PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-16 (16)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Roles of retinoic acid and Tbx1/10 in pharyngeal segmentation: amphioxus and the ancestral chordate condition 
EvoDevo  2014;5(1):36.
Background
Although chordates descend from a segmented ancestor, the evolution of head segmentation has been very controversial for over 150 years. Chordates generally possess a segmented pharynx, but even though anatomical evidence and gene expression analyses suggest homologies between the pharyngeal apparatus of invertebrate chordates, such as the cephalochordate amphioxus, and vertebrates, these homologies remain contested. We, therefore, decided to study the evolution of the chordate head by examining the molecular mechanisms underlying pharyngeal morphogenesis in amphioxus, an animal lacking definitive neural crest.
Results
Focusing on the role of retinoic acid (RA) in post-gastrulation pharyngeal morphogenesis, we found that during gastrulation, RA signaling in the endoderm is required for defining pharyngeal and non-pharyngeal domains and that this process involves active degradation of RA anteriorly in the embryo. Subsequent extension of the pharyngeal territory depends on the creation of a low RA environment and is coupled to body elongation. RA further functions in pharyngeal segmentation in a regulatory network involving the mutual inhibition of RA- and Tbx1/10-dependent signaling.
Conclusions
These results indicate that the involvement of RA signaling and its interactions with Tbx1/10 in head segmentation preceded the evolution of neural crest and were thus likely present in the ancestral chordate. Furthermore, developmental comparisons between different deuterostome models suggest that the genetic mechanisms for pharyngeal segmentation are evolutionary ancient and very likely predate the origin of chordates.
Electronic supplementary material
The online version of this article (doi:10.1186/2041-9139-5-36) contains supplementary material, which is available to authorized users.
doi:10.1186/2041-9139-5-36
PMCID: PMC4320481  PMID: 25664163
Cephalochordate; Cyp26 function; evolution of developmental mechanisms; evolution of the vertebrate head; functional knockdown; pharmacological treatments; pharyngeal patterning; retinoic acid signaling; Tbx1/10
2.  Immunobiotic Lactobacillus rhamnosus strains differentially modulate antiviral immune response in porcine intestinal epithelial and antigen presenting cells 
BMC Microbiology  2014;14:126.
Background
Previous findings suggested that Lactobacillus rhamnosus CRL1505 is able to increase resistance of children to intestinal viral infections. However, the intestinal cells, cytokines and receptors involved in the immunoregulatory effect of this probiotic strain have not been fully characterized.
Results
We aimed to gain insight into the mechanisms involved in the immunomodulatory effect of the CRL1505 strain and therefore evaluated in vitro the crosstalk between L. rhamnosus CRL1505, porcine intestinal epithelial cells (IECs) and antigen presenting cells (APCs) from swine Peyer’s patches in order to deepen our knowledge about the mechanisms, through which this strain may help preventing viral diarrhoea episodes. L. rhamnosus CRL1505 was able to induce IFN–α and –β in IECs and improve the production of type I IFNs in response to poly(I:C) challenge independently of Toll-like receptor (TLR)-2 or TLR9 signalling. In addition, the CRL1505 strain induced mRNA expression of IL-6 and TNF-α via TLR2 in IECs. Furthermore, the strain significantly increased surface molecules expression and cytokine production in intestinal APCs. The improved Th1 response induced by L. rhamnosus CRL1505 was triggered by TLR2 signalling and included augmented expression of MHC-II and co-stimulatory molecules and expression of IL-1β, IL-6, and IFN-γ in APCs. IL-10 was also significantly up-regulated by CRL1505 in APCs.
