PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Clinicopathological features of invasive micropapillary carcinoma of the breast 
Oncology Letters  2014;9(3):1163-1166.
The aim of the present study was to evaluate the clinical and immunohistopathological findings of invasive micropapillary carcinoma (IMPC) of the breast. In total, 25 patients were included in the present study, all of whom were diagnosed with IMPC. The mammography and ultrasound scanning (US) findings were analysed retrospectively according to the American College of Radiology Breast Imaging Reporting and Data System lexicon. Surgical specimens obtained from the patients were microscopically reviewed in consensus by two pathologists with a specialisation in breast pathology. All the patients presented with palpable lumps in the breast, a high-density irregular mass associated with microcalcifications revealed by mammography and an irregular hypoechoic mass with a spiculated margin revealed by US. Axillary lymph node metastases were identified in 80% of the patients. Immunohistochemical studies revealed the lesions to be highly positive for the oestrogen receptor (ER) and c-erbB-2 (88% and 84%, respectively). Although no significant imaging characteristics were found to distinguish IMPC from typical invasive ductal carcinoma, IMPC resulted in nodal metastases and was highly positive for ER and c-erbB-2. This clinical significance indicates the significance of this entity being recognised by pathologists and surgeons.
doi:10.3892/ol.2014.2806
PMCID: PMC4315051  PMID: 25663874
breast carcinoma; invasive micropapillary carcinoma; immunohistochemistry
2.  Urinary soluble urokinase receptor levels are elevated and pathogenic in patients with primary focal segmental glomerulosclerosis 
BMC Medicine  2014;12:81.
Background
Focal segmental glomerulosclerosis (FSGS) is a major cause of end-stage renal disease. Recent studies have proposed that plasma soluble urokinase receptor (suPAR) might be a causative circulating factor but this proposal has caused controversy. This study aimed to measure urinary suPAR levels in patients with primary FSGS and its significance in the pathogenesis of FSGS.
Methods
Sixty-two patients with primary FSGS, diagnosed between January 2006 and January 2012, with complete clinical and pathologic data were enrolled, together with disease and normal controls. Urinary suPAR levels were measured using commercial ELISA kits and were corrected by urinary creatinine (Cr). The associations between urinary suPAR levels and clinical data at presentation and during follow up were analyzed. Conditionally immortalized human podocytes were used to study the effect of urinary suPAR on activating β3 integrin detected by AP5 staining.
Results
The urinary suPAR level of patients with primary FSGS (500.56, IQR 262.78 to 1,059.44 pg/μmol Cr) was significantly higher than that of patients with minimal change disease (307.86, IQR 216.54 to 480.18 pg/μmol Cr, P = 0.033), membranous nephropathy (250.23, IQR 170.37 to 357.59 pg/μmol Cr, P <0.001), secondary FSGS (220.45, IQR 149.38 to 335.54 pg/μmol Cr, P <0.001) and normal subjects (183.59, IQR 103.92 to 228.78 pg/μmol Cr, P <0.001). The urinary suPAR level of patients with cellular variant was significantly higher than that of patients with tip variant. The urinary suPAR level in the patients with primary FSGS was positively correlated with 24-hour urine protein (r = 0.287, P = 0.024). During follow up, the urinary suPAR level of patients with complete remission decreased significantly (661.19, IQR 224.32 to 1,115.29 pg/μmol Cr versus 217.68, IQR 121.77 to 415.55 pg/μmol Cr, P = 0.017). The AP5 signal was strongly induced along the cell membrane when human differentiated podocytes were incubated with the urine of patients with FSGS at presentation, and the signal could be reduced by a blocking antibody specific to uPAR.
Conclusions
Urinary suPAR was specifically elevated in patients with primary FSGS and was associated with disease severity. The elevated urinary suPAR could activate β3 integrin on human podocytes.
Please see related article http://www.biomedcentral.com/1741-7015/12/82.
doi:10.1186/1741-7015-12-81
PMCID: PMC4064821  PMID: 24884842
Focal segmental glomerulosclerosis; Urinary soluble urokinase receptor; Podocyte
3.  The Alternative Pathway of Complement Activation May Be Involved in the Renal Damage of Human Anti-Glomerular Basement Membrane Disease 
PLoS ONE  2014;9(3):e91250.
Linear deposition of IgG and complement 3 (C3) along glomerular basement membrane (GBM) is generally revealed in the kidneys of human anti-GBM disease. Our recent studies demonstrated the pathogenic role of complement activation in renal damage of this disease. However, the pathways of complement activation were still paradoxical. In this study, renal biopsy tissues from 10 patients with anti-GBM disease were used to investigate the pathways of complement activation by detecting the deposition of various complement components, including C1q, factor B, factor P (properdin), mannose-binding lectin (MBL), C3d, C4d and C5b-9, using immunohistochemistry and immunofluorescence. We found that C1q, factor B, properdin, C3d, C4d and C5b-9 were detected in all the glomeruli of our patients, along GBM with a linear and/or granular staining pattern. Furthermore, C1q, factor B and properdin co-localized well with C5b-9. The properdin also co-localized well with C3d. However, the deposition of MBL was diffusive in mesangium, GBM, Bowman's capsule and within crescents and was not co-localized with C5b-9 but partially co-localized with C4d. The intensity of factor B deposition (3.3 vs. 1.2, P<0.001) and C5b-9 deposition (3.2 vs. 1.6, P<0.001) was significantly stronger in the glomeruli with crescent formation, compared with the glomeruli without crescents. The complement system is overall activated via both the alternative pathway and classical pathway in the kidneys of human anti-GBM disease. The alternative pathway might play an important role in complement activation induced renal damage.
