Search tips
Search criteria

Results 1-25 (476)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Elevated kinesin family member 26B is a prognostic biomarker and a potential therapeutic target for colorectal cancer 
Kinesins play a key role in the development and progression of many human cancers. The present study investigated the expression and clinical significance of kinesin family member 26B (KIF26B) in colorectal cancer (CRC).
Using quantitative real-time PCR and Western blot analyses as well as immunohistochemical staining of a tissue microarray we examined KIF26B mRNA and protein levels in CRC tumor tissues and paired adjacent normal mucosa. Moreover, the effect of KIF26B knockdown on CRC cell proliferation was investigated using Cell Counting Kit-8 assays.
Expression of KIF26B was found to be elevated in CRC. Suppression of KIF26B inhibited CRC cell proliferation. Furthermore, upregulated expression of KIF26B was significantly correlated with tumor size (P = 0.020), American Joint Committee on Cancer (AJCC) stage (P = 0.018), T stage (P = 0.026), N stage (P = 0.013), and differentiation histology (P = 0.047). KIF26B was also shown to be an independent prognostic indicator of overall survival for CRC patients (HR 5.621; 95% CI 2.302–13.730; P < 0.001).
Our data indicate that KIF26B plays an important role in colorectal carcinogenesis and functions as a novel prognostic indicator and a potential therapeutic target for CRC.
PMCID: PMC4322797  PMID: 25652119
Colorectal cancer; Kinesin family protein 26B; Prognosis; Proliferation
2.  Epinecidin-1 Has Immunomodulatory Effects, Facilitating Its Therapeutic Use in a Mouse Model of Pseudomonas aeruginosa Sepsis 
Antimicrobial peptides (AMPs) are garnering attention as possible alternatives to antibiotics. Here, we describe the antimicrobial properties of epinecidin-1 against a multidrug-resistant clinical isolate of P. aeruginosa (P. aeruginosa R) and a P. aeruginosa strain from ATCC (P. aeruginosa ATCC 19660) in vivo. The MICs of epinecidin-1 against P. aeruginosa R and P. aeruginosa ATCC 19660 were determined and compared with those of imipenem. Epinecidin-1 was found to be highly effective at combating peritonitis infection caused by P. aeruginosa R or P. aeruginosa ATCC 19660 in mouse models, without inducing adverse behavioral effects or liver or kidney toxicity. Taken together, our results indicate that epinecidin-1 enhances the rate of survival of mice infected with the bacterial pathogen P. aeruginosa through both antimicrobial and immunomodulatory effects.
PMCID: PMC4135991  PMID: 24820078
3.  Fusion of Self-Assembling Amphipathic Oligopeptides with Cyclodextrin Glycosyltransferase Improves 2-O-d-Glucopyranosyl-l-Ascorbic Acid Synthesis with Soluble Starch as the Glycosyl Donor 
Applied and Environmental Microbiology  2014;80(15):4717-4724.
In this study, we fused six self-assembling amphipathic peptides (SAPs) with cyclodextrin glycosyltransferase (CGTase) from Paenibacillus macerans to catalyze 2-O-d-glucopyranosyl-l-ascorbic acid (AA-2G) production with cheap substrates, including maltose, maltodextrin, and soluble starch as glycosyl donors. The results showed that two fusion enzymes, SAP5-CGTase and SAP6-CGTase, increased AA-2G yields to 2.33- and 3.36-fold that of wild-type CGTase when soluble starch was used as a substrate. The cyclization activities of these enzymes decreased, while disproportionation activities increased. Enzymatic characterization of the two fusion enzymes was performed, and kinetics analysis of AA-2G synthesis confirmed the enhanced soluble starch specificity of SAP5-CGTase and SAP6-CGTase compared to that in the wild-type CGTase. As revealed by structure modeling of the fusion and wild-type CGTases, enhanced substrate-binding capacity may result from the increased number of hydrogen bonds present after fusion. This study demonstrates an effective protein fusion approach to improving the substrate specificity of CGTase for AA-2G synthesis. Fusion enzymes, especially SAP6-CGTase, are promising starting points for further development through protein engineering.
PMCID: PMC4148807  PMID: 24858090
4.  Identification and application of keto acids transporters in Yarrowia lipolytica 
Scientific Reports  2015;5:8138.
Production of organic acids by microorganisms is of great importance for obtaining building-block chemicals from sustainable biomass. Extracellular accumulation of organic acids involved a series of transporters, which play important roles in the accumulation of specific organic acid while lack of systematic demonstration in eukaryotic microorganisms. To circumvent accumulation of by-product, efforts have being orchestrated to carboxylate transport mechanism for potential clue in Yarrowia lipolytica WSH-Z06. Six endogenous putative transporter genes, YALI0B19470g, YALI0C15488g, YALI0C21406g, YALI0D24607g, YALI0D20108g and YALI0E32901g, were identified. Transport characteristics and substrate specificities were further investigated using a carboxylate-transport-deficient Saccharomyces cerevisiae strain. These transporters were expressed in Y. lipolytica WSH-Z06 to assess their roles in regulating extracellular keto acids accumulation. In a Y. lipolytica T1 line over expressing YALI0B19470g, α-ketoglutarate accumulated to 46.7 g·L−1, whereas the concentration of pyruvate decreased to 12.3 g·L−1. Systematic identification of these keto acids transporters would provide clues to further improve the accumulation of specific organic acids with higher efficiency in eukaryotic microorganisms.
