PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-23 (23)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Elevated expression of LAG-3, but not PD-1, is associated with impaired iNKT cytokine production during chronic HIV-1 infection and treatment 
Retrovirology  2015;12:17.
Background
LAG-3 is a potent negative regulator of the immune response but its impact in HIV infection in poorly understood. Unlike exhaustion markers such as PD-1, Tim-3, 2B4 and CD160, LAG-3 is poorly expressed on bulk and antigen-specific T cells during chronic HIV infection and its expression on innate lymphocyte subsets is not well understood. The aim of this study was to assess LAG-3 expression and association with cellular dysfunction on T cells, NK cells and iNKT cells among a cohort of healthy and HIV-infected female sex workers in Nairobi, Kenya.
Results
Ex vivo LAG-3 expression was measured by multiparametric flow cytometry, and plasma cytokine/chemokine concentrations measured by bead array. Although LAG-3 expression on bulk T cells was significantly increased among HIV-infected women, the proportion of cells expressing the marker was extremely low. In contrast, LAG-3 was more highly expressed on NK and iNKT cells and was not reduced among women treated with ART. To assess the functional impact of LAG-3 on iNKT cells, iNKT cytokine production was measured in response to lipid (αGalCer) and PMA/Io stimulation by both flow cytometry and cytokine bead array. iNKT cytokine production is profoundly altered by both HIV infection and treatment, and LAG-3, but not PD-1, expression is associated with a reduction in iNKT IFNγ production.
Conclusions
LAG-3 does not appear to mediate T cell exhaustion in this African population, but is instead expressed on innate lymphocyte subsets including iNKT cells. HIV infection alters iNKT cytokine production patterns and LAG-3 expression is uniquely associated with iNKT dysfunction. The continued expression of LAG-3 during treatment suggests it may contribute to the lack of innate immune reconstitution commonly observed during ART.
Electronic supplementary material
The online version of this article (doi:10.1186/s12977-015-0142-z) contains supplementary material, which is available to authorized users.
doi:10.1186/s12977-015-0142-z
PMCID: PMC4332911
Exhaustion; iNKT cells; LAG-3 protein human; HIV; CD223; Immune dysfunction
2.  Development of polyether urethane intravaginal rings for the sustained delivery of hydroxychloroquine 
Hydroxychloroquine (HCQ) has been shown to demonstrate anti-inflammatory properties and direct anti-HIV activity. In this study, we describe for the first time the fabrication and in vitro evaluation of two types of intravaginal ring (IVR) devices (a surfaced-modified matrix IVR and a reservoir segmental IVR) for achieving sustained delivery (>14 days) of HCQ as a strategy for preventing male-to-female transmission of HIV. Both IVRs were fabricated by hot-melt injection molding. Surface-modified matrix IVRs with polyvinylpyrrolidone or poly(vinyl alcohol) coatings exhibited significantly reduced burst release on the first day (6.45% and 15.72% reduction, respectively). Reservoir IVR segments designed to release lower amounts of HCQ displayed near-zero-order release kinetics with an average release rate of 28.38 μg/mL per day for IVRs loaded with aqueous HCQ and 32.23 μg/mL per day for IVRs loaded with HCQ mixed with a rate-controlling excipient. Stability studies demonstrated that HCQ was stable in coated or noncoated IVRs for 30 days. The IVR segments had no significant effect on cell viability, pro-inflammatory cytokine production, or colony formation of vaginal and ectocervical epithelial cells. Both IVR systems may be suitable for the prevention of HIV transmission and other sexually transmitted infections.
doi:10.2147/DDDT.S71352
PMCID: PMC4199968  PMID: 25336923
intravaginal delivery; matrix system; reservoir system; polymeric drug carrier; drug release; microbicide; HIV/AIDS
3.  Immune Quiescence: a model of protection against HIV infection 
Retrovirology  2013;10:141.
Aberrant immune activation is a strong correlate of HIV disease progression, but little is known about how immune activation alters susceptibility to HIV infection. Susceptibility to HIV infection varies between individuals, but the immunological determinants of HIV transmission are not well understood. Here, we present evidence from studies of HIV transmission in the context of clinical trials and HIV-exposed seronegative (HESN) cohorts that implicates elevated immune activation as a risk factor for acquiring HIV. We propose a model of protection from infection based on a phenotype of low baseline immune activation referred to as immune quiescence. Immune quiescence is evidenced by reduced expression of T cell activation markers, low levels of generalized gene transcription and low levels of proinflammatory cytokine and chemokine production in the periphery and genital mucosa of HESN. Since HIV preferentially replicates in activated CD4+ T cells, immune quiescence may protect against infection by limiting HIV target cell availability. Although the determinants of immune quiescence are unclear, several potential factors have been identified that may be involved in driving this phenotype. HESN were shown to have elevated proportions of regulatory T cells (Tregs), which are known to suppress T cell activation. Likewise, proteins involved in controlling inflammation in the genital tract have been found to be elevated in HESN. Furthermore, expression of interferon regulatory factor 1 (IRF-1) is reduced in HESN as a consequence of genetic polymorphisms and differential epigenetic regulation. Since IRF-1 is an important regulator of immune responses, it may play a role in maintaining immune quiescence. Based on this model, we propose a novel avenue for HIV prevention targeted based on reducing host mucosal immune activation.