Conclusions
It was recently reviewed the emergence of TLR agonists as new ways to transform antiviral treatments by introducing panviral therapeutics with less adverse effects than IFN therapies. The use of L. rhamnosus CRL1505 as modulator of innate immunity and inductor of antiviral type I IFNs, IFN-γ, and regulatory IL-10 clearly offers the potential to overcome this challenge.
doi:10.1186/1471-2180-14-126
PMCID: PMC4035899  PMID: 24886142
Lactobacillus rhamnosus; Poly(I:C); Antiviral immunity; PIE cells; Intestinal antigen presenting cells; TLR2
3.  Dietary Supplementation with Lactobacilli Improves Emergency Granulopoiesis in Protein-Malnourished Mice and Enhances Respiratory Innate Immune Response 
PLoS ONE  2014;9(4):e90227.
This work studied the effect of protein malnutrition on the hemato-immune response to the respiratory challenge with Streptococcus pneumoniae and evaluated whether the dietary recovery with a probiotic strain has a beneficial effect in that response. Three important conclusions can be inferred from the results presented in this work: a) protein-malnutrition significantly impairs the emergency myelopoiesis induced by the generation of the innate immune response against pneumococcal infection; b) repletion of malnourished mice with treatments including nasally or orally administered Lactobacillus rhamnosus CRL1505 are able to significantly accelerate the recovery of granulopoiesis and improve innate immunity and; c) the immunological mechanisms involved in the protective effect of immunobiotics vary according to the route of administration. The study demonstrated that dietary recovery of malnourished mice with oral or nasal administration of L. rhamnosus CRL1505 improves emergency granulopoiesis and that CXCR4/CXCR12 signaling would be involved in this effect. Then, the results summarized here are a starting point for future research and open up broad prospects for future applications of probiotics in the recovery of immunocompromised malnourished hosts.
doi:10.1371/journal.pone.0090227
PMCID: PMC3972161  PMID: 24691464
4.  Draft Genome Sequence of Lactobacillus rhamnosus CRL1505, an Immunobiotic Strain Used in Social Food Programs in Argentina 
Genome Announcements  2013;1(4):e00627-13.
We report the draft genome sequence of the probiotic Lactobacillus rhamnosus strain CRL1505. This new probiotic strain has been included into official Nutritional Programs in Argentina. The draft genome sequence is composed of 3,417,633 bp with 3,327 coding sequences.
doi:10.1128/genomeA.00627-13
PMCID: PMC3744685  PMID: 23950129
5.  Nasally administered Lactobacillus rhamnosus strains differentially modulate respiratory antiviral immune responses and induce protection against respiratory syncytial virus infection 
BMC Immunology  2013;14:40.
Background
Some studies have shown that nasally administered immunobiotics had the potential to improve the outcome of influenza virus infection. However, the capacity of immunobiotics to improve protection against respiratory syncytial virus (RSV) infection was not investigated before.
Objective
The aims of this study were: a) to evaluate whether the nasal administration of Lactobacillus rhamnosus CRL1505 (Lr05) and L. rhamnosus CRL1506 (Lr06) are able to improve respiratory antiviral defenses and beneficially modulate the immune response triggered by TLR3/RIG-I activation; b) to investigate whether viability of Lr05 or Lr06 is indispensable to modulate respiratory immunity and; c) to evaluate the capacity of Lr05 and Lr06 to improve the resistance of infant mice against RSV infection.
Results
Nasally administered Lr05 and Lr06 differentially modulated the TLR3/RIG-I-triggered antiviral respiratory immune response. Lr06 administration significantly modulated the production of IFN-α, IFN-β and IL-6 in the response to poly(I:C) challenge, while nasal priming with Lr05 was more effective to improve levels of IFN-γ and IL-10. Both viable Lr05 and Lr06 strains increased the resistance of infant mice to RSV infection while only heat-killed Lr05 showed a protective effect similar to those observed with viable strains.