PMCID: PMC4311248  PMID: 25633653
5.  A biosensor for organoarsenical herbicides and growth promoters 
Environmental science & technology  2014;48(2):1141-1147.
The toxic metalloid arsenic is widely distributed in food, water, and soil. While inorganic arsenic enters the environment primarily from geochemical sources, methylarsenicals either result from microbial biotransformation of inorganic arsenic or are introduced anthropogenically. Methylarsenicals such as monosodium methylarsonic acid (MSMA) have been extensively utilized as herbicides, and aromatic arsenicals such as roxarsone (Rox) are used as growth promoters for poultry and swine. Organoarsenicals are degraded to inorganic arsenic. The toxicological effects of arsenicals depend on their oxidation state, chemical composition, and bioavailability. Here we report that the active forms are the trivalent arsenic-containing species. We constructed a whole-cell biosensor utilizing a modified ArsR repressor that is highly selective toward trivalent methyl and aromatic arsenicals, with essentially no response to inorganic arsenic. The biosensor was adapted for in vitro detection of organoarsenicals using fluorescence anisotropy of ArsR-DNA interactions. It detects bacterial biomethylation of inorganic arsenite both in vivo and in vitro with detection limits of 10−7 M and linearity to 10−6 M for phenylarsenite and 5×10−6 M for methylarsenite. The biosensor detects reduced forms of MSMA and roxarsone and offers a practical, low cost method for detecting activate forms and breakdown products of organoarsenical herbicides and growth promoters.
PMCID: PMC3939449  PMID: 24359149
6.  Changing Rates for Liver and Lung Cancer in Qidong, China 
Residents of Qidong, China are undergoing a rapid fluctuation in cancer incidence rates at many organ sites, reflecting a dynamic interplay of socio-behavioral, economic and environmental factors. This Perspective On Statistical Trends examines the China age-standardized incidence rates (CASR), as tracked by the Qidong Cancer Registry for the past 40 years, for the two leading cancer killers in Qidong, liver and lung. Both cancer types are strongly influenced by environmental factors. The CASR for liver cancer has dropped nearly 50% in the last 4 decades, in part from access to deep-well drinking water in the 1970s with consequent diminished exposure to tumor promoting microcystins produced by blue-green algae. There have also been substantive reductions in exposures to dietary aflatoxins, as economic reform in the mid-1980s fostered a wholesale change in dietary staple from maize to rice. In men, lung cancer CASR has trebled over this period, likely driven by a high prevalence of smokers (~65%) and an ever increasing smoking frequency in this population. Qidong women, by contrast, rarely smoke and have exhibited a flat CASR until the last decade where lung cancer rates have now doubled. This upturn may reflect an increasing burden of indoor and outdoor air pollution.
PMCID: PMC3946948  PMID: 24215631
7.  Causes and consequences of crossing-over evidenced via a high-resolution recombinational landscape of the honey bee 
Genome Biology  2015;16(1):15.
Social hymenoptera, the honey bee (Apis mellifera) in particular, have ultra-high crossover rates and a large degree of intra-genomic variation in crossover rates. Aligned with haploid genomics of males, this makes them a potential model for examining the causes and consequences of crossing over. To address why social insects have such high crossing-over rates and the consequences of this, we constructed a high-resolution recombination atlas by sequencing 55 individuals from three colonies with an average marker density of 314 bp/marker.
We find crossing over to be especially high in proximity to genes upregulated in worker brains, but see no evidence for a coupling with immune-related functioning. We detect only a low rate of non-crossover gene conversion, contrary to current evidence. This is in striking contrast to the ultrahigh crossing-over rate, almost double that previously estimated from lower resolution data. We robustly recover the predicted intragenomic correlations between crossing over and both population level diversity and GC content, which could be best explained as indirect and direct consequences of crossing over, respectively.
Our data are consistent with the view that diversification of worker behavior, but not immune function, is a driver of the high crossing-over rate in bees. While we see both high diversity and high GC content associated with high crossing-over rates, our estimate of the low non-crossover rate demonstrates that high non-crossover rates are not a necessary consequence of high recombination rates.
Electronic supplementary material
The online version of this article (doi:10.1186/s13059-014-0566-0) contains supplementary material, which is available to authorized users.
