Search tips
Search criteria

Results 1-25 (49)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Effects of Plasmodium falciparum Mixed Infections on in Vitro Antimalarial Drug Tests and Genotyping 
Studying drug resistance in Plasmodium falciparum requires accurate measurement of parasite response to a drug. Factors such as mixed infection of drug-resistant and -sensitive parasites can influence drug test outcome. Polymorphic DNA sequences are frequently employed to detect mixed infections; infections with single genotype or having a minor allele smaller than a subjectively selected cut-off value are often considered single infection. We investigate effects of mixed parasite populations containing various ratios of parasites resistant and sensitive to chloroquine on outcomes of drug tests and how ratios of parasite mixtures correlated with genotypes using polymerase chain reaction-based methods. Our results show that a mixture with a resistant population as low as 10% could greatly impact a drug test outcome. None of the genotyping methods could reliably detect minor DNA alleles at ≤10%. Mixed infection presents a serious problem for drug tests, and genotyping using microsatellite or other methods may not reliably reflect true ratios of alleles.
PMCID: PMC2680026  PMID: 18689621
2.  Genome-wide profiling of chromosome interactions in Plasmodium falciparum characterizes nuclear architecture and reconfigurations associated with antigenic variation 
Molecular microbiology  2013;90(3):519-537.
Spatial relationships within the eukaryotic nucleus are essential for proper nuclear function. In Plasmodium falciparum, the repositioning of chromosomes has been implicated in the regulation of the expression of genes responsible for antigenic variation, and the formation of a single, peri-nuclear nucleolus results in the clustering of rDNA. Nevertheless, the precise spatial relationships between chromosomes remain poorly understood, because, until recently, techniques with sufficient resolution have been lacking. Here we have used chromosome conformation capture and second-generation sequencing to study changes in chromosome folding and spatial positioning that occur during switches in var gene expression. We have generated maps of chromosomal spatial affinities within the P. falciparum nucleus at 25 Kb resolution, revealing a structured nucleolus, an absence of chromosome territories, and confirming previously identified clustering of heterochromatin foci. We show that switches in var gene expression do not appear to involve interaction with a distant enhancer, but do result in local changes at the active locus. These maps reveal the folding properties of malaria chromosomes, validate known physical associations, and characterize the global landscape of spatial interactions. Collectively, our data provide critical information for a better understanding of gene expression regulation and antigenic variation in malaria parasites.
PMCID: PMC3894959  PMID: 23980881
Plasmodium falciparum; antigenic variation; genome conformation capture; 3C; HiC
3.  Genetic diversity of Plasmodium vivax population in Anhui province of China 
Malaria Journal  2014;13:13.
Although the numbers of malaria cases in China have been declining in recent years, outbreaks of Plasmodium vivax malaria were still being reported in rural areas south of the Yellow River. To better understand the transmission dynamics of P. vivax parasites in China, the extent of genetic diversity of P. vivax populations circulating in Bozhou of Anhui province of China were investigated using three polymorphic genetic markers: merozoite surface proteins 1 and 3α (pvmsp-1 and pvmsp-3α) and circumsporozoite protein (pvcsp).
Forty-five P. vivax clinical isolates from Bouzhou of Anhui province were collected from 2009 to 2010 and were analysed using PCR/RFLP or DNA sequencing.
Seven and six distinct allelic variants were identified using PCR/RFLP analysis of pvmsp-3α with HhaI and AluI, respectively. DNA sequence analysis of pvmsp-1 (variable block 5) revealed that there were Sal-I and recombinant types but not Belem type, and seven distinct allelic variants in pvmsp-1 were detected, with recombinant subtype 2 (R2) being predominant (66.7%). All the isolates carried pvcsp with VK210 type but not VK247 or P. vivax-like types in the samples. Sequence analysis of pvcsp gene revealed 12 distinct allelic variants, with VK210-1 being predominant (41.5%).
The present data indicate that there is some degree of genetic diversity among P. vivax populations in Anhui province of China. The genetic data obtained may assist in the surveillance of P. vivax infection in endemic areas or in tracking potential future disease outbreak.