doi:10.1371/journal.pone.0091250
PMCID: PMC3962356  PMID: 24658070
4.  Glomerular C1q deposition and serum anti-C1q antibodies in anti-glomerular basement membrane disease 
BMC Immunology  2013;14:42.
Background
Anti-glomerular basement membrane (GBM) disease is a well-known antibody-induced autoimmune disease. A few patients have glomerular C1q deposition, but it is usually absent on renal histopathology. The role of C1q deposition in kidney injury is unclear. Recently, anti-C1q antibodies are demonstrated to be pathogenic in the target organ damage of many autoimmune diseases, by facilitating C1q deposition and enhancing complement activation via classical pathway. In the current study, we investigated the associations between anti-C1q antibodies in sera and C1q deposition in kidney of patients with anti-GBM disease.
Results
It was shown that the severity of kidney injury was comparable between patients with and without C1q deposition, including the prevalence of oliguria/auria, the median percentage of crescents in glomeruli and the mean concentration of serum creatinine. Serum anti-C1q antibodies were detected in 15/25 (60%) patients with a low titer. The prevalence of C1q deposition in kidney was comparable between patients with and without serum anti-C1q antibodies (26.7% vs. 30.0%, p > 0.05). No association was found between anti-C1q antibodies and the severity of kidney injury.
Conclusions
The classical pathway of complement may not play a pathogenic role in the kidney injury of human anti-GBM disease. Anti-C1q antibodies could be detected in more than half of patients, which need further investigations.
doi:10.1186/1471-2172-14-42
PMCID: PMC3852561  PMID: 24053688
Anti-glomerular basement membrane disease; Complement; Classical pathway; C1q; Anti-C1q antibody
5.  The distribution of IgG subclass deposition on renal tissues from patients with anti-glomerular basement membrane disease 
BMC Immunology  2013;14:19.
Background
Renal injury of anti-glomerular basement membrane (GBM) disease is defined by the linear deposition of IgG along GBM and rapidly progressive glomerulonephritis. To date, the distribution of anti-GBM IgG subclasses on renal tissue is still unclear. In the current study, we investigated the deposition of the four IgG subclasses using immunohistochemistry in the renal biopsy specimens from 46 patients with anti-GBM disease.
Results
All four IgG subclasses can be detected within the GBM. Anti-GBM IgG3 was detected in all patients (100%), with 39 (84.8%) patients presenting with weak segmental staining and 7 (15.2%) patients with strong linear deposition. Anti-GBM IgG2 was detected in 22 (47.8%) patients, with 20 (90.9%) patients having weak segmental deposition and 2 (9.1%) patients presenting strong linear staining. Anti-GBM IgG1 and IgG4 were detected in 9 (19.6%) and 7 (15.2%) patients, respectively. IgG deposition along tubular basement membrane (TBM) was also detected in 31 (67.4%) patients. Among them, the IgG subclass distribution was similar to that of the deposition within the GBM: IgG1 6.5% (2/31), IgG2 45.2% (14/31), IgG3 100% (31/31) and IgG4 9.7% (3/31). We observed increased inflammatory cell infiltration into the interstitium in patients with increased anti-TBM IgG3 deposits (P=0.031).
Conclusions
Anti-GBM IgG3 predominantly deposits along GBM and TBM on renal biopsy specimens from patients with anti-GBM disease, which may be involved in the development of renal injury of the disease.
doi:10.1186/1471-2172-14-19
PMCID: PMC3648436  PMID: 23586976
6.  Gecko Crude Peptides Induce Apoptosis in Human Liver Carcinoma Cells In Vitro and Exert Antitumor Activity in a Mouse Ascites H22 Xenograft Model 
Aim. To investigate the anti-tumor effects and mechanisms of gecko crude peptides (GCPs) in vitro and in vivo. Methods. 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay was applied to measure the effects of GCPs on the HepG2 cell viability. Fluorescence morphology was used to identify apoptotic cells. A xenograft H22 liver cancer model was established in Kunming mice. The tumor-bearing mice were treated with daily intraperitoneal injections of normal saline (NS group) or GCPs (80, 40 or 20 mg/kg) for 10 days, or once per two days with 2 mg/kg doxorubicin (ADR group; n = 10 each). Serum tumor necrosis factor (TNF-α) and interleukin (IL)-6 were quantified using ELISA assay. Results. GCPs significantly inhibited the growth of HepG2 cells and induced typical apoptotic morphological features through increasing bcl-2/bax ratio in a dose- and time-dependent manner in vitro. The tumor weights of the ADR group, GCPs (H) group, GCPs (M) group, GCPs (L) group were smaller compared to the NS group. While the white blood cell count, thymus index, spleen index were higher in the high dose GCPs group than the NS group (P < 0.05), the VEGF expression in tumor tissue and serum TNF-α and IL-6 levels in the GCPs groups were lower than the NS group (P < 0.05).
doi:10.1155/2012/743573
PMCID: PMC3471029  PMID: 23093861
7.  Influence of variable domain glycosylation on anti-neutrophil cytoplasmic autoantibodies and anti-glomerular basement membrane autoantibodies 
BMC Immunology  2012;13:10.