PMCID: PMC4305242  PMID: 25651211
8.  Novel Patchouli Alcohol Ternary Solid Dispersion Pellets Prepared by Poloxamers 
The present study investigates the possibility of using poloxamers as solubility and dissolution rate enhancing agents of poorly water soluble bioactive constituent patchouli alcohol (PA) that can be used for the preparation of immediate release pellets formulation. Two commercially available grades poloxamer 188 (P 188) and poloxamer 407 (P 407) were selected, and solid dispersions (SDs) containing different weight ratio of PA and poloxamers, and the combination of P 188 and P 407 as dispersing carriers of ternary solid dispersions (tSDs) were prepared by a low temperature melting method and solidified rapidly by dropping into the 10-15 °C condensing agent atoleine. Both PA/P 188 and PA/P 407 binary solid dispersions (bSDs) could remarkably promote the dissolution rate of PA, increasing approximately 16 times in bSDs with poloxamers in comparison with pure PA within 180 min. P188 contributed to a faster dissolution rate than P 407, however, P 407 had a better solubility. It is interesting to note that the incorporation of P 188 in PA/P 407 bSD pellets could strongly enhance the dissolution rate of PA. DSC and FTIR were used to explore the characteristics of PA-SD pellets. The enhancement of dissolution from the SDs may be attributed partly to the reduction in particle size in PA crystalline due to the formation of eutectic system with poloxamers. Moreover, a simple, accurate in-vitro dissolution test method for volatility drug was established, and the process of PA-SD pellets preparation was simple, rapid, cost effective, uncomplicated and potentially scalable.
PMCID: PMC4277615  PMID: 25561908
Ternary solid dispersion pellets; Patchouli alcohol; Poloxamers; Eutectic mixtures; Closed in-vitro dissolution test method
9.  Sirt3 is essential for apelin-induced angiogenesis in post-myocardial infarction of diabetes 
Heart failure following myocardial infarction (MI) is the leading cause of death in diabetic patients. Angiogenesis contributes to cardiac repair and functional recovery in post-MI. Our previous study shows that apelin (APLN) increases Sirtuin 3 (Sirt3) expression and ameliorates diabetic cardiomyopathy. In this study, we further investigated the direct role of Sirt3 in APLN-induced angiogenesis in post-MI model of diabetes. Wild-type (WT) and Sirt3 knockout (Sirt3KO) mice were induced into diabetes by i.p. streptozotocin (STZ). STZ mice were then subjected to MI followed by immediate intramyocardial injection with adenovirus-apelin (Ad-APLN). Our studies showed that Sirt3 expression was significantly reduced in the hearts of STZ mice. Ad-APLN treatment resulted in up-regulation of Sirt3, angiopoietins/Tie-2 and VEGF/VEGFR2 expression together with increased myocardial vascular densities in WT-STZ+MI mice, but these alterations were not observed in Sirt3KO-STZ+MI mice. In vitro, overexpression of APLN increased Sirt3 expression and angiogenesis in endothelial progenitor cells (EPC) from WT mice, but not in EPC from Sirt3KO mice. APLN gene therapy increases angiogenesis and improves cardiac functional recovery in diabetic hearts via up-regulation of Sirt3 pathway.
PMCID: PMC4288349  PMID: 25311234
sirtuin 3; angiogenesis; apelin; apoptosis; myocardial infarction; diabetes
10.  Biodegradation Kinetics of Tetrahydrofuran, Benzene, Toluene, and Ethylbenzene as Multi-substrate by Pseudomonas oleovorans DT4 
The biodegradation kinetics of tetrahydrofuran, benzene (B), toluene (T), and ethylbenzene (E) were systematically investigated individually and as mixtures by a series of aerobic batch degradation experiments initiated by Pseudomonas oleovorans DT4. The Andrews model parameters, e.g., maximum specific growth rates (μmax), half saturation, and substrate inhibition constant, were obtained from single-substrate experiments. The interaction parameters in the sum kinetics model (SKIP) were obtained from the dual substrates. The μmax value of 1.01 for tetrahydrofuran indicated that cell growth using tetrahydrofuran as carbon source was faster than the growth on B (μmax, B = 0.39) or T (μmax, T = 0.39). The interactions in the dual-substrate experiments, including genhancement, inhibition, and co-metabolism, in the mixtures of tetrahydrofuran with B or T or E were identified. The degradation of the four compounds existing simultaneously could be predicted by the combination of SKIP and co-metabolism models. This study is the first to quantify the interactions between tetrahydrofuran and BTE.
PMCID: PMC4306867  PMID: 25561017
biodegradation; tetrahydrofuran; benzene; toluene; ethylbenzene; kinetics model
11.  Zinc-α-2-Glycoprotein: A Candidate Biomarker for Colon Cancer Diagnosis in Chinese Population 
Zinc-α-2-glycoprotein (AZGP1) is a 41-kDa secreted glycoprotein, which has been detected in several malignancies. The diagnostic value of AZGP1 in serum of prostate and breast cancer patients has been reported. Analyzing “The Cancer Genome Atlas” data, we found that in colon cancer AZGP1 gene expression was upregulated at transcriptional level. We hypothesized that AZGP1 could be used as a diagnostic marker of colon cancer. First, we confirmed AZGP1 expression was higher in a set of 28 tumor tissues than in normal colonic mucosa tissues by real-time quantitative PCR and western blot in a Chinese population. We verified that serum concentration of AZGP1 was higher in 120 colon cancer patients compared with 40 healthy controls by ELISA (p < 0.001). Then receiver-operating characteristic (ROC) curve analysis was used to evaluate the predictive diagnostic value of AZGP1 in serum. The area under the curve (AUC) of AZGP1 was 0.742 (p < 0.001, 95% confidence interval (CI) = 0.656–0.827) in between the AUC of carcinoembryonic antigen (CEA) and the AUC of CA19-9, suggesting that predictive diagnostic value of AZGP1 is between CEA and Carbohydrate 19-9 (CA19-9). The combination of AZGP1 with traditional serum biomarkers, CEA and CA19-9, could result in better diagnostic results. To further validate the diagnostic value of AZGP1, a tissue microarray containing 190 samples of primary colon cancer tissue paired with normal colonic tissue was analysed and the result showed that AZGP1 was significantly upregulated in 68.4% (130 of 190) of the primary cancer lesions. In contrast, there was a weakly positive staining in 29.5% (56 of 190) of the normal colonic tissue samples (p < 0.001). Leave-one-out cross-validation was performed on the serum data, and showed that the diagnostic value of AZGP1 had 63.3% sensitivity and 65.0% specificity. Combination of AZGP1, CEA and CA19-9 had improved diagnosis value accuracy with 74.2% sensitivity and 72.5% specificity. These results suggest that AZGP1 is a useful diagnostic biomarker in tissues and serum from a Chinese population.