PMCID: PMC3893497  PMID: 24401153
Plasmodium vivax; pvmsp-1; pvmsp-3α; pvcsp; Anhui; China
4.  Optimized protocols for improving the likelihood of cloning recombinant progeny from Plasmodium yoelii genetic crosses 
Experimental parasitology  2012;133(1):44-50.
Genetic cross is a powerful tool for studying malaria genes contributing to drug resistance, parasite development, and pathogenesis. Cloning and identification of recombinant progeny (RP) is laborious and expensive, especially when a large proportion of progeny derived from self-fertilization are present in the uncloned progeny of a genetic cross. Since the frequency of cross-fertilization affects the number of recombinant progeny in a genetic cross, it is important to optimize the procedure of a genetic cross to maximize the cross-fertilization. Here we investigated the factors that might influence the chances of obtaining RP from a genetic cross and showed that different Plasmodium yoelii strains/subspecies/clones had unique abilities in producing oocysts in a mosquito midgut. When a genetic cross is performed between two parents producing different numbers of functional gametocytes, the ratio of parental parasites must be adjusted to improve the chance of obtaining RP. An optimized parental ratio could be established based on oocyst counts from single infection of each parent before crossing experiments, which may reflect the efficiency of gametocyte production and/or fertilization. The timing of progeny cloning is also important; cloning of genetic cross progeny from mice directly infected with sporozoites (vs. frozen blood after needle passage) at a time when parasitemia is low (usually <1%) could improve the chance of obtaining RP. This study provides an optimized protocol for efficiently cloning RPs from a genetic cross of malaria parasites.
PMCID: PMC3530016  PMID: 23116600
Malaria; genetic cross; rodent; parasite cloning; microsatellite
5.  Peripheral Blood Stem Cell Transplant Related Plasmodium falciparum Infection in a Patient with Sickle Cell Disease 
Transfusion  2012;52(12):2677-2682.
Although transmission of Plasmodium falciparum (Pf) infection during red blood cell transfusion from an infected donor has been well documented, malaria parasites are not known to infect hematopoietic stem cells. We report a case of Pf infection in a patient 11 days after peripheral blood stem cell transplant for sickle cell disease.
Study Design and Methods
Malaria parasites were detected in thick blood smears by Giemsa staining. Pf HRP2 antigen was measured by ELISA on whole blood and plasma. Pf DNA was detected in whole blood and stem cell retention samples by real-time PCR using Pf species–specific primers and probes. Genotyping of 8 Pf microsatellites was performed on genomic DNA extracted from whole blood.
Pf was not detected by molecular, serologic or parasitologic means in samples from the recipient until day 11 post-transplant, coincident with the onset of symptoms. In contrast, Pf antigen was retrospectively detected in stored plasma collected 3 months prior to transplant from the asymptomatic donor. Pf DNA was detected in whole blood from both the donor and recipient post-transplant, and genotyping confirmed shared markers between donor and recipient Pf strains. Look back analysis of red blood cell donors was negative for Pf infection.
These findings are consistent with transmission by the stem cell product and have profound implications with respect to the screening of potential stem cell donors and recipients from malaria-endemic regions.
PMCID: PMC3408807  PMID: 22536941
Plasmodium falciparum; Sickle Cell Disease; Peripheral Blood Stem Cell Transplant; Real-Time PCR; PfHRP2 Antigen ELISA
6.  Anti-Pfs25 Human Plasma Reduces Transmission of Plasmodium falciparum Isolates That Have Diverse Genetic Backgrounds 
Infection and Immunity  2013;81(6):1984-1989.
Pfs25 is a leading candidate for a malaria transmission-blocking vaccine whose potential has been demonstrated in a phase 1 trial with recombinant Pfs25 formulated with Montanide ISA51. Because of limited sequence polymorphism, the anti-Pfs25 antibodies induced by this vaccine are likely to have transmission-blocking or -reducing activity against most, if not all, field isolates. To test this hypothesis, we evaluated transmission-blocking activities by membrane feeding assay of anti-Pfs25 plasma from the Pfs25/ISA51 phase 1 trial against Plasmodium falciparum parasites from patients in two different geographical regions of the world, Thailand and Burkina Faso. In parallel, parasite isolates from these patients were sequenced for the Pfs25 gene and genotyped for seven microsatellites. The results indicate that despite different genetic backgrounds among parasite isolates, the Pfs25 sequences are highly conserved, with a single nonsynonymous nucleotide polymorphism detected in 1 of 41 patients in Thailand and Burkina Faso. The anti-Pfs25 immune plasma had significantly higher transmission-reducing activity against parasite isolates from the two geographical regions than the nonimmune controls (P < 0.0001).