Conclusions
The present work demonstrated that nasal administration of immunobiotics is able to beneficially modulate the immune response triggered by TLR3/RIG-I activation in the respiratory tract and to increase the resistance of mice to the challenge with RSV. Comparative studies using two Lactobacillus rhamnosus strains of the same origin and with similar technological properties showed that each strain has an specific immunoregulatory effect in the respiratory tract and that they differentially modulate the immune response after poly(I:C) or RSV challenges, conferring different degree of protection and using distinct immune mechanisms. We also demonstrated in this work that it is possible to beneficially modulate the respiratory defenses against RSV by using heat-killed immunobiotics.
doi:10.1186/1471-2172-14-40
PMCID: PMC3751766  PMID: 23947615
Lactobacillus rhamnosus; Nasal treatment; Poly(I:C); Sntiviral immunity; Respiratory tract; Respiratory syncytial virus
6.  Advanced application of bovine intestinal epithelial cell line for evaluating regulatory effect of lactobacilli against heat-killed enterotoxigenic Escherichia coli-mediated inflammation 
BMC Microbiology  2013;13:54.
Background
Previously, a bovine intestinal epithelial cell line (BIE cells) was successfully established. This work hypothesized that BIE cells are useful in vitro model system for the study of interactions of microbial- or pathogen-associated molecular patterns (MAMPs or PAMPs) with bovine intestinal epithelial cells and for the selection of immunoregulatory lactic acid bacteria (LAB).
Results
All toll-like receptor (TLR) genes were expressed in BIE cells, being TLR4 one of the most strongly expressed. We demonstrated that heat-stable PAMPs of enterotoxigenic Escherichia coli (ETEC) significantly enhanced the production of IL-6, IL-8, IL-1α and MCP-1 in BIE cells by activating both NF-κB and MAPK pathways. We evaluated the capacity of several lactobacilli strains to modulate heat-stable ETEC PAMPs-mediated inflammatory response in BIE cells. Among these strains evaluated, Lactobacillus casei OLL2768 attenuated heat-stable ETEC PAMPs-induced pro-inflammatory response by inhibiting NF-κB and p38 signaling pathways in BIE cells. Moreover, L. casei OLL2768 negatively regulated TLR4 signaling in BIE cells by up-regulating Toll interacting protein (Tollip) and B-cell lymphoma 3-encoded protein (Bcl-3).
Conclusions
BIE cells are suitable for the selection of immunoregulatory LAB and for studying the mechanisms involved in the protective activity of immunobiotics against pathogen-induced inflammatory damage. In addition, we showed that L. casei OLL2768 functionally modulate the bovine intestinal epithelium by attenuating heat-stable ETEC PAMPs-induced inflammation. Therefore L. casei OLL2768 is a good candidate for in vivo studying the protective effect of LAB against intestinal inflammatory damage induced by ETEC infection or heat-stable ETEC PAMPs challenge in the bovine host.
doi:10.1186/1471-2180-13-54
PMCID: PMC3605377  PMID: 23497067
Bovine intestinal epithelial cells; Immunobiotic; ETEC PAMPs; TLRs negative regulators; Lactobacillus casei OLL2768
7.  Immunobiotic Lactobacillus jensenii Modulates the Toll-Like Receptor 4-Induced Inflammatory Response via Negative Regulation in Porcine Antigen-Presenting Cells 
Previously, we demonstrated that Lactobacillus jensenii TL2937 attenuates the inflammatory response triggered by activation of Toll-like receptor 4 (TLR-4) in porcine intestinal epithelial cells. In view of the critical importance of antigen-presenting cell (APC) polarization in immunoregulation, the objective of the present study was to examine the effect of strain TL2937 on the activation patterns of APCs from swine Peyer's patches (PPs). We demonstrated that direct exposure of porcine APCs to L. jensenii in the absence of inflammatory signals increased expression of interleukin-10 (IL-10) and transforming growth factor β in CD172a+ APCs and caused them to display tolerogenic properties. In addition, pretreatment of CD172a+ APCs with L. jensenii resulted in differential modulation of the production of pro- and anti-inflammatory cytokines in response to TLR4 activation. The immunomodulatory effect of strain TL2937 was not related to a downregulation of TLR4 but was related to an upregulation of the expression of three negative regulators of TLRs: single immunoglobulin IL-1-related receptor (SIGIRR), A20, and interleukin-1 receptor-associated kinase M (IRAK-M). Our results also indicated that TLR2 has an important role in the anti-inflammatory activity of L. jensenii TL2937, since anti-TLR2 antibodies blocked the upregulation of SIGIRR and IRAK-M in CD172a+ APCs and the production of IL-10 in response to TLR4 activation. We performed, for the first time, a precise functional characterization of porcine APCs from PPs, and we demonstrated that CD172a+ cells were tolerogenic. Our findings demonstrate that adherent cells and isolated CD172a+ cells harvested from swine PPs were useful for in vitro study of the inflammatory responses in the porcine gut and the immunomodulatory effects of immunobiotic microorganisms.