doi:10.1186/1742-4690-10-141
PMCID: PMC3874678  PMID: 24257114
HIV; Immune activation; Immune quiescence; HIV resistance; HIV susceptibility; HESN
4.  Age and menopause affect the expression of specific cytokines/chemokines in plasma and cervical lavage samples from female sex workers in Nairobi, Kenya 
Background
Aging of the immune system, known as immunosenescence, is associated with profound changes in both innate and adaptive immune responses, resulting in increased susceptibility to infection and a decreased ability to respond to vaccination. The purpose of this study was to investigate the effect of age and menopause on the expression of 22 different cytokines/chemokines in both plasma and cervical lavage samples from female sex-worker cohort from Nairobi, Kenya (age range 20–65).
Results
Cytokine/chemokine levels were measured using a Miliplex multiplex assay (Millipore). We found that age positively correlated with MCP-1 (p = 0.0002) and IP-10 (p = 0.03) systemic cytokine expression, and that women over 50 expressed the highest levels of these cytokines, but also had elevated expression of MIG (ANOVA p = 0.0096) and MIP-3β(ANOVA p = 0.0434). We also found that IL-8 (p = 0.047) and sCD40L (p = 0.01) systemic expression negatively correlated with age. Further, MIG (p = 0.0081) and MCP-1 (p = 0.0157) were present at higher levels in post-menopausal women suggesting a potential estrogen dependant systemic regulation of these cytokines. In cervical lavage samples, age did not directly correlate with the expression of any of the tested cytokines/chemokines, however sIL-2Rα (ANOVA p = 0.0170) and IL-15 (ANOVA p = 0.0251)were significantly higher in women over 50. Menopause was shown to have a more profound effect on cytokine expression in the cervical mucosa with MIG (p = 0.0256), MIP-3α (p = 0.0245), IL-1β (p = 0.0261), IL-6 (p = 0.0462), IL-8 (p = 0.007), IP-10 (p = 0.0357) and MCP-1 (p = 0.0427) all significantly under-expressed in post-menopausal women.
Conclusions
This study demonstrates that aging and menopause-associated hormonal changes are associated with significant changes in systemic and mucosal cytokine/chemokine expression, which may have implications for the age-related decline in the ability to fight against infections.
doi:10.1186/1742-4933-10-42
PMCID: PMC3874757  PMID: 24498919
Aging; Immune system; Cytokines/chemokines; Menopause
5.  C868T Single Nucleotide Polymorphism and HIV Type 1 Disease Progression Among Postpartum Women in Kenya 
Abstract
The C868T single nucleotide polymorphism in the CD4 receptor encodes an amino acid substitution of tryptophan for arginine in the third domain. Previous studies suggest that C868T increases the risk of HIV-1 acquisition; however, the influence of this single nucleotide polymorphism (SNP) on disease progression has not been established. The presence of the C868T polymorphism was not statistically significantly associated with HIV-1 disease progression outcomes in a cohort of postpartum Kenyan women.
doi:10.1089/aid.2011.0095
PMCID: PMC3358105  PMID: 21902583
6.  Serological survey of the novel influenza A H1N1 in inner city Winnipeg, Manitoba, 2009 
INTRODUCTION:
Little is known about the determinants of pandemic H1N1 (pH1N1) infection in Canada among low-income, inner city populations. To inform future influenza planning, the seroprevalence of pH1N1 antibodies among inner city clinic attendees in Winnipeg (Manitoba) according to sociodemographic and risk factor characteristics were estimated and vaccination rates were explored.
METHODS:
Adults presenting to three inner city community clinics in Winnipeg from October 2009 to December 2009 were recruited as study participants (n=458). A questionnaire was administered to collect demographic, risk factor and symptom information, and a venous blood sample was collected for hemagglutination inhibition assay testing to detect the presence of antibodies against pH1N1.
RESULTS:
Approximately one-half (53%) of the study participants reported an annual household income of <$10,000/year, and 65% identified as Aboriginal. pH1N1 positivity was 5.7% among those enrolled early in the study and 15.5% among those enrolled later in the study. Positivity was higher among participants who were female, Aboriginal and in contact with children ≤5 years of age. The overall pH1N1 vaccination rate was 28%.
