodes with 2 smears and 2 cultures done, 20.0% (508) had at least one positive smear and 29.9% (760) had at least one positive culture. One culture yielded 1.8 times more cases as 1 smear (relative yield), or an increase of 12.0% (absolute yield). Based on the latter value, the number of cultures needed to diagnose (NND) one extra case of TB was 8, compared to 19 if second specimens were submitted for microscopy.
In a high-burden setting, the introduction of culture can markedly increase TB diagnosis over microscopy. The concept of number needed to diagnose can help in comparing incremental yield of diagnosis methods. Although new promising diagnostic molecular methods are being implemented, TB culture is still the gold standard.
PMCID: PMC3482573  PMID: 22978323
Tuberculosis; Diagnosis; Culture; Microscopy
16.  TB Screening in Canadian Health Care Workers Using Interferon-Gamma Release Assays 
PLoS ONE  2012;7(8):e43014.
While many North American healthcare institutions are switching from Tuberculin Skin Test (TST) to Interferon-gamma release assays (IGRAs), there is relatively limited data on association between occupational tuberculosis (TB) risk factors and test positivity and/or patterns of test discordance.
We recruited a cohort of Canadian health care workers (HCWs) in Montreal, and performed both TST and QuantiFERON-TB Gold In Tube (QFT) tests, and assessed risk factors and occupational exposure.
In a cross-sectional analysis of baseline results, the prevalence of TST positivity using the 10 mm cut-off was 5.7% (22/388, 95%CI: 3.6–8.5%), while QFT positivity was 6.2% (24/388, 95%CI: 4–9.1%). Overall agreement between the tests was poor (kappa = 0.26), and 8.3% of HCWs had discordant test results, most frequently TST−/QFT+ (17/388, 4.4%). TST positivity was associated with total years worked in health care, non-occupational exposure to TB and BCG vaccination received after infancy or on multiple occasions. QFT positivity was associated with having worked as a HCW in a foreign country.
Our results suggest that LTBI prevalence as measured by either the TST or the QFT is low in this HCW population. Of concern is the high frequency of unexplainable test discordance, namely: TST−/QFT+ subjects, and the lack of any association between QFT positivity and clear-cut recent TB exposure. If these discordant results are indeed false positives, the use of QFT in lieu of TST in low TB incidence settings could result in overtreatment of uninfected individuals.
PMCID: PMC3423433  PMID: 22916197
17.  An N-Ethyl-N-Nitrosourea (ENU)-Induced Dominant Negative Mutation in the JAK3 Kinase Protects against Cerebral Malaria 
PLoS ONE  2012;7(2):e31012.
Cerebral malaria (CM) is a lethal neurological complication of malaria. We implemented a genome-wide screen in mutagenized mice to identify host proteins involved in CM pathogenesis and whose inhibition may be of therapeutic value. One pedigree (P48) segregated a resistance trait whose CM-protective effect was fully penetrant, mapped to chromosome 8, and identified by genome sequencing as homozygosity for a mis-sense mutation (W81R) in the FERM domain of Janus-associated kinase 3 (Jak3). The causative effect of Jak3W81R was verified by complementation testing in Jak3W81R/− double heterozygotes that were fully protected against CM. Jak3W81R homozygotes showed defects in thymic development with depletion of CD8+ T cell, B cell, and NK cell compartments, and defective T cell-dependent production of IFN-γ. Adoptive transfer of normal splenocytes abrogates CM resistance in Jak3W81R homozygotes, an effect attributed to the CD8+ T cells. Jak3W81R behaves as a dominant negative variant, with significant CM resistance of Jak3W81R/+ heterozygotes, compared to CM-susceptible Jak3+/+ and Jak3+/− controls. CM resistance in Jak3W81R/+ heterozygotes occurs in presence of normal T, B and NK cell numbers. These findings highlight the pathological role of CD8+ T cells and Jak3-dependent IFN-γ-mediated Th1 responses in CM pathogenesis.
PMCID: PMC3283600  PMID: 22363534
18.  Joint Effects of Host Genetic Background and Mycobacterial Pathogen on Susceptibility to Infection ▿ †  
Infection and Immunity  2011;79(6):2372-2378.