Background
The pathophysiological significance of variable region glycosylation of autoantibodies is still unclear. In the current study, the influence of the variable region N-linked oligosaccharides on the reactivity of three autoantibody specificities was investigated with Sambucus nigra agglutinin (SNA), which mainly binds to oligosaccharides with terminal α2, 6-linked sialic acid on the variable region of IgG.
Methods
Twenty-seven patients with serum positive anti-neutrophil cytoplasmic autoantibodies (ANCA) against myeploperoxidase (MPO) or proteinase 3 (PR3), or autoantibodies against glomerular basement membrane (GBM) were included. Total IgG was isolated and separated into non-SNA-binding and SNA-binding fractions with SNA affinity chromatography. Antigen-specific IgG was purified by immunoaffinity chromatography.
Results
At the same concentration of IgG, the antigen binding level of non-SNA-binding IgG was significantly lower than that of SNA-binding IgG for MPO-ANCA (absorbance value at 405 nm, 0.572 ± 0.590 vs. 0.962 ± 0.670, P < 0.001) and for PR3-ANCA (0.362 ± 0.530 vs. 0.560 ± 0.531, P = 0.003). The antigen binding level of non-SNA-binding IgG was significantly higher than that of SNA-binding IgG for anti-GBM antibodies (1.301 ± 0.594 vs. 1.172 ± 0.583, P = 0.044). The level of variable region glycosylation of total IgG was significantly lower than that of affinity-purified MPO-ANCA (1.021 ± 0.201 vs. 1.434 ± 0.134, P = 0.004). The level of variable region glycosylation of total IgG was significantly higher than that of affinity-purified anti-GBM antibodies (1.034 ± 0.340 vs. 0.734 ± 0.333, P = 0.007). The SNA-binding fraction of MPO-ANCA-containing IgG and PR3-ANCA-containing IgG induced higher levels of neutrophil oxygen radical production than the corresponding non-SNA-binding fractions (P < 0.001 and P = 0.043, respectively). The level of variable region glycosylation of affinity-purified MPO-ANCA was higher in active AAV than the same patients in remission (P = 0.001).
Conclusion
Characteristics of variable region glycosylation of ANCA and anti-GBM antibodies were different from that of total IgG, which might influence the antigen-binding ability of these antibodies. Variable region glycosylation of ANCA might influence the effect of ANCA-induced neutrophils respiratory burst.
doi:10.1186/1471-2172-13-10
PMCID: PMC3324382  PMID: 22404873
Glycosylation; Variable region; ANCA; Anti-GBM
8.  The association of HLA-DQB1, -DQA1 and -DPB1 alleles with anti- glomerular basement membrane (GBM) disease in Chinese patients 
BMC Nephrology  2011;12:21.
Background
Human leukocyte antigen (HLA) alleles are associated with many autoimmune diseases, including anti-glomerular basement membrane (GBM) disease. In our previous study, it was demonstrated that HLA-DRB1*1501 was strongly associated with anti-GBM disease in Chinese. However, the association of anti-GBM disease and other HLA class II genes, including HLA-DQB1, -DQA1,-DPB1 alleles, has rarely been investigated in Asian, especially Chinese patients. The present study further analyzed the association between anti-GBM disease and HLA-DQB1, -DQA1, and -DPB1 genes. Apart from this, we tried to locate the potential risk amino acid residues of anti-GBM disease.
Methods
This study included 44 Chinese patients with anti-GBM disease and 200 healthy controls. The clinical and pathological data of the patients were collected and analyzed. Typing of HLA-DQB1, -DQA1 and -DPB1 alleles were performed by bi-directional sequencing of exon 2 using the SeCoreTM Sequencing Kits.
Results
Compared with normal controls, the prevalence of HLA-DPB1*0401 was significantly lower in patients with anti-GBM disease (3/88 vs. 74/400, p = 4.4 × 10-4, pc = 0.039). Comparing with normal controls, the combination of presence of DRB1*1501 and absence of DPB1*0401 was significantly prominent among anti-GBM patients (p = 2.0 × 10-12, pc = 1.7 × 10-10).
Conclusions
HLA-DPB1*0401 might be a protective allele to anti-GBM disease in Chinese patients. The combined presence of DRB1*1501 and absence of DPB1*0401 might have an even higher risk to anti-GBM disease than HLA-DRB1*1501 alone.
doi:10.1186/1471-2369-12-21
PMCID: PMC3107170  PMID: 21569485
Anti-GBM disease; HLA-DPB1*0401; Chinese

Results 1-8 (8)