PMCID: PMC4307269  PMID: 25561225
AZGP1 protein; human; colon cancer; clinical marker; tissue array analysis
12.  Conditional Knockout of Prolyl Hydroxylase Domain Protein 2 Attenuates High Fat-Diet-Induced Cardiac Dysfunction in Mice 
PLoS ONE  2014;9(12):e115974.
Oxygen sensor prolyl hydroxylases (PHDs) play important roles in the regulation of HIF-α and cell metabolisms. This study was designed to investigate the direct role of PHD2 in high fat-diet (HFD)-induced cardiac dysfunction. In HFD fed mice, PHD2 expression was increased without significant changes in PHD1 and PHD3 levels in the heart. This was accompanied by a significant upregulation of myeloid differentiation factor 88 (MYD88) and NF-κB. To explore the role of PHD2 in HFD-induced cardiac dysfunction, PHD2 conditional knockout mice were fed a HFD for 16 weeks. Intriguingly, knockout of PHD2 significantly reduced MYD88 and NF-κb expression in HFD mouse hearts. Moreover, knockout of PHD2 inhibited TNFα and ICAM-1 expression, and reduced cell apoptosis and macrophage infiltration in HFD mice. This was accompanied by a significant improvement of cardiac function. Most importantly, conditional knockout of PHD2 at late stage in HFD mice significantly improved glucose tolerance and reversed cardiac dysfunction. Our studies demonstrate that PHD2 activity is a critical contributor to the HFD-induced cardiac dysfunction. Inhibition of PHD2 attenuates HFD-induced cardiac dysfunction by a mechanism involving suppression of MYD88/NF-κb pathway and inflammation.
PMCID: PMC4278833  PMID: 25546437
13.  Epigenetic reprogramming of HOXC10 in endocrine-resistant breast cancer 
Science translational medicine  2014;6(229):229ra41.
Resistance to aromatase inhibitors (AIs) is a major clinical problem in the treatment of estrogen receptor positive breast cancer. In two breast cancer cell line models of AI resistance we identified widespread DNA hyper- and hypomethylation, with enrichment for promoter hypermethylation of developmental genes. For the homeobox gene HOXC10, methylation occurred in a CpG shore which overlapped with a functional ER binding site, causing repression of HOXC10 expression. Although short-term blockade of ER signaling caused relief of HOXC10 repression in both cell lines and breast tumors, it also resulted in concurrent recruitment of EZH2 and increased H3K27me3, ultimately transitioning to increased DNA methylation and silencing of HOXC10. Reduced HOXC10 in vitro and in xenografts resulted in decreased apoptosis and caused antiestrogen resistance. Supporting this, we used paired primary and metastatic breast cancer specimens to show that HOXC10 was reduced in tumors which recurred during AI treatment. We propose a model in which estrogen represses apoptotic and growth inhibitory genes such as HOXC10, contributing to tumor survival, whereas AIs induce these genes to cause apoptosis and therapeutic benefit, but long-term AI treatment results in permanent repression of these genes via methylation and confers resistance. Therapies aimed at inhibiting AI-induced histone and DNA methylation may be beneficial in blocking or delaying AI resistance.
PMCID: PMC4277862  PMID: 24670685
14.  Effects of Chinese herbal medicine in combination with mitomycin C on gastric cancer cells 
Biomarker Research  2014;2(1):26.
Chinese herbal medicine (CHM) is frequently used by cancer patients in Chinese community. It remains largely unknown about the interaction between CHM and chemotherapeutic agents. Herein, we evaluated 3 commonly used CHM formulas for cancer patients: Bu-Zhong-Yi-Qi-Tang (BZYQT), Bao-Yuan-Tang (BYT), and Ju-Yuan-Jian (JYJ). We examined the effects of these 3 formulas in human gastric cancer cells MKN-74, in terms of cytotoxicity and apoptosis induction when used alone or in combination with mitomycin C (MMC). Cytotoxicity was determined by tetrazolium dye colorimetric assay. The 10% inhibitory concentration of CHM was used in this study. Cells were first exposed to CHM or phosphate buffered saline (as control) for 48 h. Then MMC at final concentration of 0.25 μg/ml was added to media for another 24-h. Among these 3 CHM formulas, BZYQT showed the most pronounced effect in augmenting MMC-induced cytotoxicity. The viability of MKN-74 cells was decreased to 43.1% when treated with BZYQT and MMC, compared to 94.9% with MMC alone. We subsequently examined apoptosis induction by quantitative florescent microscopy and single-strand DNA enzyme-linked immunosorbent assay, and found BZYQT did not enhance MMC-induced apoptosis. Our findings indicate BZYQT in combination with MMC induces cell death in gastric cancer cells via non-apoptotic mechanism. Our results provide a rationale for further investigation in the interaction of CHM and anti-cancer treatment.
