Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Histopathological Changes in the Liver of Rabbits Exposed to High Nitrate Ingestion in Drinking Water 
Objectives: In India, especially in Rajasthan, people drink water which contains high level of nitrates and the possibility of finding concentrations of up to 500 mg of nitrate ions per litre of water is not unusual. Excessive use of nitrate fertilisers and herbicides results in accumulation of nitrate in plants and methemoglobinaemia in cattle as consequences of nitrate poisoning. The ingested nitrate is converted to nitrite in the digestive system and it is absorbed in blood, thus causing methemoglobinaemia. Methaemoglobinaemia is not restricted to infants alone, but it is prevalent in higher age groups also.
Methods: Therefore, an experimental study was conducted on 10 rabbits which were between three and a half months to four months of age, which had weights which ranged from 1.310 kg to 1.720 kg. Five groups A, B, C,D and E were formed, with two rabbits in each group. The control Group A was given water orally, which had 45 mg/litres of nitrate. Groups B to E (experimental groups) were administered water orally, which had concentrations of 100mg/litre, 200mg/litre, 400mg/litre and 500mg/litre of nitrate respectively, for 120 days. During experimental period, the differences in general behaviour of rabbits were noted. After this, rabbits were anaesthetised and sacrificed according to guidelines of ICMR and their livers were removed and processed for making paraffin sections,.Hematoxyllin and eosin staining was done for microscopic observations.
Results: During experimental period, the animals were found to be lethargic on 75th day. Quantity of intake of food and water was not altered in the rabbits which were undergoing experiments in different groups. Rabbits of all groups i.e. A to E showed a continuous increase in heart rate (up to 218/minute in Group E) and respiration rate (up to 84/minute in Group E) respectively. The microscopic study showed mild necrosis of hepatocytes, with infiltration of inflammatory cells in between hepatocytes. In higher groups, the liver showed bridging necrosis and portal triditis. Dilatations of central vein with eosinophilic degeneration were observed in Group E only.
PMCID: PMC3782893  PMID: 24086836
Liver; Methaemoglobin; Nitrate; Rabbits; Histopathology; Cyanosis; Nitrite
2.  The receptor like kinase at Rhg1-a/Rfs2 caused pleiotropic resistance to sudden death syndrome and soybean cyst nematode as a transgene by altering signaling responses 
BMC Genomics  2012;13:368.
Soybean (Glycine max (L. Merr.)) resistance to any population of Heterodera glycines (I.), or Fusarium virguliforme (Akoi, O’Donnell, Homma & Lattanzi) required a functional allele at Rhg1/Rfs2. H. glycines, the soybean cyst nematode (SCN) was an ancient, endemic, pest of soybean whereas F. virguliforme causal agent of sudden death syndrome (SDS), was a recent, regional, pest. This study examined the role of a receptor like kinase (RLK) GmRLK18-1 (gene model Glyma_18_02680 at 1,071 kbp on chromosome 18 of the genome sequence) within the Rhg1/Rfs2 locus in causing resistance to SCN and SDS.
A BAC (B73p06) encompassing the Rhg1/Rfs2 locus was sequenced from a resistant cultivar and compared to the sequences of two susceptible cultivars from which 800 SNPs were found. Sequence alignments inferred that the resistance allele was an introgressed region of about 59 kbp at the center of which the GmRLK18-1 was the most polymorphic gene and encoded protein. Analyses were made of plants that were either heterozygous at, or transgenic (and so hemizygous at a new location) with, the resistance allele of GmRLK18-1. Those plants infested with either H. glycines or F. virguliforme showed that the allele for resistance was dominant. In the absence of Rhg4 the GmRLK18-1 was sufficient to confer nearly complete resistance to both root and leaf symptoms of SDS caused by F. virguliforme and provided partial resistance to three different populations of nematodes (mature female cysts were reduced by 30–50%). In the presence of Rhg4 the plants with the transgene were nearly classed as fully resistant to SCN (females reduced to 11% of the susceptible control) as well as SDS. A reduction in the rate of early seedling root development was also shown to be caused by the resistance allele of the GmRLK18-1. Field trials of transgenic plants showed an increase in foliar susceptibility to insect herbivory.
The inference that soybean has adapted part of an existing pathogen recognition and defense cascade (H.glycines; SCN and insect herbivory) to a new pathogen (F. virguliforme; SDS) has broad implications for crop improvement. Stable resistance to many pathogens might be achieved by manipulation the genes encoding a small number of pathogen recognition proteins.
PMCID: PMC3439264  PMID: 22857610
Segregation; Pleiotropy; Rhg1/Rfs2; Soybean; Resistance; Soybean cyst nematode (SCN); Sudden death syndrome (SDS); Insect herbivory

Results 1-2 (2)