PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Intraarterial mechanical thrombectomy for the treatment of postoperative cerebral infarction: a case report 
Korean Journal of Anesthesiology  2014;66(5):402-406.
Perioperative ischemic stroke is an uncommon event associated with significant morbidity and mortality. The complexity of the surgical procedure and surgery induced hypercoagulable status also influence the incidence of stroke. The management of stroke involves a decision regarding the quickest suitable revascularization method. Endovascular mechanical thrombectomy, such as intra-arterial mechanical thrombectomy (IAMT), can restore vascular patency of the vessels, providing an alternative or synergistic method to restore blood flow. Although, there are no recommended treatment guidelines, IAMT is eligible to be a treatment of choice for perioperative ischemic stroke. We experienced a case of a patient who demonstrated hemiplegia and aphasia, the early symptom of acute ischemic stroke, in the post-anesthesia care unit and performed IAMT successfully. Thus we report the case with a review of the relevant literature.
doi:10.4097/kjae.2014.66.5.402
PMCID: PMC4041962  PMID: 24910735
Acute stroke; Mechanical thrombolysis; Perioperative care; Thrombectomy
2.  Sex-Dependent Expression of Caveolin 1 in Response to Sex Steroid Hormones Is Closely Associated with Development of Obesity in Rats 
PLoS ONE  2014;9(3):e90918.
Caveolin-1 (CAV1) is a conserved group of structural membrane proteins that form special cholesterol and sphingolipid-rich compartments, especially in adipocytes. Recently, it has been reported that CAV1 is an important target protein in sex hormone-dependent regulation of various metabolic pathways, particularly in cancer and diabetes. To clarify distinct roles of CAV1 in sex-dependent obesity development, we investigated the effects of high fat diet (HFD) and sex steroid hormones on CAV1 expression in adipose tissues of male and female rats. Results of animal experiments revealed that estrogen (17-β-estradiol, E2) and androgen (dihydrotestosterone, DHT) had opposite effects on body weight gain as well as on the regulation of CAV1, hormone sensitive lipase (HSL) and uncoupling protein 1 (UCP1) in adipose tissues. Furthermore, sex hormone receptors and aromatase were differentially expressed in a sex-dependent manner in response to E2 and DHT treatments. In vivo data were confirmed using 3T3-L1 and HIB1B cell lines, where Cav1 knock down stimulated lipogenesis but suppressed sex hormone receptor signaling proteins. Most importantly, co-immunoprecipitation enabled the identification of previously unrecognized CAV1-interacting mitochondrial or lipid oxidative pathway proteins in adipose tissues. Taken together, current data showed that CAV1 may play important preventive role in the development of obesity, with more prominent effects in females, and proved to be an important target protein for the hormonal regulation of adipose tissue metabolism by manipulating sex hormone receptors and mitochondrial oxidative pathways. Therefore, we can report, for the first time, the molecular mechanism underlying the effects of sex steroid hormones in the sex-dimorphic regulation of CAV1.
doi:10.1371/journal.pone.0090918
PMCID: PMC3948350  PMID: 24608114
3.  Time-course microarrays reveal early activation of the immune transcriptome and adipokine dysregulation leads to fibrosis in visceral adipose depots during diet-induced obesity 
BMC Genomics  2012;13:450.
Background
Visceral white adipose tissue (WAT) hypertrophy, adipokine production, inflammation and fibrosis are strongly associated with obesity, but the time-course of these changes in-vivo are not fully understood. Therefore, the aim of this study was to establish the time-course of changes in adipocyte morphology, adipokines and the global transcriptional landscape in visceral WAT during the development of diet-induced obesity.
Results
C57BL/6 J mice were fed a high-fat diet (HFD) or normal diet (ND) and sacrificed at 8 time-points over 24 weeks. Excessive fat accumulation was evident in visceral WAT depots (Epidydimal, Perirenal, Retroperitoneum, Mesentery) after 2–4 weeks. Fibrillar collagen accumulation was evident in epidydimal adipocytes at 24 weeks. Plasma adipokines, leptin, resistin and adipsin, increased early and time-dependently, while adiponectin decreased late after 20 weeks. Only plasma leptin and adiponectin levels were associated with their respective mRNA levels in visceral WAT. Time-course microarrays revealed early and sustained activation of the immune transcriptome in epididymal and mesenteric depots. Up-regulated inflammatory genes included pro-inflammatory cytokines, chemokines (Tnf, Il1rn, Saa3, Emr1, Adam8, Itgam, Ccl2, 3, 4, 6, 7 and 9) and their upstream signalling pathway genes (multiple Toll-like receptors, Irf5 and Cd14). Early changes also occurred in fibrosis, extracellular matrix, collagen and cathepsin related-genes, but histological fibrosis was only visible in the later stages.
Conclusions
In diet-induced obesity, early activation of TLR-mediated inflammatory signalling cascades by CD antigen genes, leads to increased expression of pro-inflammatory cytokines and chemokines, resulting in chronic low-grade inflammation. Early changes in collagen genes may trigger the accumulation of ECM components, promoting fibrosis in the later stages of diet-induced obesity. New therapeutic approaches targeting visceral adipose tissue genes altered early by HFD feeding may help ameliorate the deleterious effects of diet-induced obesity.
doi:10.1186/1471-2164-13-450
PMCID: PMC3447724  PMID: 22947075
Adipocytokine dysregulation; Transcriptional response; Adipose tissue; Extracellular matrix; Cathepsin; Fibrosis

Results 1-3 (3)