DISCUSSION:
pH1N1 positivity was high among low-income adults accessing clinics in Winnipeg’s inner city compared with the general population. Of further concern were the low rates of uptake of both seasonal and pH1N1 influenza vaccinations. When planning for future influenza outbreaks, it is important to incorporate strategies for the prevention, control, and care of influenza among low-income and inner city adults.
PMCID: PMC3403663  PMID: 23730311
Epidemiology; Hemagglutination inhibition assay; Inner city; Pandemic Influenza A H1N1; pH1N1; Serological survey
7.  Characterization of Anti-HIV Activity Mediated by R88-APOBEC3G Mutant Fusion Proteins in CD4+ T cells, Peripheral Blood Mononuclear Cells, and Macrophages 
Human Gene Therapy  2010;22(10):1225-1237.
Abstract
In this study, we characterized the anti-HIV activities of various R88-APOBEC3G (R88-A3G) mutant fusion proteins in which each A3G mutant was fused with a virus-targeting polypeptide (R14-88, hereafter named R88) derived from HIV-1 Vpr. Our results show that the introduction of the deaminase-defective mutant E259Q into R88-A3G did not affect the virion incorporation of this mutant but blocked the protein's ability to inhibit HIV-1 infection. Our data also reveal that the antiviral effect of A3GY124A, a previously described A3G virus-packaging mutant, was completely rescued when the mutant was fused with R88. In an attempt to identify the most potent R88-A3G fusion proteins against HIV-1 infection, we introduced two Vif-binding mutants (D128K and P129A) into the R88-A3G fusion protein and showed that both R88-A3GD128K and R88-A3GP129A possessed very potent anti-HIV activity. When R88-A3GP129A was transduced into CD4+ C8166 T cells, HIV-1 infection was completely abolished for at least 24 days. In an attempt to further test the anti-HIV effect of this mutant in primary human HIV susceptible cells, we introduced R88-A3GP129A into human peripheral blood mononuclear cells (PBMCs) and macrophages with a recombinant adeno-associated virus (rAAV2/5) vector. The results demonstrate that a significant inhibition of HIV-1 infection was observed in the transduced PBMCs and macrophages. These results provide evidence for the feasibility of an R88-A3G–based anti-HIV strategy. The further optimization of this system will contribute to the development of new anti-HIV gene therapy approaches.
Ao and colleagues generate a panel of R88-APOBEC3G (R88-A3G) mutant fusion proteins and characterize their anti-HIV properties. They demonstrate the ability to use AAV2/5 to express a protein with particularly potent anti-HIV activity (R88-A3GP129A) into CD4+ T cells and human peripheral blood mononuclear cells and macrophages and efficiently inhibit HIV-1 infection.
doi:10.1089/hum.2010.012
PMCID: PMC3205798  PMID: 21182427
8.  Reduced Cellular Susceptibility to In Vitro HIV Infection Is Associated with CD4+ T Cell Quiescence 
PLoS ONE  2012;7(9):e45911.
Background
HIV preferentially establishes productive infection in activated CD4+ T cells. Since proportions of activated CD4+ T cells vary between individuals, this study aimed to determine if individuals with a greater proportion of activated CD4+ T cells would be more susceptible to in vitro HIV infection.
Methodology/Principal Findings
Unstimulated peripheral blood mononuclear cells (PBMC) from various donors were inoculated with HIVML1956 in vitro. HIV replication was evaluated by HIV p24 ELISA of culture supernatants and intracellular staining for HIV p24, which was detected by flow cytometry. Baseline T cell phenotypes and infected cell phenotypes were also evaluated by flow cytometry. Ex vivo phenotyping at the time of blood draw showed that elevated T cell activation and reduced Tregs were associated with increased cellular susceptibility to in vitro infection. Furthermore, the infected CD4+ T cell population was enriched for activated cells.
Conclusion/Significance
These data suggest that CD4+ T cell quiescence provides an environment less conducive to the establishment of HIV infection by limiting the pool of activated target cells.
doi:10.1371/journal.pone.0045911
PMCID: PMC3448692  PMID: 23029309
9.  Responses to pandemic ASO3-adjuvanted A/California/07/09 H1N1 influenza vaccine in human immunodeficiency virus-infected individuals 
BMC Immunology  2012;13:49.
Background
Influenza infection may be more serious in human immunodeficiency virus (HIV)-infected individuals, therefore, vaccination against seasonal and pandemic strains is highly advised. Seasonal influenza vaccines have had no significant negative effects in well controlled HIV infection, but the impact of adjuvanted pandemic A/California/07/2009 H1N1 influenza hemaglutinin (HA) vaccine, which was used for the first time in the Canadian population as an authorized vaccine in autumn 2009, has not been extensively studied.