doi:10.1128/CVI.00199-12
PMCID: PMC3393362  PMID: 22573738
8.  Orally administered Lactobacillus rhamnosus modulates the respiratory immune response triggered by the viral pathogen-associated molecular pattern poly(I:C) 
BMC Immunology  2012;13:53.
Background
Some studies have shown that probiotics, including Lactobacillus rhamnosus CRL1505, had the potential to beneficially modulate the outcome of certain bacterial and viral respiratory infections. However, these studies did not determine the mechanism(s) by which probiotics contribute to host defense against respiratory viruses.
Results
In this work we demonstrated that orally administered Lactobacillus rhamnosus CRL1505 (Lr1505) was able to increase the levels of IFN-γ, IL-10 and IL-6 in the respiratory tract and the number of lung CD3+CD4+IFN-γ+ T cells. To mimic the pro-inflammatory and physiopathological consecuences of RNA viral infections in the lung, we used an experimental model of lung inflammation based on the administration of the artificial viral pathogen-associated molecular pattern poly(I:C). Nasal administration of poly(I:C) to mice induced a marked impairment of lung function that was accompanied by the production of pro-inflammatory mediators and inflammatory cell recruitment into the airways. The preventive administration of Lr1505 reduced lung injuries and the production of TNF-α, IL-6, IL-8 and MCP-1 in the respiratory tract after the challenge with poly(I:C). Moreover, Lr1505 induced a significant increase in lung and serum IL-10. We also observed that Lr1505 was able to increase respiratory IFN-γ levels and the number of lung CD3+CD4+IFN-γ+ T cells after poly(I:C) challenge. Moreover, higher numbers of both CD103+ and CD11bhigh dendritic cells and increased expression of MHC-II, IL-12 and IFN-γ in these cell populations were found in lungs of Lr1505-treated mice. Therefore, Lr1505 treatment would beneficially regulate the balance between pro-inflammatory mediators and IL-10, allowing an effective inflammatory response against infection and avoiding tissue damage.
Conclusions
Results showed that Lr1505 would induce a mobilization of cells from intestine and changes in cytokine profile that would be able to beneficially modulate the respiratory mucosal immunity. Although deeper studies are needed using challenges with respiratory viruses, the results in this study suggest that Lr1505, a potent inducer of antiviral cytokines, may be useful as a prophylactic agent to control respiratory virus infection.
doi:10.1186/1471-2172-13-53
PMCID: PMC3460727  PMID: 22989047
L. rhamnosus CRL1505; Poly(I:C); Antiviral immunity; Respiratory tract
9.  Dietary Supplementation with Probiotics Improves Hematopoiesis in Malnourished Mice 
PLoS ONE  2012;7(2):e31171.
Background
Lactobacillus rhamnosus CRL1505 (Lr) administered during the repletion of immunocompromised-malnourished mice improves the resistance against intestinal and respiratory infections. This effect is associated with an increase in the number and functionality of immune cells, indicating that Lr could have some influence on myeloid and lymphoid cell production and maturation.
Objective
This study analyzed the extent of the damage caused by malnutrition on myeloid and lymphoid cell development in the spleen and bone marrow (BM). We also evaluated the impact of immunobiotics on the recovery of hematopoiesis affected in malnourished mice.