PMCID: PMC3676035  PMID: 23509152
7.  Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study 
The Lancet infectious diseases  2012;12(11):851-858.
Artemisinin-resistant Plasmodium falciparum has been reported in Pailin, western Cambodia, detected as a slow parasite clearance rate in vivo. Emergence of this phenotype in western Thailand and possibly elsewhere threatens to compromise the effectiveness of all artemisinin-based combination therapies. Parasite genetics is associated with parasite clearance rate but does not account for all variation. We investigated contributions of both parasite genetics and host factors to the artemisinin-resistance phenotype in Pursat, western Cambodia.
Between June 19 and Nov 28, 2009, and June 26 and Dec 6, 2010, we enrolled patients aged 10 years or older with uncomplicated falciparum malaria, a density of asexual parasites of at least 10 000 per μL of whole blood, no symptoms or signs of severe malaria, no other cause of febrile illness, and no chronic illness. We gave participants 4 mg/kg artesunate at 0, 24, and 48 h, 15 mg/kg mefloquine at 72 h, and 10 mg/kg mefloquine at 96 h. We assessed parasite density on thick blood films every 6 h until undetectable. The parasite clearance half-life was calculated from the parasite clearance curve. We genotyped parasites with 18 microsatellite markers and patients for haemoglobin E, α-thalassaemia, and a mutation of G6PD, which encodes glucose-6-phosphate dehydrogenase. To account for the possible effects of acquired immunity on half-life, we used three surrogates for increased likelihood of exposure to P falciparum: age, sex, and place of residence. This study is registered with, number NCT00341003.
We assessed 3504 individuals from all six districts of Pursat province seeking treatment for malaria symptoms. We enrolled 168 patients with falciparum malaria who met inclusion criteria. The geometric mean half-life was 5.85 h (95% CI 5.54–6.18) in Pursat, similar to that reported in Pailin (p=0.109). We identified two genetically different parasite clone groups: parasite group 1 (PG1) and parasite group 2 (PG2). Non-significant increases in parasite clearance half-life were seen in patients with haemoglobin E (0.55 h; p=0.078), those of male sex (0.96 h; p=0.064), and in 2010 (0.68 h; p=0.068); PG1 was associated with a significant increase (0.79 h; p=0.033). The mean parasite heritability of half-life was 0.40 (SD 0.17).
Heritable artemisinin resistance is established in a second Cambodian province. To accurately identify parasites that are intrinsically susceptible or resistant to artemisinins, future studies should explore the effect of erythrocyte polymorphisms and specific immune responses on half-life variation.
Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health.
PMCID: PMC3786328  PMID: 22940027
8.  Mechanisms of in vitro resistance to dihydroartemisinin in Plasmodium falciparum 
Molecular microbiology  2012;86(1):111-128.
The recent reports of artemisinin (ART) resistance in the Thai-Cambodian border area raise a serious concern on the long-term efficacy of ARTs. To elucidate the resistance mechanisms, we performed in vitro selection with dihydroartemisinin (DHA) and obtained two parasite clones from Dd2 with more than 25-fold decrease in susceptibility to DHA. The DHA-resistant clones were more tolerant of stressful growth conditions and more resistant to several commonly used antimalarial drugs than Dd2. The result is worrisome since many of the drugs are currently used as ART partners in malaria control. This study showed that the DHA resistance is not limited to ring stage, but also occurred in trophozoites and schizonts. Microarray and biochemical analyses revealed pfmdr1 amplification, elevation of the antioxidant defense network, and increased expression of many chaperones in the DHA-resistant parasites. Without drug pressure, the DHA resistant parasites reverted to sensitive in approximately eight weeks, accompanied by de-amplification of pfmdr1 and reduced antioxidant activities. The parallel decrease and increase in pfmdr1 copy number and antioxidant activity and the up and down of DHA sensitivity strongly suggest that pfmdr1 and antioxidant defense play a role in in vitro resistance to DHA, providing potential molecular markers for ART resistance.