PMCID: PMC4280692  PMID: 25553241
Gastric cancer; Chinese herbal medicine; Mitomycin C; Cytotoxicity; Apoptosis
15.  Benchmark Dose Estimation for Cadmium-Induced Renal Tubular Damage among Environmental Cadmium-Exposed Women Aged 35–54 Years in Two Counties of China 
PLoS ONE  2014;9(12):e115794.
A number of factors, including gender, age, smoking habits, and occupational exposure, affect the levels of urinary cadmium. Few studies have considered these influences when calculating the benchmark dose (BMD) of cadmium. In the present study, we aimed to calculate BMDs and their 95% lower confidence bounds (BMDLs) for cadmium-induced renal tubular effects in an age-specific population in south-central China.
In this study, urinary cadmium, β2-microglobulin, and N-acetyl-β-D-glucosaminidase levels were measured in morning urine samples from 490 randomly selected non-smoking women aged 35–54 years. Participants were selected using stratified cluster sampling in two counties (counties A and B) in China. Multiple regression and logistic regression analyses were used to investigate the dose-response relationship between urinary cadmium levels and tubular effects. BMDs/BMDLs corresponding to an additional risk (benchmark response) of 5% and 10% were calculated with assumed cut-off values of the 84th and 90th percentile of urinary β2-microglobulin and N-acetyl-β-D-glucosaminidase levels of the controls.
Urinary levels of β2-microglobulin and N-acetyl-β-D-glucosaminidase increased significantly with increasing levels of urinary cadmium. Age was not associated with urinary cadmium levels, possibly because of the narrow age range included in this study. Based on urinary β2-microglobulin and N-acetyl-β-D-glucosaminidase, BMDs and BMDLs of urinary cadmium ranged from 2.08 to 3.80 (1.41–2.18) µg/g cr for subjects in county A and from 0.99 to 3.34 (0.74–1.91) µg/g cr for those in county B. The predetermined benchmark response of 0.05 and the 90th percentiles of urinary β2-microglobulin and N-acetyl-β-D-glucosaminidase levels of the subjects not exposed to cadmium (i.e., the control group) served as cut-off values.
The obtained BMDs of urinary cadmium were similar to the reference point of 1 µg/g cr, as suggested by the European Food Safety Authority, indicating that cadmium exposure must be reduced to protect human health.
PMCID: PMC4275258  PMID: 25536107
16.  One-Step Biosynthesis of α-Keto-γ-Methylthiobutyric Acid from L-Methionine by an Escherichia coli Whole-Cell Biocatalyst Expressing an Engineered L-Amino Acid Deaminase from Proteus vulgaris 
PLoS ONE  2014;9(12):e114291.
α-Keto-γ-methylthiobutyric acid (KMTB), a keto derivative of l-methionine, has great potential for use as an alternative to l-methionine in the poultry industry and as an anti-cancer drug. This study developed an environment friendly process for KMTB production from l-methionine by an Escherichia coli whole-cell biocatalyst expressing an engineered l-amino acid deaminase (l-AAD) from Proteus vulgaris. We first overexpressed the P. vulgaris l-AAD in E. coli BL21 (DE3) and further optimized the whole-cell transformation process. The maximal molar conversion ratio of l-methionine to KMTB was 71.2% (mol/mol) under the optimal conditions (70 g/L l-methionine, 20 g/L whole-cell biocatalyst, 5 mM CaCl2, 40°C, 50 mM Tris-HCl [pH 8.0]). Then, error-prone polymerase chain reaction was used to construct P. vulgaris l-AAD mutant libraries. Among approximately 104 mutants, two mutants bearing lysine 104 to arginine and alanine 337 to serine substitutions showed 82.2% and 80.8% molar conversion ratios, respectively. Furthermore, the combination of these mutations enhanced the catalytic activity and molar conversion ratio by 1.3-fold and up to 91.4% with a KMTB concentration of 63.6 g/L. Finally, the effect of immobilization on whole-cell transformation was examined, and the immobilized whole-cell biocatalyst with Ca2+ alginate increased reusability by 41.3% compared to that of free cell production. Compared with the traditional multi-step chemical synthesis, our one-step biocatalytic production of KMTB has an advantage in terms of environmental pollution and thus has great potential for industrial KMTB production.
PMCID: PMC4273966  PMID: 25531756
17.  Sex-Specific Urinary Biomarkers for Diagnosing Bipolar Disorder 
PLoS ONE  2014;9(12):e115221.