Objective
Assess vaccine-related effects on CD4+ T cell counts and humoral responses to the vaccine in individuals attending the Newfoundland and Labrador Provincial HIV clinic.
Methods
A single dose of ArepanrixTM split vaccine including 3.75 μg A/California/07/2009 H1N1 HA antigen and ASO3 adjuvant was administered to 81 HIV-infected individuals by intramuscular injection. Plasma samples from shortly before, and 1–5 months after vaccination were collected from 80/81 individuals to assess humoral anti-H1N1 HA responses using a sensitive microbead-based array assay. Data on CD4+ T cell counts, plasma viral load, antiretroviral therapy and patient age were collected from clinical records of 81 individuals.
Results
Overall, 36/80 responded to vaccination either by seroconversion to H1N1 HA or with a clear increase in anti-H1N1 HA antibody levels. Approximately 1/3 (28/80) had pre-existing anti-H1N1 HA antibodies and were more likely to respond to vaccination (22/28). Responders had higher baseline CD4+ T cell counts and responders without pre-existing antibodies against H1N1 HA were younger than either non-responders or responders with pre-existing antibodies. Compared to changes in their CD4+ T cell counts observed over a similar time period one year later, vaccine recipients displayed a minor, transient fall in CD4+ T cell numbers, which was greater amongst responders.
Conclusions
We observed low response rates to the 2009 pandemic influenza vaccine among HIV-infected individuals without pre-existing antibodies against H1N1 HA and a minor transient fall in CD4+ T cell numbers, which was accentuated in responders. A single injection of the ArepanrixTM pandemic A/California/07/2009 H1N1 HA split vaccine may be insufficient to induce protective immunity in HIV-infected individuals without pre-existing anti-H1N1 HA responses.
doi:10.1186/1471-2172-13-49
PMCID: PMC3482569  PMID: 22937824
HIV; influenza; pandemic; A/California/07/2009 H1N1 HA antigen; AS03 oil in water adjuvant; inflammation; CD4+ T cells; age
10.  Invariant NKT Cells: Regulation and Function during Viral Infection 
PLoS Pathogens  2012;8(8):e1002838.
Natural killer T cells (NKT cells) represent a subset of T lymphocytes that express natural killer (NK) cell surface markers. A subset of NKT cells, termed invariant NKT cells (iNKT), express a highly restricted T cell receptor (TCR) and respond to CD1d-restricted lipid ligands. iNKT cells are now appreciated to play an important role in linking innate and adaptive immune responses and have been implicated in infectious disease, allergy, asthma, autoimmunity, and tumor surveillance. Advances in iNKT identification and purification have allowed for the detailed study of iNKT activity in both humans and mice during a variety of chronic and acute infections. Comparison of iNKT function between non-pathogenic simian immunodeficiency virus (SIV) infection models and chronic HIV-infected patients implies a role for iNKT activity in controlling immune activation. In vitro studies of influenza infection have revealed novel effector functions of iNKT cells including IL-22 production and modulation of myeloid-derived suppressor cells, but ex vivo characterization of human iNKT cells during influenza infection are lacking. Similarly, as recent evidence suggests iNKT involvement in dengue virus pathogenesis, iNKT cells may modulate responses to a number of emerging pathogens. This Review will summarize current knowledge of iNKT involvement in responses to viral infections in both human and mouse models and will identify critical gaps in knowledge and opportunities for future study. We will also highlight recent efforts to harness iNKT ligands as vaccine adjuvants capable of improving vaccination-induced cellular immune responses.
doi:10.1371/journal.ppat.1002838
PMCID: PMC3420949  PMID: 22916008
11.  Evaluation of influenza-specific humoral response by microbead array analysis 
RATIONALE:
Quantitation and determination of antigen specificity of systemic and mucosal immune responses to influenza vaccination is beneficial for future vaccine development. Previous methods to acquire this information were costly, time consuming and sample exhaustive. The benefits of suspension microbead array (MBA) analysis are numerous. The multiplex capabilities of the system conserve time, money and sample, while generating statistically powerful data.
OBJECTIVE:
To demonstrate the use of the assay by comparing the humoral influenza-specific responses of two cohorts from two countries that differed in circulating influenza strains and rates of influenza vaccination.
METHODS:
Influenza hemagglutinin (HA) from different strains were coated on microbeads and incubated with serum samples to capture immunoglobulin (Ig) A1 and IgG1 host antibodies.