Methods
Protein malnourished mice were fed on a balanced conventional diet for 7 or 14 consecutive d with or without supplemental Lr or fermented goat's milk (FGM). Malnourished mice and well-nourished mice were used as controls. Histological and flow cytometry studies were carried out in BM and spleen to study myeloid and lymphoid cells.
Results
Malnutrition induced quantitative alterations in spleen B and T cells; however, no alteration was observed in the ability of splenic B cells to produce immunoglobulins after challenge with LPS or CpG. The analysis of BM B cell subsets based on B220, CD24, IgM and IgD expression showed that malnutrition affected B cell development. In addition, BM myeloid cells decreased in malnourished mice. On the contrary, protein deprivation increased BM T cell number. These alterations were reverted with Lr or FGM repletion treatments since normal numbers of BM myeloid, T and B cells were observed in these groups.
Conclusions
Protein malnutrition significantly alters B cell development in BM. The treatment of malnourished mice with L. rhamnosus CRL1505 was able to induce a recovery of B cells that would explain its ability to increase immunity against infections. This work highlights the possibility of using immunobiotics to accelerate the recovery of lymphopoyesis in immunocompromised-malnourished hosts.
doi:10.1371/journal.pone.0031171
PMCID: PMC3275617  PMID: 22347448
10.  Immunobiotic lactic acid bacteria beneficially regulate immune response triggered by poly(I:C) in porcine intestinal epithelial cells 
Veterinary Research  2011;42(1):111.
This study analyzed the functional expression of TLR3 in various gastrointestinal tissues from adult swine and shows that TLR3 is expressed preferentially in intestinal epithelial cells (IEC), CD172a+CD11R1high and CD4+ cells from ileal Peyer's patches. We characterized the inflammatory immune response triggered by TLR3 activation in a clonal porcine intestinal epitheliocyte cell line (PIE cells) and in PIE-immune cell co-cultures, and demonstrated that these systems are valuable tools to study in vitro the immune response triggered by TLR3 on IEC and the interaction between IEC and immune cells. In addition, we selected an immunobiotic lactic acid bacteria strain, Lactobacillus casei MEP221106, able to beneficially regulate the anti-viral immune response triggered by poly(I:C) stimulation in PIE cells. Moreover, we deepened our understanding of the possible mechanisms of immunobiotic action by demonstrating that L. casei MEP221106 modulates the interaction between IEC and immune cells during the generation of a TLR3-mediated immune response.
doi:10.1186/1297-9716-42-111
PMCID: PMC3220634  PMID: 22046952
11.  Lactococcus lactis as an adjuvant and delivery vehicle of antigens against pneumococcal respiratory infections 
Bioengineered Bugs  2010;1(5):313-325.
Most studies of Lactococcus lactis as delivery vehicles of pneumococcal antigens are focused on the effectiveness of mucosal recombinant vaccines against Streptococcus pneumoniae in animal models. At present, there are three types of pneumococcal vaccines: capsular polysaccharide pneumococcal vaccines (PPV), protein-polysaccharide conjugate pneumococcal vaccines (PCV) and protein-based pneumococcal vaccines (PBPV). Only PPV and PCV have been licensed. These vaccines, however, do not represent a definitive solution. Novel, safe and inexpensive vaccines are necessary, especially in developing countries. Probiotic microorganisms such as lactic acid bacteria (LAB) are an interesting alternative for their use as vehicles in pneumococcal vaccines due to their GRAS (Generally Recognized As Safe) status. Thus, the adjuvanticity of Lactococcus lactis by itself represents added value over the use of other bacteria, a question dealt with in this review. In addition, the expression of different pneumococcal antigens as well as the use of oral and nasal mucosal routes of administration of lactococcal vaccines is considered. The advantages of nasal live vaccines are evident; nonetheless, oral vaccines can be a good alternative when the adequate dose is used. Another point addressed here is the use of live versus inactivated vaccines. In this sense, few researchers have focused on inactivated strains to be used as vaccines against pneumoccoccus. The immunogenicity of live vaccines is better than the one afforded by inactivated ones; however, the probiotic-inactivated vaccine combination has improved this matter considerably. The progress made so far in the protective immune response induced by recombinant vaccines, the successful trials in animal models and the safety considerations of their application in humans suggest that the use of recombinant vaccines represents a good short-term option in the control of pneumococcal diseases.