The present study examined the differential contribution of host genetic background and mycobacterial pathogen variability to biological and mechanistic phenotypes of infection. For this purpose, A/J and C57BL/6J mice were infected intravenously with a low dose of Mycobacterium tuberculosis H37Rv or the Russia, Japan, and Pasteur substrains of Mycobacterium bovis bacille Calmette-Guérin (BCG). The pulmonary bacterial counts (number of CFU) and transcript levels of select cytokines (e.g., Ifng, Il12b, and Il4) at 1, 3, and 6 weeks postinfection were measured as biological and mechanistic phenotypes, respectively. The individual and combined impact of the host and mycobacteria on these phenotypes was assessed using three-way analysis of variance (ANOVA), which partitions phenotypic variation into host, pathogen, time, and interaction effects. All phenotypes, except pulmonary Il4 transcript levels, displayed evidence for host-mycobacterium specificity by means of significant interaction terms. Pulmonary expression profiles of 34 chemokines and chemokine-related genes were compared across the hosts and mycobacteria. The differences in induction of these immune messenger genes between A/J and C57BL/6J mice were modest and generally failed to reach significance. In contrast, the mycobacteria induced significant variance in a subset of the immune messenger genes, which was more evident in A/J mice relative to that in C57BL/6J mice. Overall, the results demonstrated the importance of considering the joint effects of the mycobacterial and host genetic backgrounds on susceptibility to mycobacterial infections.
PMCID: PMC3125856  PMID: 21402756
19.  Tuberculosis and homelessness in Montreal: a retrospective cohort study 
BMC Public Health  2011;11:833.
Montreal is Canada's second-largest city, where mean annual tuberculosis (TB) incidence from 1996 to 2007 was 8.9/100,000. The objectives of this study were to describe the epidemiology of TB among homeless persons in Montreal and assess patterns of transmission and sharing of key locations.
We reviewed demographic, clinical, and microbiologic data for all active TB cases reported in Montreal from 1996 to 2007 and identified persons who were homeless in the year prior to TB diagnosis. We genotyped all available Mycobacterium tuberculosis isolates by IS6110 restriction fragment length polymorphism (IS6110-RFLP) and spoligotyping, and used a geographic information system to identify potential locations for transmission between persons with matching isolates.
There were 20 cases of TB in homeless persons, out of 1823 total reported from 1996-2007. 17/20 were Canadian-born, including 5 Aboriginals. Homeless persons were more likely than non-homeless persons to have pulmonary TB (20/20), smear-positive disease (17/20, odds ratio (OR) = 5.7, 95% confidence interval (CI): 1.7-20), HIV co-infection (12/20, OR = 14, 95%CI: 4.8-40), and a history of substance use. The median duration from symptom onset to diagnosis was 61 days for homeless persons vs. 28 days for non-homeless persons (P = 0.022). Eleven homeless persons with TB belonged to genotype-defined clusters (OR = 5.4, 95%CI: 2.2-13), and ten potential locations for transmission were identified, including health care facilities, homeless shelters/drop-in centres, and an Aboriginal community centre.
TB cases among homeless persons in Montreal raise concerns about delayed diagnosis and ongoing local transmission.
PMCID: PMC3229542  PMID: 22034944
20.  Reduced Transmissibility of East African Indian Strains of Mycobacterium tuberculosis 
PLoS ONE  2011;6(9):e25075.
Mycobacterium tuberculosis (MTB) has been classified into 4 main lineages. Some reports have associated certain lineages with particular clinical phenotypes, but there is still insufficient information regarding the clinical and epidemiologic implications of MTB lineage variation.
Using large sequence polymorphisms we classified MTB isolates from a population-based study in Montreal, Canada into the 4 major lineages, and identified the associated clinical and epidemiologic features. In addition, IS6110-RFLP and spoligotyping were used as indicators of recent TB transmission. The study population was divided into a derivation cohort, diagnosed between 2001 and 2007, and a separate validation cohort, diagnosed between 1996 and 2000.
In the derivation cohort, when compared to the other MTB lineages, the East African-Indian (EAI) lineage was associated with lower rates of TB transmission, as measured by: positive TST among close contacts of pulmonary TB cases (adjusted odds ratio 0.6: [95% confidence interval 0.4–0.9]), and clustered TB cases (0.3: [<0.001–0.6]). Severe forms of TB were also less likely among the EAI group (0.4: [<0.001–0.8]). There were no significant differences when comparing patients with the other MTB lineages. In the validation cohort, the EAI lineage was associated with lower rates of positive TST among contacts (0.5: [0.3–0.9]) and a trend towards less clustered TB cases (0.5: [0.1–1.8]) when compared to the other lineages. Disease severity among the different groups was not significantly different in the validation cohort.
We conclude that in Montreal, EAI strains were associated with reduced transmission compared to other MTB lineages.
PMCID: PMC3176299  PMID: 21949856
21.  Region of Difference 2 Contributes to Virulence of Mycobacterium tuberculosis ▿  
Infection and Immunity  2010;79(1):59-66.