RESULTS:
Statistically significant differences in IgA1 and IgG1 exist between the serum samples from Winnipeg (Manitoba) donors and those from Kenyan (Africa) donors. Data were compared using Mann-Whitney nonparametric tests. The Winnipeg donors had higher mean fluorescence intensity values, with significant P values for anti-HA IgA1 to A/Wyoming/3/2003 (P=0.044), A/Vietnam/1203/2004 (P=0.0179), A/New Caledonia/20/99 (P<0.0001) and B/Tokyo/53/99 (P=0.0002). No differences were seen between the groups in their response to B/Jilin/20/2003. The Winnipeg donors had higher mean fluorescence intensity values, with significant P values for anti-HA IgG1 to A/Wyoming/3/2003 (P=0.0135), B/Tokyo/53/99 (P=0.006) and B/Jilin20/2003 (P=0.026).
CONCLUSION:
Influenza-specific IgA1 and IgG1 antibodies were successfully detected using MBA technology. A significant difference in antibody response was observed between Winnipeg and Kenyan donor serums. MBA analysis is a relatively quick and cost-effective method for serum antibody analysis. The potential to simultaneously assay small sample volumes for a multitude of antigens makes this method invaluable for future vaccine response monitoring.
PMCID: PMC3076152  PMID: 22379485
Hemagglutinin; Immunoglobulin; Influenza; Microbead array
12.  Microarray Analysis of HIV Resistant Female Sex Workers Reveal a Gene Expression Signature Pattern Reminiscent of a Lowered Immune Activation State 
PLoS ONE  2012;7(1):e30048.
To identify novel biomarkers for HIV-1 resistance, including pathways that may be critical in anti-HIV-1 vaccine design, we carried out a gene expression analysis on blood samples obtained from HIV-1 highly exposed seronegatives (HESN) from a commercial sex worker cohort in Nairobi and compared their profiles to HIV-1 negative controls. Whole blood samples were collected from 43 HIV-1 resistant sex workers and a similar number of controls. Total RNA was extracted and hybridized to the Affymetrix HUG 133 Plus 2.0 micro arrays (Affymetrix, Santa Clara CA). Output data was analysed through ArrayAssist software (Agilent, San Jose CA). More than 2,274 probe sets were differentially expressed in the HESN as compared to the control group (fold change ≥1.3; p value ≤0.0001, FDR <0.05). Unsupervised hierarchical clustering of the differentially expressed genes readily distinguished HESNs from controls. Pathway analysis through the KEGG signaling database revealed a majority of the impacted pathways (13 of 15, 87%) had genes that were significantly down regulated. The most down expressed pathways were glycolysis/gluconeogenesis, pentose phosphate, phosphatidyl inositol, natural killer cell cytotoxicity and T-cell receptor signaling. Ribosomal protein synthesis and tight junction genes were up regulated. We infer that the hallmark of HIV-1 resistance is down regulation of genes in key signaling pathways that HIV-1 depends on for infection.
doi:10.1371/journal.pone.0030048
PMCID: PMC3266890  PMID: 22291902
14.  The role of G protein gene GNB3 C825T Polymorphism in HIV-1 acquisition, progression and immune activation 
Retrovirology  2012;9:1.
Background
The GNB3 C825T polymorphism is associated with increased G protein-mediated signal transduction, SDF-1α-mediated lymphocyte chemotaxis, accelerated HIV-1 progression, and altered responses to antiretroviral therapy among Caucasian subjects. The GNB3 825T allele is highly prevalent in African populations, and as such any impact on HIV-1 acquisition or progression rates could have a dramatic impact. This study examines the association of the 825T polymorphism with HIV-1 acquisition, disease progression and immune activation in two African cohorts. GNB3 825 genotyping was performed for enrolees in both a commercial sex worker cohort and a perinatal HIV transmission (PHT) cohort in Nairobi, Kenya. Ex vivo immune activation was quantified by flow cytometry, and plasma chemokine levels were assessed by cytokine bead array.
Results
GNB3 genotype was not associated with sexual or vertical HIV-1 acquisition within these cohorts. Within the Pumwani cohort, GNB3 genotype did not affect HIV-1 disease progression among seroconverters or among HIV-1-positive individuals after adjustment for baseline CD4 count. Maternal CD4 decline and viral load increase in the PHT cohort did not differ between genotypes. Multi-parametric flow cytometry assessment of T cell activation (CD69, HLA-DR, CD38) and Treg frequency (CD25+FOXP3+) found no differences between genotype groups. Plasma SDF-1α, MIP-1β and TRAIL levels quantified by cytokine bead array were also similar between groups.