PMCID: PMC3455110  PMID: 22812578
artemisinin resistance; drug selection; mechanism; pfmdr1; antioxidant defense
9.  Macrophage migration inhibitory factor homolog from Plasmodium yoelii modulates monocyte recruitment and activation in spleen during infection 
Parasitology research  2011;110(5):1755-1763.
Macrophage migration inhibitory factor (MIF) has been shown to be involved in the pathogenesis of severe malaria. Malaria parasites express an MIF homolog that may play a role in regulating host immune responses and a recent study showed that overexpression of MIF reduced parasitemia in a mouse malaria model. Another recent study showed migration of monocytes to the spleen contributed to the control of blood stage infection. However, there are few papers describing the effect of MIF on monocyte recruitment/activation during the infection. We generated recombinant P. yoelii MIF (rPyMIF) and investigated its function on purified mouse CD11b+ cells in vitro and monocyte responses in vivo. The result shows that rPyMIF protein bound to mouse CD11b+ cells and inhibited their random migration in vitro. On the other hand, rPyMIF did not induce cytokine release from the cells directly or modulate LPS-induced cytokine release. Mice immunized with rPyMIF showed transient, but significantly lower parasitemia than the control mice at day 3 after lethal Py17XL challenge. The total number of CD11b+ cells in the spleens was significantly higher in rPyMIF-immunized group. Further investigation revealed that there were significantly higher numbers of recruited and activated monocytes in the spleens of rPyMIF immunization group on day 3. These results indicate that PyMIF potentially modulates monocyte recruitment and activation during infection of P. yoelii erythrocytic stages.
PMCID: PMC3427932  PMID: 22015474
malaria; macrophage migration inhibitory factor; mouse; monocyte; antibody
10.  A new malaria antigen produces partial protection against Plasmodium yoelii challenge 
Parasitology research  2011;110(4):1337-1345.
Of all the parasitic diseases, malaria is the number one killer. Despite tremendous efforts in disease control and research, nearly a million people, primarily children, still die from the disease each year, partly due to drug resistance and the lack of an effective vaccine. Many parasite antigens have been identified and evaluated for vaccine development; however, none has been approved for human use. Antigenic variation, complex life cycle, and inadequate understanding of the mechanisms of parasite-host interaction and of host immune response all contribute to the lack of an effective vaccine for malaria control. In a recent search of genome-wide polymorphism in Plasmodium falciparum, several molecules were found to be recognized by sera from patients infected with the P. falciparum parasite. Here, we have expressed a 350-amino acid N-terminus from one of the homologous candidate antigen genes from the rodent malaria parasite Plasmodium yoelii (Py01157, a putative dentin phosphorin) in bacteria and evaluated the immune response and protection generated after immunization with the recombinant protein. We showed that the recombinant protein was recognized by sera from both mice and humans infected with malaria parasites. Partial protection was observed after challenge with non-lethal P. yoelii 17XNL but not with the lethal P. yoelii 17XL parasite. Further tests using a full-length protein or the conserved C-terminus may provide additional information on whether this protein has the potential for being a malaria vaccine.
PMCID: PMC3437252  PMID: 21915626
Malaria; Vaccine candidate; Recombinant protein; Immune protection; Mouse
11.  Malaria in the Greater Mekong Subregion: Heterogeneity and Complexity 
Acta Tropica  2011;121(3):227-239.