Sex-based differences are prominent in affective disorders, but there are no biomarkers available to support sex-specific, laboratory-based diagnostics for male and female bipolar disorder (BD) patients. Here, a NMR-based metabonomic approach was used to preliminarily identify sex-specific urinary metabolite biomarkers for diagnosing male and female BD patients. A male-specific biomarker panel consisting of four metabolites (α-hydroxybutyrate, choline, formate, and N-methylnicotinamide) effectively discriminated between male BD and healthy controls (HC) subjects, achieving an area under the receiver operating characteristic curve (AUC) of 0.942. A female-specific biomarkers panel consisting of four metabolites (α-hydroxybutyrate, oxalacetate, acetone, and N-methylnicotinamide) effectively discriminated between female BD and HC subjects, achieving an AUC of 0.909. The male-specific biomarker panel displayed low discriminatory power in the female group, and the female-specific biomarker panel displayed low discriminatory power in the male group. Moreover, several other metabolites showed different trends between male and female BD subjects. These findings suggest that male and female BD patients have distinct biomarker fingerprints and that these two sex-specific biomarker panels may serve as effective diagnostic tools in distinguishing male and female BD patients from their healthy counterparts. Our work may provide a window into the mechanisms underlying the pathoetiology of BD in both men and women.
PMCID: PMC4274077  PMID: 25531985
18.  CD4/CD8 T-cell ratio predicts HIV infection in infants: The National Heart, Lung, and Blood Institute P2C2 Study 
In resource-poor regions of the world, HIV virologic testing is not available.
We sought to evaluate the diagnostic usefulness of the CD4/CD8 T-cell ratio in predicting HIV infection in infants.
Data from the 3- and 9-month visits for non–breastfed infants born to HIV-infected mothers enrolled (1990–1994) in the Pediatric Pulmonary and Cardiac Complications of Vertically Transmitted HIV Infection Study (mother-to-child transmission of HIV, 17%) were analyzed. Data from the 3-month visit for infants enrolled (1985–1996) in the Perinatal AIDS Collaborative Transmission Study (mother-to-child transmission of HIV, 18%) were used for validation.
At 3 months of age, data were available on 79 HIV-infected and 409 uninfected non–breast-fed infants in the Pediatric Pulmonary and Cardiac Complications of Vertically Transmitted HIV Infection Study. The area under the curve (AUC) of the receiver operating characteristic curve at 3 months was higher for the CD4/CD8 ratio compared with the CD4+ T-cell count (AUC, 0.83 and 0.75; P = .03). The mean CD4/CD8 ratio at the 3-month visit was 1.7 for HIV-infected infants and 3.0 for uninfected infants. A CD4/CD8 ratio of 2.4 at 3 months of age was almost 2.5 times more likely to occur in an HIV-infected infant compared with an uninfected infant (test sensitivity, 81%; posttest probability of HIV, 33%). Model performance in the Centers for Disease Control and Prevention Perinatal AIDS Collaborative Transmission Study validation test (224 HIV-infected and 1015 uninfected 3-month-old infants) was equally good (AUC, 0.78 for CD4/CD8 ratio).
The CD4/CD8 T-cell ratio is a more sensitive predictor of HIV infection in infants than the CD4+ T-cell count.
Clinical implications
The CD4/CD8 T-cell ratio can be used with caution to predict HIV infection in children.
PMCID: PMC4271194  PMID: 17920669
CD4/CD8 T-cell ratio; mother-to-child transmission of HIV; HIV infection
19.  CZTSe solar cells prepared by electrodeposition of Cu/Sn/Zn stack layer followed by selenization at low Se pressure 
Nanoscale Research Letters  2014;9(1):678.
Cu2ZnSnSe4 (CZTSe) thin films are prepared by the electrodeposition of stack copper/tin/zinc (Cu/Sn/Zn) precursors, followed by selenization with a tin source at a substrate temperature of 530°C. Three selenization processes were performed herein to study the effects of the source of tin on the quality of CZTSe thin films that are formed at low Se pressure. Much elemental Sn is lost from CZTSe thin films during selenization without a source of tin. The loss of Sn from CZTSe thin films in selenization was suppressed herein using a tin source at 400°C (A2) or 530°C (A3). A copper-poor and zinc-rich CZTSe absorber layer with Cu/Sn, Zn/Sn, Cu/(Zn + Sn), and Zn/(Cu + Zn + Sn) with metallic element ratios of 1.86, 1.24, 0.83, and 0.3, respectively, was obtained in a selenization with a tin source at 530°C. The crystallized CZTSe thin film exhibited an increasingly (112)-preferred orientation at higher tin selenide (SnSe x ) partial pressure. The lack of any obvious Mo-Se phase-related diffraction peaks in the X-ray diffraction (XRD) diffraction patterns may have arisen from the low Se pressure in the selenization processes. The scanning electron microscope (SEM) images reveal a compact surface morphology and a moderate grain size. CZTSe solar cells with an efficiency of 4.81% were produced by the low-cost fabrication process that is elucidated herein.
PMCID: PMC4275120  PMID: 25593559
Cu2ZnSnSe4 (CZTSe); Electrodeposition; Cu/Sn/Zn precursors; Selenization; Solar cells
20.  Association of BRCA1/2 defects with genomic scores predictive of DNA damage repair deficiency among breast cancer subtypes 
Homologous recombination (HR) DNA repair is of clinical relevance in breast cancer. Three DNA-based homologous recombination deficiency (HRD) scores (HRD-loss of heterozygosity score (LOH), HRD-telomeric allelic imbalance score (TAI), and HRD-large-scale state transition score (LST)) have been developed that are highly correlated with defects in BRCA1/2, and are associated with response to platinum therapy in triple negative breast and ovarian cancer. This study examines the frequency of BRCA1/2 defects among different breast cancer subtypes, and the ability of the HRD scores to identify breast tumors with defects in the homologous recombination DNA repair pathway.