Conclusions
In contrast to previous reports, we were unable to provide evidence to suggest that the GNB3 C825T polymorphism affects HIV-1 acquisition or disease progression within African populations. Ex vivo immune activation and plasma chemokine levels were similarly unaffected by GNB3 genotype in both HIV-1-negative and HIV-1-positive individuals. The paucity of studies investigating the impact of GNB3 polymorphism among African populations and the lack of mechanistic studies make it difficult to assess the true biological significance of this polymorphism in HIV-1 infection.
doi:10.1186/1742-4690-9-1
PMCID: PMC3278356  PMID: 22214232
GNB3; HIV progression; G protein; HIV acquisition; Immune Activation
15.  Molecular Definition of Vaginal Microbiota in East African Commercial Sex Workers ▿ †  
Applied and Environmental Microbiology  2011;77(12):4066-4074.
Resistance to HIV infection in a cohort of commercial sex workers living in Nairobi, Kenya, is linked to mucosal and antiinflammatory factors that may be influenced by the vaginal microbiota. Since bacterial vaginosis (BV), a polymicrobial dysbiosis characterized by low levels of protective Lactobacillus organisms, is an established risk factor for HIV infection, we investigated whether vaginal microbiology was associated with HIV-exposed seronegative (HESN) or HIV-seropositive (HIV+) status in this cohort. A subset of 44 individuals was selected for deep-sequencing analysis based on the chaperonin 60 (cpn60) universal target (UT), including HESN individuals (n = 16), other HIV-seronegative controls (HIV-N, n = 16), and HIV+ individuals (n = 12). Our findings indicate exceptionally high phylogenetic resolution of the cpn60 UT using reads as short as 200 bp, with 54 species in 29 genera detected in this group. Contrary to our initial hypothesis, few differences between HESN and HIV-N women were observed. Several HIV+ women had distinct profiles dominated by Escherichia coli. The deep-sequencing phylogenetic profile of the vaginal microbiota corresponds closely to BV+ and BV− diagnoses by microscopy, elucidating BV at the molecular level. A cluster of samples with intermediate abundance of Lactobacillus and dominant Gardnerella was identified, defining a distinct BV phenotype that may represent a transitional stage between BV+ and BV−. Several alpha- and betaproteobacteria, including the recently described species Variovorax paradoxus, were found to correlate positively with increased Lactobacillus levels that define the BV− (“normal”) phenotype. We conclude that cpn60 UT is ideally suited to next-generation sequencing technologies for further investigation of microbial community dynamics and mucosal immunity underlying HIV resistance in this cohort.
doi:10.1128/AEM.02943-10
PMCID: PMC3131651  PMID: 21531840
16.  Immunogenetic Factors Associated with Severe Respiratory Illness Caused by Zoonotic H1N1 and H5N1 Influenza Viruses 
Following the 2009 H1N1 pandemic and ongoing sporadic avian-to-human transmission of H5N1 viruses, an emphasis has been placed on better understanding the determinants and pathogenesis of severe influenza infections. Much of the current literature has focused on viral genetics and its impact on host immunity as well as novel risk factors for severe infection (particularly within the H1N1 pandemic). An understanding of the host genetic determinants of susceptibility and severe respiratory illness, however, is currently lacking. By better defining the role of genetic variability in influenza infection and identifying key polymorphisms that impair the host immune response or correlate with protection, we will be able to better identify at-risk populations and new targets for therapeutic interventions and vaccines. This paper will summarize known immunogenetic factors associated with susceptibility or severity of both pH1N1 and H5N1 infections and will also identify genetic pathways and polymorphisms of high relevance for future study.
doi:10.1155/2012/797180
PMCID: PMC3216312  PMID: 22110538
17.  High Level of Soluble HLA-G in the Female Genital Tract of Beninese Commercial Sex Workers Is Associated with HIV-1 Infection 
PLoS ONE  2011;6(9):e25185.
Background
Most HIV infections are transmitted across mucosal epithelium. Understanding the role of innate and specific mucosal immunity in susceptibility or protection against HIV infection, as well as the effect of HIV infection on mucosal immunity, are of fundamental importance. HLA-G is a powerful modulator of the immune response. The aim of this study was to investigate whether soluble HLA-G (sHLA-G) expression in the female genital tract is associated with HIV-1 infection.
Methods and Findings
Genital levels of sHLA-G were determined in 52 HIV-1-uninfected and 44 antiretroviral naïve HIV-1-infected female commercial sex workers (CSWs), as well as 71 HIV-1-uninfected non-CSW women at low risk of exposure, recruited in Cotonou, Benin. HIV-1-infected CSWs had higher genital levels of sHLA-G compared with those in both the HIV-1-uninfected CSW (P = 0.009) and non-CSW groups (P = 0.0006). The presence of bacterial vaginosis (P = 0.008), and HLA-G*01:01:02 genotype (P = 0.002) were associated with higher genital levels of sHLA-G in the HIV-1-infected CSWs, whereas the HLA-G*01:04:04 genotype was also associated with higher genital level of sHLA-G in the overall population (P = 0.038). When adjustment was made for all significant variables, the increased expression of sHLA-G in the genital mucosa remained significantly associated with both HIV-1 infection (P = 0.02) and bacterial vaginosis (P = 0.03).
