PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Elastase, α1-Proteinase Inhibitor, and Interleukin-8 in Children and Young Adults with End-Stage Kidney Disease Undergoing Continuous Ambulatory Peritoneal Dialysis 
Peritoneal dialysis is one of the main modality of treatment in end-stage kidney diseases (ESKD) in children. In our previous work in chronic kidney disease patients, in pre-dialyzed period and on hemodialysis, the neutrophils were highly activated. The aim of this study was to assess an inflammatory condition and neutrophil activation in ESKD patients undergoing continuous ambulatory peritoneal dialysis (CAPD). Thirteen CAPD patients without infection, both sexes, aged 2.5–24 years, and group of healthy subjects (C) were studied. For comparative purposes the conservatively treated (CT) group of ESKD patients was included. Neutrophil elastase in complex with α1-proteinase inhibitor (NE-α1PI; ELISA), α1-proteinase inhibitor (α1PI; radial immunodiffusion) and interleukin-8 (IL-8; ELISA) were measured in the blood samples from CAPD, CT, and C group and in the peritoneal dialysate fluid (PDF) samples of patients on CAPD. A significantly increased plasma NE-α1PI levels (median 176.5 μg/L, range 85.2–373.2 μg/L; p < 0.00005), serum IL-8 (median 18.6 pg/mL, range 15.73–35.28 pg/mL; p < 0.05), and slightly decreased serum α1PI (median 1,540 mg/L, range 1,270–1,955; p ≤ 0.05) compared to the control groups were found. There were no significant differences of analyzed parameters between CAPD and CT patients. The concentration ratio of NE-α1PI, α1PI and IL-8 in blood/PDF was 29.97, 8.24, and 4.48, respectively. There were significantly positive correlations between serum and PDF concentration of α1PI and IL-8 (r = 0.613, p < 0.05; r = 0.59; p < 0.005, respectively). The results of our study demonstrate that neutrophils are highly activated in non-infected CAPD patients. The pivotal marker of this activation is NE-α1PI. It may contribute to chronic inflammation and tissues injury.
doi:10.1007/s00005-013-0265-7
PMCID: PMC4024125  PMID: 24292797
Neutrophil elastase; α1-Proteinase inhibitor; Interleukin-8; End-stage kidney diseases; Continuous ambulatory peritoneal dialysis
2.  Innate immune properties of selected human neuropeptides against Moraxella catarrhalis and nontypeable Haemophilus influenzae 
BMC Immunology  2012;13:24.
Background
Considerable evidence supports the concept of active communication between the nervous and immune systems. One class of such communicators are the neuropeptides (NPs). Recent reports have highlighted the antimicrobial activity of neuropeptides, placing them among the integral components of innate immune defense. This study examined the action of four human neuropeptides: calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), substance P (SP) and somatostatin (SOM), which are accessible in the upper respiratory tract, against two human-specific respiratory pathogens. We studied: (i) neuropeptide-mediated direct antibacterial activity exerted against Moraxella catarrhalis and nontypeable Haemophilus influenzae, and (ii) indirect immunomodulatory role of these neuropeptides in the neutrophil-mediated phagocytosis of indicated pathogens.
Results
We found that 100 micromolar concentrations of CGRP, NPY, SP, and SOM effectively permeabilized bacterial membranes and showed (except SOM) bactericidal activity against both pathogens. SOM acted only bacteriostatically. However the killing efficacy was dependent on the bactericidal assay used. The rank order of killing NP effect was: NPY ≥ CGRP > SP >> SOM and correlated with their potency to permeabilize bacterial membranes. The killing and permeabilization activity of the analyzed NPs showed significant correlation with several physicochemical properties and amino acid composition of the neuropeptides. M. catarrhalis was more sensitive to neuropeptides than nontypeable H. influenzae.
The immunomodulatory bimodal effect of physiological concentrations of CGRP, NPY, and SP on the phagocytic function of human neutrophils against M. catarrhalis and H. influenzae was observed both in the ingestion (pathogen uptake) and reactive oxygen species generation stages. This effect was also dependent on the distinct type of pathogen recognition (opsonic versus nonopsonic).
Conclusions
The present results indicate that neuropeptides such as CGRP, NPY, and SP can effectively participate in the direct and indirect elimination of human-specific respiratory pathogens. Because the studied NPs show both direct and indirect modulating antimicrobial potency, they seem to be important molecules involved in the innate host defense against M. catarrhalis and nontypeable H. influenzae.
doi:10.1186/1471-2172-13-24
PMCID: PMC3460729  PMID: 22551165
Neuropeptide Y; Substance P; CGRP; Somatostatin; Killing; Permeabilization; Phagocytosis; Immunomodulation; Moraxella catarrhalis; Haemophilus influenzae

Results 1-2 (2)