The Greater Mekong Subregion (GMS), comprised of six countries including Cambodia, China's Yunnan Province, Lao PDR, Myanmar (Burma), Thailand and Vietnam, is one of the most threatening foci of malaria. Since the initiation of the WHO's Mekong Malaria Program a decade ago, malaria situation in the GMS has greatly improved, reflected in the continuous decline in annual malaria incidence and deaths. However, as many nations are moving towards malaria elimination, the GMS nations still face great challenges. Malaria epidemiology in this region exhibits enormous geographical heterogeneity with Myanmar and Cambodia remaining high-burden countries. Within each country, malaria distribution is also patchy, exemplified by ‘border malaria’ and ‘forest malaria’ with high transmission occurring along international borders and in forests or forest fringes, respectively. ‘Border malaria’ is extremely difficult to monitor, and frequent malaria introductions by migratory human populations constitute a major threat to neighboring, malaria-eliminating countries. Therefore, coordination between neighboring countries is essential for malaria elimination from the entire region. In addition to these operational difficulties, malaria control in the GMS also encounters several technological challenges. Contemporary malaria control measures rely heavily on effective chemotherapy and insecticide control of vector mosquitoes. However, the spread of multidrug resistance and potential emergence of artemisinin resistance in Plasmodium falciparum make resistance management a high priority in the GMS. This situation is further worsened by the circulation of counterfeit and substandard artemisinin-related drugs. In most endemic areas of the GMS, P. falciparum and P. vivax coexist, and in recent malaria control history, P. vivax has demonstrated remarkable resilience to control measures. Deployment of the only registered drug (primaquine) for the radical cure of vivax malaria is severely undermined due to high prevalence of glucose-6-phosphate dehydrogenase deficiency in target human populations. In the GMS, the dramatically different ecologies, diverse vector systems, and insecticide resistance render traditional mosquito control less efficient. Here we attempt to review the changing malaria epidemiology in the GMS, analyze the vector systems and patterns of malaria transmission, and identify the major challenges the malaria control community faces on its way to malaria elimination.
PMCID: PMC3132579  PMID: 21382335
malaria; the Greater Mekong Subregion; epidemiology; Anopheles vectors; drug resistance; border malaria; elimination
12.  Challenges and prospects for malaria elimination in the Greater Mekong Subregion 
Acta Tropica  2011;121(3):240-245.
Despite significant improvement in the malaria situation of the Greater Mekong Subregion (GMS), malaria control for the region continues to face a multitude of challenges. The extremely patchy malaria distribution, especially along international borders, makes disease surveillance and targeted control difficult. The vector systems are also diverse with dramatic differences in habitat ecology, biting behavior, and vectorial capacity, and there is a lack of effective transmission surveillance and control tools. Finally, in an era of heavy deployment of artemisinin-based combination therapies, the region acts as an epicenter of drug resistance, with the emergence of artemisinin resistant P. falciparum posing a threat to both regional and global malaria elimination campaigns. This problem is further exacerbated by the circulation of counterfeit and substandard artemisinin drugs. Accordingly, this Southeast Asian Malaria Research Center, consisting of a consortium of US and regional research institutions, has proposed four interlinked projects to address these most urgent problems in malaria control. The aims of these projects will help to substantially improve our understanding of malaria epidemiology, vector systems and their roles in malaria transmission, as well as the mechanisms of drug resistance in parasites. Through the training of next-generation scientists in malaria research, this program will help build up and strengthen regional research infrastructure and capacities, which are essential for sustained malaria control in this region.
PMCID: PMC3155744  PMID: 21515238
malaria; the Greater Mekong Subregion; epidemiology; vector systems; drug resistance; counterfeit drugs
13.  A Class of Tricyclic Compounds Blocking Malaria Parasite Oocyst Development and Transmission 
Malaria is a deadly infectious disease in many tropical and subtropical countries. Previous efforts to eradicate malaria have failed, largely due to the emergence of drug-resistant parasites, insecticide-resistant mosquitoes and, in particular, the lack of drugs or vaccines to block parasite transmission. ATP-binding cassette (ABC) transporters are known to play a role in drug transport, metabolism, and resistance in many organisms, including malaria parasites. To investigate whether a Plasmodium falciparum ABC transporter (Pf14_0244 or PfABCG2) modulates parasite susceptibility to chemical compounds or plays a role in drug resistance, we disrupted the gene encoding PfABCG2, screened the recombinant and the wild-type 3D7 parasites against a library containing 2,816 drugs approved for human or animal use, and identified an antihistamine (ketotifen) that became less active against the PfABCG2-disrupted parasite in culture. In addition to some activity against asexual stages and gametocytes, ketotifen was highly potent in blocking oocyst development of P. falciparum and the rodent parasite Plasmodium yoelii in mosquitoes. Tests of structurally related tricyclic compounds identified additional compounds with similar activities in inhibiting transmission. Additionally, ketotifen appeared to have some activity against relapse of Plasmodium cynomolgi infection in rhesus monkeys. Further clinical evaluation of ketotifen and related compounds, including synthetic new derivatives, in blocking malaria transmission may provide new weapons for the current effort of malaria eradication.