doi:10.4161/bbug.1.5.12086
PMCID: PMC3037581  PMID: 21326831
recombinant vaccine; Streptococcus pneumoniae; Lactococcus lactis
12.  Lactobacillus casei modulates the inflammation-coagulation interaction in a pneumococcal pneumonia experimental model 
Background
We have previously demonstrated that Lactobacillus casei CRL 431 administration improved the resistance to pneumococcal infection in a mouse model.
Methods
This study examined the effects of the oral administration of Lactobacillus casei CRL 431 (L. casei) on the activation of coagulation and fibrinolytic systems as well as their inhibitors during a Streptococcus pneumoniae infection in mice.
Results
The alveolo-capillary membrane was damaged and the coagulation system was also activated by the infection. As a consequence, we could see fibrin(ogen) deposits in lung histological slices, increased levels of thrombin-antithrombin complex (TATc) in bronchoalveolar lavage (BAL) and plasma, decrease in prothrombin activity (PT) and prolonged activated partial thromboplastin time test (APTT) values. Factor VII (FVII) and factor X (FX) were decreased in plasma, whereas fibrinogen (F) and factor VIII (FVIII) were increased. The low levels of protein C (PC) in BAL and plasma proved damage on inhibitory activity. The infected animals showed reduced fibrinolytic activity, evidenced by an increase in plasminogen activation inhibitor-1 (PAI-1) in BAL and plasma. The pathogen induced an increase of TNF-α, IL-1β and IL-6 in BAL and serum a few hours after challenge followed by a significant decrease until the end of the assayed period. IL-4 and IL-10 in BAL and serum were also augmented, especially at the end of the experiment. The animals treated with L. casei showed an improvement of alveolo-capillary membrane, lower fibrin(ogen) deposits in lung and decrease in TATc. APTT test and PT, FVII and FX activity were normalized. L. casei group showed lower F levels than control during whole experiment. In the present study no effect of L. casei on the recovery of the inhibitory activity was detected. However, L. casei was effective in reducing PAI-1 levels in BAL and in increasing anti-inflammatory ILs concentration.
Conclusion
L. casei proved effective to regulate coagulation activation and fibrinolysis inhibition during infection, leading to a decrease in fibrin deposits in lung. This protective effect of L. casei would be mediated by the induction of higher levels of IL-4 and IL-10 which could regulate the anti-inflammatory, procoagulant and antifibrinolytic effects of TNF-α, IL-1β and IL-6.
doi:10.1186/1476-9255-6-28
PMCID: PMC2770469  PMID: 19835595
13.  Regulation of Hoxb4 induction after neurulation by somite signal and neural competence 
Background
While the body axis is largely patterned along the anterior-posterior (A-P) axis during gastrulation, the central nervous system (CNS) shows dynamic changes in the expression pattern of Hox genes during neurulation, suggesting that the CNS refines the A-P pattern continuously after neural tube formation. This study aims at clarifying the role of somites in up-regulating Hoxb4 expression to eventually establish its final pattern and how the neural tube develops a competence to respond to extrinsic signals.
Results
We show that somites are required for the up-regulation of Hoxb4 in the neural tube at the level of somites 1 to 5, the anterior-most domain of expression. However, each somite immediately adjacent to the neural tube is not sufficient at each level; planar signaling is additionally required particularly at the anterior-most segments of the expression domain. We also show that the dorsal side of the neural tube has a greater susceptibility to expressing Hoxb4 than the ventral region, a feature associated with dorsalization of the neural tube by BMP signals. BMP4 is additionally able to up-regulate Hoxb4 ventrally, but the effect is restricted to the axial levels at which Hoxb4 is normally expressed, and only in the presence of retinoic acid (RA) or somites, suggesting a role for BMP in rendering the neural tube competent to express Hoxb4 in response to RA or somite signals.