Mycobacterium bovis BCG strains are live, attenuated vaccines generated through decades of in vitro passage. Because in vitro growth does not select for interaction with the host, it has been hypothesized that genetic loci lost from BCG code for virulence determinants that are dispensable for growth in the laboratory, as exemplified by Region of Difference 1 (RD1), which was lost during the original derivation of BCG between 1908 and 1921. Region of Difference 2 (RD2) was lost during the ongoing propagation of BCG between 1927 and 1931, a time that coincides with reports of the ongoing attenuation of the vaccine. In this study, RD2 has been disrupted in M. tuberculosis H37Rv to test whether its loss contributed to the further attenuation of BCG. The deletion of RD2 did not affect in vitro growth; in contrast, the mutant manifested a decrease in pulmonary and splenic bacterial burdens and reduced pathology in C57BL/6 mice at early time points. This attenuated phenotype was complemented by reintroducing the genes Rv1979c to Rv1982 (including mpt64) but not Rv1985c to Rv1986. In RAW 264.7 macrophages, H37Rv:ΔRD2 showed a decreased proliferation and impaired modulation of the host innate immune response; both observations were complemented with Rv1979c to Rv1982. To test the effect of RD2 disruption on innate immunity, Rag−/− mice were infected; H37Rv:ΔRD2 had increased survival times compared those of H37Rv. These findings support the notion that the safety profile of certain BCG vaccines stems from multiple attenuating mutations, with the RD2 deletion resulting in a less-virulent organism through the impaired bacterial manipulation of the host innate immune response.
PMCID: PMC3019914  PMID: 20974821
22.  The BCG World Atlas: A Database of Global BCG Vaccination Policies and Practices 
PLoS Medicine  2011;8(3):e1001012.
Madhu Pai and colleagues introduce the BCG World Atlas, an open access, user friendly Web site for TB clinicians to discern global BCG vaccination policies and practices and improve the care of their patients.
PMCID: PMC3062527  PMID: 21445325
23.  Hypoxia Induces an Immunodominant Target of Tuberculosis Specific T Cells Absent from Common BCG Vaccines 
PLoS Pathogens  2010;6(12):e1001237.
M. tuberculosis (MTB) species-specific antigenic determinants of the human T cell response are important for immunodiagnosis and vaccination. As hypoxia is a stimulus in chronic tuberculosis infection, we analyzed transcriptional profiles of MTB subject to 168 hours of hypoxia to test the hypothesis that upregulation by hypoxia might result in gene products being recognized as antigens. We identified upregulation of two region of difference (RD) 11 (Rv2658C and Rv2659c), and one RD2 (Rv1986) absent from commonly used BCG strains. In MTB infected persons, the IL-2 ELISpot response to Rv1986 peptides was several times greater than the corresponding IFN-γ response to the reference immunodominant ESAT-6 or CFP-10 antigens. The IL-2 response was confined to two epitopic regions containing residues 61–80 and 161–180. The biggest population of IL-2 secreting T cells was single cytokine positive central memory T cells. The IL-2 response to live MTB bacilli lacking Rv1986 was significantly lower than the response to wild type or mutant complemented with Rv1986. In addition, the IL-2 response to Rv1986 was significantly lower in HIV-TB co-infected persons than in HIV uninfected persons, and significantly increased during antiretroviral therapy. These findings demonstrate that Rv1986 is an immunodominant target of memory T cells and is therefore of relevance when considering the partial efficacy of currently used BCG vaccines and provide evidence for a clinical trial comparing BCG strains.
Author Summary
Mycobacterium tuberculosis (the cause of tuberculosis) can persist for many years in humans without causing disease but has the potential to reactivate. One of the conditions the bacterium must survive in these circumstances is hypoxia. In order to do so, the bacterium uses a characteristic set of genes that help alter its metabolism. It follows that the products of such genes may encode protein antigens that can be recognized by the immune response. We therefore analyzed gene response patterns of tuberculosis subject to prolonged hypoxia as a guide to the discovery of new antigens that might be useful as vaccines or diagnostic agents. Amongst the genes most strongly increased by low oxygen levels, one was identified (known as Rv1986) that is missing from most strains of the tuberculosis vaccine Mycobacterium bovis BCG. When we analyzed human immune responses to this protein in tuberculosis infected people our experiments showed it was particularly well recognized by cells that produce a chemical messenger (cytokine) called interleukin-2. Interleukin-2 is important for long-term immunological memory. The BCG vaccine is only partially effective and our experiments therefore suggest one of the reasons could be that an important immunological target is missing from many strains. Further evaluation of BCG strains in which Rv1986 is present or absent is therefore warranted in the hope that this might improve the efficacy of existing or new tuberculosis vaccines.