PMCID: PMC3535893  PMID: 23129054
14.  Lack of Association of the S769N Mutation in Plasmodium falciparum SERCA (PfATP6) with Resistance to Artemisinins 
The recent emergence of artemisinin (ART) resistance in Plasmodium falciparum in western Cambodia, manifested as delayed parasite clearance, is a big threat to the long-term efficacy of this family of antimalarial drugs. Among the multiple candidate genes associated with ART resistance in P. falciparum, the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase PfATP6 has been postulated as a specific target of ARTs. The PfATP6 gene harbors multiple single-nucleotide polymorphisms in field parasite populations, and S769N has been associated with decreased sensitivity to artemether in parasite populations from French Guiana. In this study, we used an allelic exchange strategy to engineer parasite lines carrying the S769N mutations in P. falciparum strain 3D7 and evaluated whether introduction of this mutation modulated parasite sensitivity to ART derivatives. Using three transgenic lines carrying the 769N mutation and two transgenic lines carrying the wild-type 769S as controls, we found that S769N did not affect PfATP6 gene expression. We compared the sensitivities of these parasite lines to three ART derivatives, artemether, artesunate, and dihydroartemisinin, in 18 biological experiments and detected no significant effect of the S769N mutation on parasite response to these ART derivatives. This study provides further evidence for the lack of association of PfATP6 with ART resistance.
PMCID: PMC3346631  PMID: 22354307
15.  Chemical genomic profiling for antimalarial therapies, response signatures and molecular targets 
Science (New York, N.y.)  2011;333(6043):724-729.
Malaria remains a devastating disease largely because of widespread drug resistance. New drugs and a better understanding of the mechanisms of drug action and resistance are essential for fulfilling the promise of eradicating malaria. Using high-throughput chemical screening and genome-wide association analysis, we identified 32 highly active compounds and genetic loci and genes associated with differential chemical phenotypes (DCPs), defined as ≥5-fold differences in half-maximum inhibitor concentration (IC50) between parasite lines. Chromosomal loci associated with 49 DCPs were confirmed by linkage analysis and tests of genetically modified parasites, including three genes that were linked to 96% of the DCPs. Drugs whose responses mapped to wild type or mutant pfcrt alleles were tested in combination in vitro and in vivo, yielding promising new leads for antimalarial treatments.
PMCID: PMC3396183  PMID: 21817045
Plasmodium falciparum; high-throughput screening; genetic mapping; chemical genomics; phenotype
16.  Effect of PCR extension temperature on high-throughput sequencing 
The DNA amplification process can be a source of bias and artifacts, especially when amplifying genomic areas with extreme AT or GC content. The human malaria parasite Plasmodium falciparum has an AT-rich genome, and some of its highly AT-rich regions have been shown to be refractory to polymerase chain reaction (PCR) amplification. Biased amplification may lead to erroneous conclusions for studies investigating genome-wide gene expression, nucleosome position, and copy number variation. Here we compare genome-wide nucleosome coverage in libraries amplified at three different extension temperatures and show that reduction in PCR extension temperature from 70ºC to 60ºC can greatly increase the fraction of coverage at AT-rich regions of the P. falciparum genome. Our method will improve the efficiency and coverage in sequencing an AT-rich genome.
PMCID: PMC3026866  PMID: 21112355
new generation sequencing; malaria; genome; amplification bias; nucleosome
17.  Use of magnetically purified Plasmodium falciparum parasites improves the accuracy of erythrocyte invasion assays 
Experimental parasitology  2010;126(2):278-280.
