Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Evaluation of Mycobacterium tuberculosis drug susceptibility in clinical specimens from Nigeria using genotype MTBDRplus and MTBDRsl assays 
The incidence of tuberculosis (TB) and especially multidrug-resistant TB (MDR) continues to increase alarmingly worldwide, and reliable and fast diagnosis of MDR is essential for the adequate treatment of patients. In contrast to the standard culture methods, nucleid acid amplification tests (NAATs) provide information about presence of Mycobacterium tuberculosis complex (MTBC) DNA and a potential resistance pattern within hours. We analyzed specimens of 110 patients from Nigeria comparing culture-based drug susceptibility testing (DST) to NAAT assays detecting isoniazid (INH), rifampicin (RMP) (GenoType MTBDRplus), and ethambutol (EMB) (GenoType MTBDRsl) resistance. Compared to DST, the GenoType MTBDRplus and MTBDRsl showed a specificity of 100% (86.3–100) and a sensitivity of 86% (42.1–99.6%) for detection of INH and a specificity of 100% (86.3–100) and a sensitivity of 83% (35.9–99.6%) for detection of RMP, and a sensitivity 100% (47.8–100%) for EMB resistance. However, in two strains, the NAAT assays provided false susceptible results as the mutations causing resistance were in genomic regions not covered by the probes of the GenoType MTBDRplus assay. We show that, in combination to DST, application of the GenoType MTBDRplus and GenoType MTBDRsl assays might be a useful additional tool to allow a rapid and safe diagnosis of MDR and extensively drug-resistant (XDR) MTBC.
PMCID: PMC3838540  PMID: 24294494
drug susceptibility testing; GenoType; Mycobacterium tuberculosis complex; Nigeria
2.  Two patients with intestinal failure requiring home parenteral nutrition, a NOD2 mutation and tuberculous lymphadenitis 
BMC Gastroenterology  2014;14:43.
Mutations in the NOD2 gene are a significant risk factor to acquire intestinal failure requiring home parenteral nutrition. Tuberculous lymphadenitis is the main manifestation of extrapulmonary tuberculosis. Defects in the innate immunity, including NOD2 mutations, may increase the risk for acquiring infections caused by M. tuberculosis. An association of intestinal failure, mutations in the NOD2 gene and tuberculous lymphadenitis has not been described before.
Case presentation
We report of two patients with intestinal failure secondary to mesenteric ischemia. Both patients presented with fever and weight loss while receiving long term home parenteral nutrition. Both of them were found to have mutations in the NOD2 gene. Catheter related infections were ruled out. FDG-PET-CT scans initially obtained in search for another infectious focus that would explain the symptoms unexpectedly showed high FDG uptake in mediastinal lymph nodes. Direct or indirect evidence proved or was highly suggestive for tuberculous lymphadenitis. Intravenous tuberculostatic therapy was started and led to a reversal of symptoms and to resolution of the lesions by FDG-PET-CT.
Mutations in the NOD2 gene may put patients both at an increased risk for acquiring M. tuberculosis infections as well as at an increased risk of intestinal failure after extensive intestinal resection. Thus we suggest to specifically include reactivated and opportunistic infections in the differential diagnosis of suspected catheter related infection in patients with intestinal failure who carry mutations in their NOD2 gene.
PMCID: PMC3995967  PMID: 24597572
NOD2; Intestinal failure; Tuberculous lymphadenitis; Catheter related blood stream infection
3.  Plasmacytoid Dendritic Cells Are Crucial in Bifidobacterium adolescentis-Mediated Inhibition of Yersinia enterocolitica Infection 
PLoS ONE  2013;8(8):e71338.
In industrialized countries bacterial intestinal infections are commonly caused by enteropathogenic Enterobacteriaceae. The interaction of the microbiota with the host immune system determines the adequacy of an appropriate response against pathogens. In this study we addressed whether the probiotic Bifidobacterium adolescentis is protective during intestinal Yersinia enterocolitica infection. Female C57BL/6 mice were fed with B. adolescentis, infected with Yersinia enterocolitica, or B. adolescentis fed and subsequently infected with Yersinia enterocolitica. B. adolescentis fed and Yersinia infected mice were protected from Yersinia infection as indicated by a significantly reduced weight loss and splenic Yersinia load when compared to Yersinia infected mice. Moreover, protection from infection was associated with increased intestinal plasmacytoid dendritic cell and regulatory T-cell frequencies. Plasmacytoid dendritic cell function was investigated using depletion experiments by injecting B. adolescentis fed, Yersinia infected C57BL/6 mice with anti-mouse PDCA-1 antibody, to deplete plasmacytoid dendritic cells, or respective isotype control. The B. adolescentis-mediated protection from Yersinia dissemination to the spleen was abrogated after plasmacytoid dendritic cell depletion indicating a crucial function for pDC in control of intestinal Yersinia infection. We suggest that feeding of B. adolescentis modulates the intestinal immune system in terms of increased plasmacytoid dendritic cell and regulatory T-cell frequencies, which might account for the B. adolescentis-mediated protection from Yersinia enterocolitica infection.