PMCID: PMC3009603  PMID: 21203487
24.  Strain-Specific Differences in the Genetic Control of Two Closely Related Mycobacteria 
PLoS Pathogens  2010;6(10):e1001169.
The host response to mycobacterial infection depends on host and pathogen genetic factors. Recent studies in human populations suggest a strain specific genetic control of tuberculosis. To test for mycobacterial-strain specific genetic control of susceptibility to infection under highly controlled experimental conditions, we performed a comparative genetic analysis using the A/J- and C57BL/6J-derived recombinant congenic (RC) mouse panel infected with the Russia and Pasteur strains of Mycobacterium bovis Bacille Calmette Guérin (BCG). Bacillary counts in the lung and spleen at weeks 1 and 6 post infection were used as a measure of susceptibility. By performing genome-wide linkage analyses of loci that impact on tissue-specific bacillary burden, we were able to show the importance of correcting for strain background effects in the RC panel. When linkage analysis was adjusted on strain background, we detected a single locus on chromosome 11 that impacted on pulmonary counts of BCG Russia but not Pasteur. The same locus also controlled the splenic counts of BCG Russia but not Pasteur. By contrast, a locus on chromosome 1 which was indistinguishable from Nramp1 impacted on splenic bacillary counts of both BCG Russia and Pasteur. Additionally, dependent upon BCG strain, tissue and time post infection, we detected 9 distinct loci associated with bacillary counts. Hence, the ensemble of genetic loci impacting on BCG infection revealed a highly dynamic picture of genetic control that reflected both the course of infection and the infecting strain. This high degree of adaptation of host genetics to strain-specific pathogenesis is expected to provide a suitable framework for the selection of specific host-mycobacteria combinations during co-evolution of mycobacteria with humans.
Author Summary
Susceptibility to mycobacterial infection results from a complex interaction between host and bacterial genetic factors. To examine the effect of host and pathogen genetic variability on the control of mycobacterial infection, we infected a panel of genetically related recombinant congenic (RC) mouse strains with two closely related strains of Mycobacterium bovis BCG. Bacterial counts of BCG Russia and BCG Pasteur were determined in the lung and spleen at 1 and 6 weeks following infection and used for genetic analysis. A novel analytical approach was developed to perform genome-wide linkage analyses using the RC strains. Comparative linkage analysis using this model identified a strong genetic effect on chromosome 1 controlling counts of BCG Pasteur at 1 week and of BCG Russia at 1 week and 6 weeks in the spleen. A locus impacting on late BCG Russia counts in the lung and spleen was identified on chromosome 11. Nine additional loci were shown to control bacterial counts in a tissue-, time-, and BCG strain-specific manner. Our findings suggest that the host genetic control of mycobacterial infection is highly dynamic and adapted to the stage of pathogenesis and to the infecting strain. Such a high degree of genetic plasticity in the host-pathogen interplay is expected to favour evolutionary co-adaptation in mycobacterial disease.
PMCID: PMC2965770  PMID: 21060820
25.  Increased NOD2-mediated recognition of N-glycolyl muramyl dipeptide 
The Journal of Experimental Medicine  2009;206(8):1709-1716.
Peptidoglycan-derived muramyl dipeptide (MDP) activates innate immunity via the host sensor NOD2. Although MDP is N-acetylated in most bacteria, mycobacteria and related Actinomycetes convert their MDP to an N-glycolylated form through the action of N-acetyl muramic acid hydroxylase (NamH). We used a combination of bacterial genetics and synthetic chemistry to investigate whether N-glycolylation of MDP alters NOD2-mediated immunity. Upon infecting macrophages with 12 bacteria, tumor necrosis factor (TNF) α secretion was NOD2 dependent only with mycobacteria and other Actinomycetes (Nocardia and Rhodococcus). Disruption of namH in Mycobacterium smegmatis obrogated NOD2-mediated TNF secretion, which could be restored upon gene complementation. In mouse macrophages, N-glycolyl MDP was more potent than N-acetyl MDP at activating RIP2, nuclear factor κB, c-Jun N-terminal kinase, and proinflammatory cytokine secretion. In mice challenged intraperitoneally with live or killed mycobacteria, NOD2-dependent immune responses depended on the presence of bacterial namH. Finally, N-glycolyl MDP was more efficacious than N-acetyl MDP at inducing ovalbumin-specific T cell immunity in a model of adjuvancy. Our findings indicate that N-glycolyl MDP has a greater NOD2-stimulating activity than N-acetyl MDP, consistent with the historical observation attributing exceptional immunogenic activity to the mycobacterial cell wall.
PMCID: PMC2722178  PMID: 19581406

Results 1-25 (60)