Merozoite invasion of erythrocytes is a crucial step for the asexual cycle of Plasmodium falciparum. Multiple invasion pathways, which involve different ligand-receptor interactions, have been identified in P. falciparum by examining the entry of purified parasite into erythrocytes with different surface receptors, either mutant or under different enzyme treatments. The most critical step for a successful invasion assay is the isolation of erythrocytes infected with viable schizonts. Here, we applied a magnetic column to purify the schizonts for the erythrocyte invasion assay. Comparing to Percoll-sorbitol purification method, this modified approach showed great improvement on reproducibility and reliability of invasion assay, particularly for short-term, culture-adapted parasite isolates. The magnetic purification method is an excellent alternative for parasite isolates that do not tolerate or with unknown sensitivity to Percoll-sorbitol exposure.
PMCID: PMC2940115  PMID: 20493844
Plasmodium falciparum; parasite purification; erythrocyte invasion; magnetic column
18.  Human Malaria Parasite: Are We Ready for a New Species? 
The Journal of infectious diseases  2010;201(10):1453-1454.
PMCID: PMC2856714  PMID: 20380563
19.  Recent Progress in Functional Genomic Research in Plasmodium falciparum 
Current Genomics  2010;11(4):279-286.
With the completion and near completion of many malaria parasite genome-sequencing projects, efforts are now being directed to a better understanding of gene functions and to the discovery of vaccine and drug targets. Inter- and intraspecies comparisons of the parasite genomes will provide invaluable insights into parasite evolution, virulence, drug resistance, and immune invasion. Genome-wide searches for loci under various selection pressures may lead to discovery of genes conferring drug resistance or encoding for protective antigens. In addition, the Plasmodium falciparum genome sequence provides the basis for the development of various microarrays to monitor gene expression and to detect nucleotide substitution and deletion/amplification. Genome-wide profiling of the parasite proteome, chromatin modification, and nucleosome position also depend on availability of the parasite genome. In this brief review, we will highlight some recent advances and studies in characterizing gene function and related phenotype in P. falciparum that were made possible by the genome sequence, particularly the development of a genome-wide diversity map and various high-throughput genotyping methods for genome-wide association studies (GWAS).
PMCID: PMC2930667  PMID: 21119892
Malaria; microarray; genome diversity; SNP; recombination; comparative genomics.
20.  Increased Tolerance to Artemisinin in Plasmodium falciparum Is Mediated by a Quiescence Mechanism▿  
Artemisinin (ART)-based combination therapies (ACTs) are the first-line drugs—and often the last treatments—that can effectively cure Plasmodium falciparum infections. Unfortunately, the decreased clinical efficacy of artesunate, one of the major ART derivatives, was recently reported along the Thailand-Cambodia border. Through long-term artemisinin pressure in vitro, we have obtained an ART-tolerant strain that can survive extremely high doses of ART. We showed that drug pressure could induce a subpopulation of ring stages into developmental arrest, which can explain the ART tolerance in P. falciparum. We also observed interesting transcriptomic modifications possibly associated with the acquisition of ART tolerance. These modifications include the overexpression of heat shock and erythrocyte surface proteins and the downexpression of a cell cycle regulator and a DNA biosynthesis protein. This study highlights a new phenomenon in the Plasmodium response to ART that may explain the delayed clearance of parasites after artesunate treatment observed on the Thailand-Cambodia border and that provides important information for achieving a better understanding of the mechanisms of antimalarial resistance.
PMCID: PMC2863624  PMID: 20160056
21.  Mutations in the P. falciparum Digestive Vacuole Transmembrane Protein PfCRT and Evidence for Their Role in Chloroquine Resistance 
Molecular cell  2000;6(4):861-871.
