PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Myosin-X facilitates Shigella-induced membrane protrusions and cell-to-cell spread 
Cellular microbiology  2012;15(3):353-367.
Summary
The intracellular pathogen Shigella flexneri forms membrane protrusions to spread from cell to cell. As protrusions form, myosin-X (Myo10) localizes to Shigella. Electron micrographs of immunogold-labelled Shigella-infected HeLa cells reveal that Myo10 concentrates at the bases and along the sides of bacteria within membrane protrusions. Time-lapse video microscopy shows that a full-length Myo10 GFP-construct cycles along the sides of Shigella within the membrane protrusions as these structures progressively lengthen. RNAi knock-down of Myo10 is associated with shorter protrusions with thicker stalks, and causes a >80% decrease in confluent cell plaque formation. Myo10 also concentrates in membrane protrusions formed by another intracellular bacteria, Listeria, and knock-down of Myo10 also impairs Listeria plaque formation. In Cos7 cells (contain low concentrations of Myo10), the expression of full-length Myo10 nearly doubles Shigella-induced protrusion length, and lengthening requires the head domain, as well as the tail-PH domain, but not the FERM domain. The GFP-Myo10-HMM domain localizes to the sides of Shigella within membrane protrusions and the GFP-Myo10-PH domain localizes to host cell membranes. We conclude that Myo10 generates the force to enhance bacterial-induced protrusions by binding its head region to actin filaments and its PH tail domain to the peripheral membrane.
doi:10.1111/cmi.12051
PMCID: PMC4070382  PMID: 23083060
2.  Anthrax Lethal and Edema Toxins Fail to Directly Impair Human Platelet Function 
The Journal of Infectious Diseases  2011;205(3):453-457.
Hemorrhage is a prominent clinical manifestation of systemic anthrax. Therefore, we have examined the effects of anthrax lethal and edema toxins on human platelets. We find that anthrax lethal toxin fails to cleave its target, mitogen-activated protein kinase 1, and anthrax edema toxin fails to increase intracellular cyclic adenosine monophosphate. Surface expression of toxin receptors tumor endothelial marker 8 and capillary morphogenesis gene 2, as well as coreceptor low density lipoprotein receptor-related protein 6 (LRP6), are markedly reduced, preventing toxin binding to platelets. Our studies suggest that the hemorrhagic clinical manifestations of systemic anthrax are unlikely to be caused by the direct binding and entry of anthrax toxins into human platelets.
doi:10.1093/infdis/jir763
PMCID: PMC3256950  PMID: 22158563
3.  Bacillus anthracis’ lethal toxin induces broad transcriptional responses in human peripheral monocytes 
BMC Immunology  2012;13:33.
Background
Anthrax lethal toxin (LT), produced by the Gram-positive bacterium Bacillus anthracis, is a highly effective zinc dependent metalloprotease that cleaves the N-terminus of mitogen-activated protein kinase kinases (MAPKK or MEKs) and is known to play a role in impairing the host immune system during an inhalation anthrax infection. Here, we present the transcriptional responses of LT treated human monocytes in order to further elucidate the mechanisms of LT inhibition on the host immune system.
Results
Western Blot analysis demonstrated cleavage of endogenous MEK1 and MEK3 when human monocytes were treated with 500 ng/mL LT for four hours, proving their susceptibility to anthrax lethal toxin. Furthermore, staining with annexin V and propidium iodide revealed that LT treatment did not induce human peripheral monocyte apoptosis or necrosis. Using Affymetrix Human Genome U133 Plus 2.0 Arrays, we identified over 820 probe sets differentially regulated after LT treatment at the p <0.001 significance level, interrupting the normal transduction of over 60 known pathways. As expected, the MAPKK signaling pathway was most drastically affected by LT, but numerous genes outside the well-recognized pathways were also influenced by LT including the IL-18 signaling pathway, Toll-like receptor pathway and the IFN alpha signaling pathway. Multiple genes involved in actin regulation, signal transduction, transcriptional regulation and cytokine signaling were identified after treatment with anthrax LT.
Conclusion
We conclude LT directly targets human peripheral monocytes and causes multiple aberrant gene responses that would be expected to be associated with defects in human monocyte’s normal signaling transduction pathways and function. This study provides further insights into the mechanisms associated with the host immune system collapse during an anthrax infection, and suggests that anthrax LT may have additional downstream targets outside the well-known MAPK pathway.
doi:10.1186/1471-2172-13-33
PMCID: PMC3475123  PMID: 22747600

Results 1-3 (3)