Conclusion
This study demonstrates that high level of sHLA-G in the genital mucosa is independently associated with both HIV-1 infection and bacterial vaginosis.
doi:10.1371/journal.pone.0025185
PMCID: PMC3179477  PMID: 21966450
18.  Estimated cumulative incidence of pandemic (H1N1) influenza among pregnant women during the first wave of the 2009 pandemic 
Background
Hospitalization and lab confirmed cases of H1N1 have been reported during the first wave of the 2009 pandemic but these are not accurate measures of influenza incidence in the population. We estimated the cumulative incidence of pandemic (H1N1) influenza among pregnant women in the province of Manitoba during the first wave of the 2009 pandemic.
Methods
Two panels of stored frozen serum specimens collected for routine prenatal screening were randomly selected for testing before (March 2009, n = 252) and after (August 2009, n = 296) the first wave of the pandemic. A standard hemagglutination inhibition assay was used to detect the presence of IgG antibodies against the pandemic (H1N1) 2009 virus. The cumulative incidence of pandemic (H1N1) influenza was calculated as the difference between the point prevalence rates in the first and second panels.
Results
Of the specimens collected in March, 7.1% were positive for the IgG antibodies (serum antibody titre ≥ 1:40). The corresponding prevalence was 15.7% among the specimens collected in August. The difference indicated a cumulative incidence of 8.6% (95% confidence interval [CI] 3.2%–13.7%). The rate differed geographically, the highest being in the northern regions (20.8%, 95% CI 7.9%–31.8%), as compared with 4.0% (95% CI 0.0%–11.9%) in Winnipeg and 8.9% (95% CI 0.0%–18.8%) in the rest of the province.
Interpretation
We estimated that the cumulative incidence of pandemic (H1N1) influenza among pregnant women in Manitoba during the first wave of the 2009 pandemic was 8.6%. It was 20.8% in the northern regions of the province.
doi:10.1503/cmaj.100488
PMCID: PMC2950183  PMID: 20823167
19.  Chemokine Receptor 5 Δ32 Allele in Patients with Severe Pandemic (H1N1) 2009 
Emerging Infectious Diseases  2010;16(10):1621-1622.
Because chemokine receptor 5 (CCR5) may have a role in pulmonary immune response, we explored whether patients with severe pandemic (H1N1) 2009 were more likely to carry the CCR5Δ32 allele than were members of the general population. We found a large proportion of heterozygosity for the CCR5Δ32 allele among white patients with severe disease.
doi:10.3201/eid1610.100108
PMCID: PMC3294998  PMID: 20875295
Influenza; CCR5; pandemic (H1N1) 2009; viruses; dispatch
20.  Clade-Specific Evolution Mediated by HLA-B*57/5801 in Human Immunodeficiency Virus Type 1 Clade A1 p24▿  
Journal of Virology  2009;83(23):12636-12642.
HLA-B*57-mediated selection pressure leads to a typical escape pathway in human immunodeficiency virus type 1 (HIV-1) CD8 epitopes such as TW10. Whether this T242N pathway is shared by all clades remains unknown. We therefore assessed the nature of HLA-B*57 selection in a large, observational Kenyan cohort where clades A1 and D predominate. While T242N was ubiquitous in clade D HLA-B*57+ subjects, this mutation was rare (15%) in clade A1. Instead, P243T and I247L were selected by clade A1-infected HLA-B*57 subjects but not by HLA-B*5801+ subjects. Our data suggest that clade A1 consensus proline at Gag residue 243 might represent an inherent block to T242N escape in clade A1. We confirmed immunologically that P243T and I247L likely represent escape mutations. HLA-B*57 evolution also differed between clades in the KF11 and IW9 epitopes. A better understanding of clade-specific evolution is important for the development of HIV vaccines in regions with multiple clades.
doi:10.1128/JVI.01236-09
PMCID: PMC2786721  PMID: 19759140
21.  Epitope Mapping of HIV-Specific CD8+ T cells in a Cohort Dominated by Clade A1 Infection 
PLoS ONE  2009;4(9):e6965.
Background
CD8+ T cell responses are often detected at large magnitudes in HIV-infected subjects, and eliciting these responses is the central aim of many HIV-1 vaccine strategies. Population differences in CD8+ T cell epitope specificity will need to be understood if vaccines are to be effective in multiple geographic regions.