Conclusion
In identifying the collaboration between somites and neural tube competence in the induction of Hoxb4, this study demonstrates interplay between A-P and dorsal-ventral (D-V) patterning systems, whereby a specific feature of D-V polarity may be a prerequisite for proper A-P patterning by Hox genes.
doi:10.1186/1471-213X-9-17
PMCID: PMC2667173  PMID: 19243620
15.  Nasal Immunization with Lactococcus lactis Expressing the Pneumococcal Protective Protein A Induces Protective Immunity in Mice▿  
Infection and Immunity  2008;76(6):2696-2705.
Nisin-controlled gene expression was used to develop a recombinant strain of Lactococcus lactis that is able to express the pneumococcal protective protein A (PppA) on its surface. Immunodetection assays confirmed that after the induction with nisin, the PppA antigen was predictably and efficiently displayed on the cell surface of the recombinant strain, which was termed L. lactis PppA. The production of mucosal and systemically specific antibodies in adult and young mice was evaluated after mice were nasally immunized with L. lactis PppA. Immunoglobulin M (IgM), IgG, and IgA anti-PppA antibodies were detected in the serum and bronchoalveolar lavage fluid of adult and young mice, which showed that PppA expressed in L. lactis was able to induce a strong mucosal and systemic immune response. Challenge survival experiments demonstrated that immunization with L. lactis PppA was able to increase resistance to systemic and respiratory infection with different pneumococcal serotypes, and passive immunization assays of naïve young mice demonstrated a direct correlation between anti-PppA antibodies and protection. The results presented in this study demonstrate three major characteristics of the effectiveness of nasal immunization with PppA expressed as a protein anchored to the cell wall of L. lactis: it elicited cross-protective immunity against different pneumococcal serotypes, it afforded protection against both systemic and respiratory challenges, and it induced protective immunity in mice of different ages.
doi:10.1128/IAI.00119-08
PMCID: PMC2423061  PMID: 18390997
16.  Regulation of Human Immunodeficiency Virus Type 1 Replication in Human T Lymphocytes by Nitric Oxide 
Journal of Virology  2001;75(10):4655-4663.
Addition of nitric oxide (NO) donors to mitogen-activated human immunodeficiency virus type 1 (HIV-1)-infected peripheral blood mononuclear cultures produced a significant increase in virus replication, and this effect was not associated with a change in cell proliferation. This effect was only observed with T-tropic X4 or X4R5 virus but not with R5 virus. Moreover, HIV-1 replication in mitogen-stimulated cultures was partially prevented by the specific inhibitors of the inducible nitric oxide synthase (iNOS). NO donors also enhanced HIV-1 infection of the human T-cell lines, Jurkat and MT-2. We have also observed that NO leads to an enhancement of HIV-1 replication in resting human T cells transfected with a plasmid carrying the entire HIV-1 genome and activated with phorbol ester plus ionomycin. Thus, in those cultures NO donors strongly potentiated HIV-1 replication in a dose-dependent manner, up to levels comparable to those with tumor necrosis factor alpha (TNF-α) stimulation. Furthermore, iNOS inhibitors decreased HIV-1 replication in HIV-1-transfected T cells to levels similar to those obtained with neutralizing anti-TNF-α antibodies. Moreover, HIV-1 replication induced iNOS and TNF-α transcription in T cells and T-cell lines. Interestingly, NO donors also stimulated long terminal repeat (LTR)-driven transcription whereas iNOS inhibitors partially blocked TNF-α-induced LTR transcription. Therefore, our results suggest that NO is involved in HIV-1 replication, especially that induced by TNF-α.
doi:10.1128/JVI.75.10.4655-4663.2001
PMCID: PMC114219  PMID: 11312336

Results 1-16 (16)