PMCID: PMC3748105  PMID: 23977019
4.  Quorum sensing in the probiotic bacterium Escherichia coli Nissle 1917 (Mutaflor) – evidence that furanosyl borate diester (AI-2) is influencing the cytokine expression in the DSS colitis mouse model 
Gut Pathogens  2012;4:8.
“Quorum sensing” (QS) is the phenomenon which allows single bacterial cells to measure the concentration of bacterial signal molecules. Two principle different QS systems are known, the Autoinducer 1 system (AI-1) for the intraspecies communication using different Acyl-homoserine lactones (AHL) and AI-2 for the interspecies communication. Aim of this study was to investigate QS of Escherichia coli Nissle 1917 (Mutaflor).
While E. coli Nissle is producing AI-2 in a density dependent manner, no AI-1 was produced. To study the effect of AI-2 in the DSS (dextran sulphate sodium) induced mouse model of acute colitis, we silenced the corresponding gene luxS by intron insertion. The mutant bacterium E. coli Nissle::luxS was equally effective in colonizing the colon and the mutation turned out to be 100% stable during the course of the experiment. Isolating RNA from the colon mucosa and performing semiquantitative RT PCR, we were able to show that the expression of the pro-inflammatory cytokine IFN-y was suppressed in mice being infected with the E. coli Nissle wild type. Mice infected with the E. coli Nissle::luxS mutant showed a suppressed expression of IL-10 compared to uninfected mice, while the expression of the pro-inflammatory cytokines IL-6 and TNF-α was higher in these mice. The expression of mBD-1 was suppressed in mice being infected with the mutant in comparison to the mice not infected or infected with the wild type. No differences were seen in the histological examination of the colon sections in the different groups of mice.
E. coli Nissle is producing AI-2 molecules, which are influencing the expression of cytokines in the mucosa of the colon in the DSS mice. However, if QS has a direct influence on the probiotic properties of E. coli Nissle remains to be elucidated.
PMCID: PMC3480846  PMID: 22862922
Quorum sensing; Escherichia coli Nissle; Autoinducer-2; DSS colitis; Cytokines
5.  Role of CD40 ligation in dendritic cell semimaturation 
BMC Immunology  2012;13:22.
DC are among the first antigen presenting cells encountering bacteria at mucosal surfaces, and play an important role in maintenance of regular homeostasis in the intestine. Upon stimulation DC undergo activation and maturation and as initiators of T cell responses they have the capacity to stimulate naïve T cells. However, stimulation of naïve murine DC with B. vulgatus or LPS at low concentration drives DC to a semimature (sm) state with low surface expression of activation-markers and a reduced capacity to activate T-cells. Additionally, semimature DC are nonresponsive to subsequent TLR stimulation in terms of maturation, TNF-α but not IL-6 production. Ligation of CD40 is an important mechanism in enhancing DC maturation, function and capacity to activate T-cells. We investigated whether the DC semimaturation can be overcome by CD40 ligation.
Upon CD40 ligation smDC secreted IL-12p40 but not the bioactive heterodimer IL-12p70. Additionally, CD40 ligation of smDC resulted in an increased production of IL-6 but not in an increased expression of CD40. Analysis of the phosphorylation pattern of MAP kinases showed that in smDC the p38 phosphorylation induced by CD40 ligation is inhibited. In contrast, phosphorylation of ERK upon CD40 ligation was independent of the DC maturation state.
Our data show that the semimature differentiation state of DC can not be overcome by CD40 ligation. We suggest that the inability of CD40 ligation in overcoming DC semimaturation might contribute to the tolerogenic phenotype of semimature DC and at least partially account for maintenance of intestinal immune homeostasis.