215 breast tumors representing all ER/HER2 subtypes were obtained from commercial vendors. Next-generation sequencing based assays were used to generate genome wide SNP profiles, BRCA1/2 mutation screening, and BRCA1 promoter methylation data.
BRCA1/2 deleterious mutations were observed in all breast cancer subtypes. BRCA1 promoter methylation was observed almost exclusively in triple negative breast cancer. BRCA1/2 deficient tumors were identified with BRCA1/2 mutations, or BRCA1 promoter methylation, and loss of the second allele of the affected gene. All three HRD scores were highly associated with BRCA1/2 deficiency (HRD-LOH: P = 1.3 × 10-17; HRD-TAI: P = 1.5 × 10-19; HRD-LST: P = 3.5 × 10-18). A combined score (HRD-mean) was calculated using the arithmetic mean of the three scores. In multivariable analyses the HRD-mean score captured significant BRCA1/2 deficiency information not captured by the three individual scores, or by clinical variables (P values for HRD-Mean adjusted for HRD-LOH: P = 1.4 × 10-8; HRD-TAI: P = 2.9 × 10-7; HRD-LST: P = 2.8 × 10-8; clinical variables: P = 1.2 × 10-16).
The HRD scores showed strong correlation with BRCA1/2 deficiency regardless of breast cancer subtype. The frequency of elevated scores suggests that a significant proportion of all breast tumor subtypes may carry defects in the homologous recombination DNA repair pathway. The HRD scores can be combined to produce a more robust predictor of HRD. The combination of a robust score, and the FFPE compatible assay described in this study, may facilitate use of agents targeting homologous recombination DNA repair in the clinical setting.
Electronic supplementary material
The online version of this article (doi:10.1186/s13058-014-0475-x) contains supplementary material, which is available to authorized users.
PMCID: PMC4308910  PMID: 25475740
21.  Oral Administration of a Fusion Protein between the Cholera Toxin B Subunit and the 42-Amino Acid Isoform of Amyloid-β Peptide Produced in Silkworm Pupae Protects against Alzheimer's Disease in Mice 
PLoS ONE  2014;9(12):e113585.
A key molecule in the pathogenesis of Alzheimer's disease (AD) is a 42-amino acid isoform of the amyloid-β peptide (Aβ42), which is the most toxic element of senile plaques. In this study, to develop an edible, safe, low-cost vaccine for AD, a cholera toxin B subunit (CTB)-Aβ42 fusion protein was successfully expressed in silkworm pupae. We tested the silkworm pupae-derived oral vaccination containing CTB-Aβ42 in a transgenic mouse model of AD. Anti-Aβ42 antibodies were induced in these mice, leading to a decreased Aβ deposition in the brain. We also found that the oral administration of the silk worm pupae vaccine improved the memory and cognition of mice, as assessed using a water maze test. These results suggest that the new edible CTB-Aβ42 silkworm pupae-derived vaccine has potential clinical application in the prevention of AD.
PMCID: PMC4254457  PMID: 25469702
22.  Purification and Functional Characterization of a Protein: Bombyx mori Human Growth Hormone Like Protein in Silkworm Pupa 
PLoS ONE  2014;9(12):e114351.
Human growth hormone (hGH) is a peptide hormone secreted by eosinophils of the human anterior pituitary, and a regulatory factor for a variety of metabolic pathways. A 30-kD protein from the pupa stage of silkworm was detected by Western blotting and confirmed by immunoprecipitation based on its ability to bind to anti-hGH antibody. This protein, named BmhGH-like protein, was purified from fresh silkworm pupas through low-temperature homogenization, filtration, and centrifugation to remove large impurity particles. The supernatants were precipitated, resuspended, and passed through a molecular sieve. Further purification by affinity chromatography and two-dimensional electrophoresis resulted in pure protein for analysis by MS MALDI-TOF-MS analysis. An alignment with predicted proteins indicated that BmhGH-like protein consisted of two lipoproteins, which we named hGH-L1 and hGH-L2. These proteins belong to the β-trefoil superfamily, with β domains similar to the spatial structure of hGH. Assays with K562 cells demonstrated that these proteins could promote cell division in vitro. To further validate the growth-promoting effects, hGH-L2 was cloned from pupa cDNA to create recombinant silkworm baculovirus vBmNPV-hGH-L2, which was used to infect silkworm BmN cells at low titer. Flow cytometric analysis demonstrated that the protein shortened the G0/G1 phase of the cells, and enabled the cells to rapidly traverse the G1/S phase transition point to enter S phase and promote cell division. Discovery of hGH-like protein in silkworm will once again arouse people’s interest in the potential medicinal value of silkworm and establish the basis for the development of new hormone drugs.