The determinant of verapamil-reversible chloroquine resistance (CQR) in a Plasmodium falciparum genetic cross maps to a 36 kb segment of chromosome 7. This segment harbors a 13-exon gene, pfcrt, having point mutations that associate completely with CQR in parasite lines from Asia, Africa, and South America. These data, transfection results, and selection of a CQR line harboring a novel K76I mutation point to a central role for the PfCRT protein in CQR. This transmembrane protein localizes to the parasite digestive vacuole (DV), the site of CQ action, where increased compartment acidification associates with PfCRT point mutations. Mutations in PfCRT may result in altered chloroquine flux or reduced drug binding to hematin through an effect on DV pH.
PMCID: PMC2944663  PMID: 11090624
22.  Discovery, mechanisms of action and combination therapy of artemisinin 
Despite great international efforts, malaria still inflicts an enormous toll on human lives, especially in Africa. Throughout history, antimalarial medicines have been one of the most powerful tools in malaria control. However, the acquisition and spread of parasite strains that are resistant to multiple antimalarial drugs have become one of the greatest challenges to malaria treatment, and are associated with the increase in morbidity and mortality in many malaria-endemic countries. To deal with this grave situation, artemisinin-based combinatory therapies (ACTs) have been introduced and widely deployed in malarious regions. Artemisinin is a new class of antimalarial compounds discovered by Chinese scientists from the sweet wormwood Artemisia annua. The potential development of resistance to artemisinins by Plasmodium falciparum threatens the usable lifespan of ACTs, and therefore is a subject of close surveillance and extensive research. Studies at the Thai–Cambodian border, a historical epicenter of multidrug resistance, have detected reduced susceptibility to artemisinins as manifested by prolonged parasite-clearance times, raising considerable concerns on resistance development. Despite this significance, there is still controversy on the mode of action of artemisinins. Although a number of potential cellular targets of artemisinins have been proposed, they remain to be verified experimentally. Here, we review the history of artemisinin discovery, discuss the mode of action and potential drug targets, and present strategies to elucidate resistance mechanisms.
PMCID: PMC2778258  PMID: 19803708
antimalarial drugs; artemisinin-based combinatory therapy; drug-resistant malaria; Plasmodium
23.  Hundreds of microsatellites for genotyping Plasmodium yoelii parasites 
Genetic crosses have been employed to study various traits of rodent malaria parasites and to locate loci that contribute to drug resistance, immune protection, and disease virulence. Compared with human malaria parasites, genetic crossing of rodent malaria parasites is more easily performed; however, genotyping methods using microsatellites (MS) or large-scale single nucleotide polymorphisms (SNPs) that have been widely used in typing Plasmodium falciparum are not available for rodent malaria species. Here we report a genome-wide search of the Plasmodium yoelii yoelii (P. yoelii) genome for simple sequence repeats (SSRs) and the identification of nearly 600 polymorphic microsatellite (MS) markers for typing the genomes of P. yoelii and Plasmodium berghei. The MS markers are randomly distributed across the 14 physical chromosomes assembled from genome sequences of three rodent malaria species, although some variations in the numbers of MS expected according to chromosome size exist. The majority of the MS markers are AT-rich repeats, similar to those found in the P. falciparum genome. The MS markers provide an important resource for genotyping, lay a foundation for developing linkage maps, and will greatly facilitate genetic studies of P. yoelii.
PMCID: PMC2787103  PMID: 19450732
Rodent malaria parasite; Simple sequence repeat (SSR); Genetic markers; Genotyping; MS
25.  Large-scale Genotyping and Genetic Mapping in Plasmodium Parasites 
The completion of many malaria parasite genomes provides great opportunities for genomewide characterization of gene expression and high-throughput genotyping. Substantial progress in malaria genomics and genotyping has been made recently, particularly the development of various microarray platforms for large-scale characterization of the Plasmodium falciparum genome. Microarray has been used for gene expression analysis, detection of single nucleotide polymorphism (SNP) and copy number variation (CNV), characterization of chromatin modifications, and other applications. Here we discuss some recent advances in genetic mapping and genomic studies of malaria parasites, focusing on the use of high-throughput arrays for the detection of SNP and CNV in the P. falciparum genome. Strategies for genetic mapping of malaria traits are also discussed.
PMCID: PMC2688805  PMID: 19488413
Plasmodium; malaria; phenotype; genotype; microsatellite; SNP

Results 1-25 (49)