PMCID: PMC3485177  PMID: 22537317
Dendritic cells; CD40 ligation; Maturation; Cytokine; MAP Kinase; Homoeostasis; T-cell
6.  Safety of Probiotic Escherichia coli Strain Nissle 1917 Depends on Intestinal Microbiota and Adaptive Immunity of the Host▿  
Infection and Immunity  2010;78(7):3036-3046.
Probiotics are viable microorganisms that are increasingly used for treatment of a variety of diseases. Occasionally, however, probiotics may have adverse clinical effects, including septicemia. Here we examined the role of the intestinal microbiota and the adaptive immune system in preventing translocation of probiotics (e.g., Escherichia coli Nissle). We challenged C57BL/6J mice raised under germfree conditions (GF-raised C57BL/6J mice) and Rag1−/− mice raised under germfree conditions (GF-raised Rag1−/− mice) and under specific-pathogen-free conditions (SPF-raised Rag1−/− mice) with probiotic E. coli strain Nissle 1917, strain Nissle 1917 mutants, the commensal strain E. coli mpk, or Bacteroides vulgatus mpk. Additionally, we reconstituted Rag1−/− mice with CD4+ T cells. E. coli translocation and dissemination and the mortality of mice were assessed. In GF-raised Rag1−/− mice, but not in SPF-raised Rag1−/− mice or GF-raised C57BL/6J mice, oral challenge with E. coli strain Nissle 1917, but not oral challenge with E. coli mpk, resulted in translocation and dissemination. The mortality rate was significantly higher for E. coli strain Nissle 1917-challenged GF-raised Rag1−/− mice (100%; P < 0.001) than for E. coli strain Nissle 1917-challenged SPF-raised Rag1−/− mice (0%) and GF-raised C57BL/6J mice (0%). Translocation of and mortality due to strain E. coli Nissle 1917 in GF-raised Rag1−/− mice were prevented when mice were reconstituted with T cells prior to strain E. coli Nissle 1917 challenge, but not when mice were reconstituted with T cells after E. coli strain Nissle 1917 challenge. Cocolonization experiments revealed that E. coli mpk could not prevent translocation of strain E. coli Nissle 1917. Moreover, we demonstrated that neither lipopolysaccharide structure nor flagella play a role in E. coli strain Nissle 1917 translocation and dissemination. Our results suggest that if both the microbiota and adaptive immunity are defective, translocation across the intestinal epithelium and dissemination of the probiotic E. coli strain Nissle 1917 may occur and have potentially severe adverse effects. Future work should define the possibly related molecular factors that promote probiotic functions, fitness, and facultative pathogenicity.
PMCID: PMC2897399  PMID: 20421387
7.  Contribution of Adenosine A2B Receptors to Inflammatory Parameters of Experimental Colitis 
Inflammatory diseases influence tissue metabolism, significantly altering the profile of extracellular adenine nucleotides. A number of studies have suggested that adenosine (Ado) may function as an endogenously generated anti-inflammatory molecule. Given the central role of intestinal epithelial cells to the development of colitis, we hypothesized that specific Ado receptors would contribute to disease resolution in mucosal inflammation as modeled by DSS (dextran sodium sulfate) colitis. Initial profiling studies revealed that murine intestinal epithelial cells express predominantly the adenosine A2B receptor (AA2BR) and to a lesser extent AA2AR. Guided by these results, we examined the contribution of AA2BR to colitis. Initial studies indicated that the severity of colitis was increased in Aa2br−/− mice relative to Aa2br+/+ controls, as reflected by increased weight loss, colonic shortening and disease activity indices. Likewise, enteral administration of the selective AA2BR inhibitor PSB1115 to Aa2br+/+ mice resulted in a similar increase in severity of DSS colitis. Cytokine profiling of colonic tissue revealed specific deficiencies in IL-10 in Aa2br−/− mice relative to controls. Extensions of these findings in cultured human intestinal epithelial cells revealed that stable adenosine analogs induce IL-10 mRNA and protein and that such increases can be blocked with PSB1115. Together, these studies indicate a central regulatory role for AA2BR-modulated IL-10 in the acute inflammatory phase of DSS colitis, thereby implicating AA2BR as an endogenously protective molecule expressed on intestinal epithelial cells.
PMCID: PMC2831100  PMID: 19342675
adenosine; inflammation; colitis; mucosa; cytokines

Results 1-7 (7)