Methodology/Principal Findings
In a large Kenyan cohort, we compared responsive CD8+ T cell HIV-1 Env overlapping peptides (OLPs) to Best Defined Epitopes (BDEs), many of which have been defined in clade B infection. While the majority of BDEs (69%) were recognized in this population, nearly half of responsive OLPs (47%) did not contain described epitopes. Recognition frequencies of BDEs were inversely correlated to epitopic sequence differences between clade A1 and BDE (P = 0.019), and positively selected residues were more frequent in “new” OLPs (without BDEs). We assessed the impact of HLA and TAP binding on epitope recognition frequencies, focusing on predicted and actual epitopes in the HLA B7 supertype.
Conclusions/Significance
Although many previously described CD8 epitopes were recognized, several novel CD8 epitopes were defined in this population, implying that epitope mapping efforts have not been completely exhausted. Expansion of these studies will be critical to understand population differences in CD8 epitope recognition.
doi:10.1371/journal.pone.0006965
PMCID: PMC2735720  PMID: 19750221
22.  Contribution of the C-terminal tri-lysine regions of human immunodeficiency virus type 1 integrase for efficient reverse transcription and viral DNA nuclear import 
Retrovirology  2005;2:62.
Background
In addition to mediating the integration process, HIV-1 integrase (IN) has also been implicated in different steps during viral life cycle including reverse transcription and viral DNA nuclear import. Although the karyophilic property of HIV-1 IN has been well demonstrated using a variety of experimental approaches, the definition of domain(s) and/or motif(s) within the protein that mediate viral DNA nuclear import and its mechanism are still disputed and controversial. In this study, we performed mutagenic analyses to investigate the contribution of different regions in the C-terminal domain of HIV-1 IN to protein nuclear localization as well as their effects on virus infection.
Results
Our analysis showed that replacing lysine residues in two highly conserved tri-lysine regions, which are located within previously described Region C (235WKGPAKLLWKGEGAVV) and sequence Q (211KELQKQITK) in the C-terminal domain of HIV-1 IN, impaired protein nuclear accumulation, while mutations for RK263,4 had no significant effect. Analysis of their effects on viral infection in a VSV-G pseudotyped RT/IN trans-complemented HIV-1 single cycle replication system revealed that all three C-terminal mutant viruses (KK215,9AA, KK240,4AE and RK263,4AA) exhibited more severe defect of induction of β-Gal positive cells and luciferase activity than an IN class 1 mutant D64E in HeLa-CD4-CCR5-β-Gal cells, and in dividing as well as non-dividing C8166 T cells, suggesting that some viral defects are occurring prior to viral integration. Furthermore, by analyzing viral DNA synthesis and the nucleus-associated viral DNA level, the results clearly showed that, although all three C-terminal mutants inhibited viral reverse transcription to different extents, the KK240,4AE mutant exhibited most profound effect on this step, whereas KK215,9AA significantly impaired viral DNA nuclear import. In addition, our analysis could not detect viral DNA integration in each C-terminal mutant infection, even though they displayed various low levels of nucleus-associated viral DNA, suggesting that these C-terminal mutants also impaired viral DNA integration ability.
Conclusion
All of these results indicate that, in addition to being involved in HIV-1 reverse transcription and integration, the C-terminal tri-lysine regions of IN also contribute to efficient viral DNA nuclear import during the early stage of HIV-1 replication.
doi:10.1186/1742-4690-2-62
PMCID: PMC1277849  PMID: 16232319
23.  Antigen-Specific Gene Expression Profiles of Peripheral Blood Mononuclear Cells Do Not Reflect Those of T-Lymphocyte Subsets 
Advances in microarray technology have allowed for the monitoring of thousands of genes simultaneously. This technology is of particular interest to immunologists studying infectious diseases, because it provides tremendous potential for investigating host-pathogen interactions at the level of immune gene expression. To date, many studies have focused either on cell lines, where the physiological relevance is questionable, or on mixed cell populations, where the contributions of individual subpopulations are unknown. In the present study, we perform an intrasubject comparison of antigen-stimulated immune gene expression profiles between a mixed population of peripheral blood mononuclear cells (PBMC) and the two predominant cell types found in PBMC, CD4+ and CD8+ T lymphocytes. We show that the microarray profiles of CD4+ and CD8+ T lymphocytes differ from each other as well as from that of the mixed cell population. The independence of the gene expression profiles of different cell types is demonstrated with a ubiquitous antigen (Candida albicans) as well as with a disease-specific antigen (human immunodeficiency virus p24). This study has important implications for microarray studies of host immunity and underscores the importance of profiling the expression of specific cell types.
doi:10.1128/CDLI.11.5.977-982.2004
PMCID: PMC515274  PMID: 15358662

Results 1-23 (23)