PMCID: PMC4254979  PMID: 25469649
23.  Brain Atrophy in Type 2 Diabetes 
Diabetes Care  2013;36(12):4036-4042.
Type 2 diabetes (T2DM) is associated with brain atrophy and cerebrovascular disease. We aimed to define the regional distribution of brain atrophy in T2DM and to examine whether atrophy or cerebrovascular lesions are feasible links between T2DM and cognitive function.
This cross-sectional study used magnetic resonance imaging (MRI) scans and cognitive tests in 350 participants with T2DM and 363 participants without T2DM. With voxel-based morphometry, we studied the regional distribution of atrophy in T2DM. We measured cerebrovascular lesions (infarcts, microbleeds, and white matter hyperintensity [WMH] volume) and atrophy (gray matter, white matter, and hippocampal volumes) while blinded to T2DM status. With use of multivariable regression, we examined for mediation or effect modification of the association between T2DM and cognitive measures by MRI measures.
T2DM was associated with more cerebral infarcts and lower total gray, white, and hippocampal volumes (all P < 0.05) but not with microbleeds or WMH. T2DM-related gray matter loss was distributed mainly in medial temporal, anterior cingulate, and medial frontal lobes, and white matter loss was distributed in frontal and temporal regions. T2DM was associated with poorer visuospatial construction, planning, visual memory, and speed (P ≤ 0.05) independent of age, sex, education, and vascular risk factors. The strength of these associations was attenuated by almost one-half when adjusted for hippocampal and total gray volumes but was unchanged by adjustment for cerebrovascular lesions or white matter volume.
Cortical atrophy in T2DM resembles patterns seen in preclinical Alzheimer disease. Neurodegeneration rather than cerebrovascular lesions may play a key role in T2DM-related cognitive impairment.
PMCID: PMC3836136  PMID: 23939539
24.  Effectiveness of one dose of mumps vaccine against clinically diagnosed mumps in Guangzhou, China, 2006–2012 
Human Vaccines & Immunotherapeutics  2013;9(12):2524-2528.
Although mumps-containing vaccines were introduced in China in 1990s, mumps continues to be a public health concern due to the lack of decline in reported mumps cases. To assess the mumps vaccine effectiveness (VE) in Guangzhou, China, we performed a 1:1 matched case-control study. Among children in Guangzhou aged 8 mo to 12 y during 2006 to 2012, we matched one healthy child to each child with clinically diagnosed mumps. Cases with clinically diagnosed mumps were identified from surveillance sites system and healthy controls were randomly sampled from the Children’s Expanded Programmed Immunization Administrative Computerized System in Guangzhou. Conditional logistic regression was used to calculate VE. We analyzed the vaccination information for 1983 mumps case subjects and 1983 matched controls and found that the overall VE for 1 dose of mumps vaccine, irrespective of the manufacture, was 53.6% (95% confidence interval [CI], 41.0–63.5%) to children aged 8 mo to 12 y. This post-marketing mumps VE study found that immunization with one dose of the mumps vaccine confers partial protection against mumps disease. Evaluation of the VE for the current mumps vaccines, introduction of a second dose of mumps vaccine, and assessment of modifications to childhood immunization schedules is essential.
PMCID: PMC4162052  PMID: 23955378
mumps; vaccine effectiveness; matched case-control studies; children; China
25.  Nutritional programming of coenzyme Q: potential for prevention and intervention? 
The FASEB Journal  2014;28(12):5398-5405.
Low birth weight and rapid postnatal growth increases risk of cardiovascular-disease (CVD); however, underlying mechanisms are poorly understood. Previously, we demonstrated that rats exposed to a low-protein diet in utero that underwent postnatal catch-up growth (recuperated) have a programmed deficit in cardiac coenzyme Q (CoQ) that was associated with accelerated cardiac aging. It is unknown whether this deficit occurs in all tissues, including those that are clinically accessible. We investigated whether aortic and white blood cell (WBC) CoQ is programmed by suboptimal early nutrition and whether postweaning dietary supplementation with CoQ could prevent programmed accelerated aging. Recuperated male rats had reduced aortic CoQ [22 d (35±8.4%; P<0.05); 12 m (53±8.8%; P<0.05)], accelerated aortic telomere shortening (P<0.01), increased DNA damage (79±13% increase in nei-endonucleaseVIII-like-1), increased oxidative stress (458±67% increase in NAPDH-oxidase-4; P<0.001), and decreased mitochondrial complex II-III activity (P<0.05). Postweaning dietary supplementation with CoQ prevented these detrimental programming effects. Recuperated WBCs also had reduced CoQ (74±5.8%; P<0.05). Notably, WBC CoQ levels correlated with aortic telomere-length (P<0.0001) suggesting its potential as a diagnostic marker of vascular aging. We conclude that early intervention with CoQ in at-risk individuals may be a cost-effective and safe way of reducing the global burden of CVDs.—Tarry-Adkins, J. L., Fernandez-Twinn, D. S., Chen, J.-H., Hargreaves, I. P., Martin-Gronert, M. S., McConnell, J. M., Ozanne, S. E. Nutritional programming of coenzyme Q: potential for prevention and intervention?
PMCID: PMC4232289  PMID: 25172893
telomeres; cardiovascular disease; aging; vascular disease

Results 1-25 (476)