Search tips
Search criteria

Results 1-17 (17)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Kaempferol Downregulates Insulin-like Growth Factor-I Receptor and ErbB3 Signaling in HT-29 Human Colon Cancer Cells 
Journal of Cancer Prevention  2014;19(3):161-169.
Novel dietary agents for colon cancer prevention and therapy are desired. Kaempferol, a flavonol, has been reported to possess anticancer activity. However, little is known about the molecular mechanisms of the anticancer effects of kaempferol. The aim of this study was to determine the inhibitory effect of kaempferol on growth factor-induced proliferation and to elucidate its underlying mechanisms in the HT-29 human colon cancer cell line.
To assess the effects of kaempferol and/or growth factors [insulin-like growth factor (IGF)-I and heregulin (HRG)-β], cells were cultured with or without 60 μmol/L kaempferol and/or 10 nmol/L IGF-I or 20 μg/L HRG-β. Cell proliferation, DNA synthesis, and apoptosis were determined by a cell viability assay, a [3H]thymidine incorporation assay, and Annexin-V staining, respectively. Western blotting, immunoprecipitation, and an in vitro kinase assay were conducted to evaluate expression and activation of various signaling molecules involved in the IGF-I receptor (IGF-IR) and ErbB3 signaling pathways.
IGF-I and HRG-β stimulated HT-29 cell growth but did not abrogate kaempferol-induced growth inhibition and apoptosis. Kaempferol reduced IGF-II secretion, HRG expression and phosphorylation of Akt and extracellular signal-regulated kinase (ERK)-1/2. Kaempferol reduced IGF-I- and HRG-β-induced phosphorylation of the IGF-IR and ErbB3, their association with p85, and phosphatidylinositol 3-kinase (PI3K) activity. Additionally, kaempferol inhibited IGF-I- and HRG-β-induced phosphorylation of Akt and ERK-1/2.
The results demonstrate that kaempferol downregulates activation of PI3K/Akt and ERK-1/2 pathways by inhibiting IGF-IR and ErbB3 signaling in HT-29 cells. We suggest that kaempferol could be a useful chemopreventive agent against colon cancer.
PMCID: PMC4189510  PMID: 25337585
Kaempferol; Insulin-like growth factor-I receptor; ErbB3; HT-29 human colon cancer
2.  Trans-10,cis-12, not cis-9,trans-11, conjugated linoleic acid decreases ErbB3 expression in HT-29 human colon cancer cells 
AIM: To examine whether trans-10,cis-12 CLA (t10c12) or cis-9,trans-11 CLA (c9t11) inhibits heregulin (HRG)-β-stimulated cell growth and HRG-β-ErbB3 signaling in HT-29 cells.
METHODS: We cultured HT-29 cells in the absence or presence of the CLA isomers and/or the ErbB3 ligand HRG-β. MTT assay, [3H]thymidine incorporation, Annexin V staining, RT-PCR, Western blotting, immunoprecipitation, and in vitro kinase assay were performed.
RESULTS: HRG-β increased cell growth, but did not prevent t10c12-induced growth inhibition. T10c12 inhibited DNA synthesis and induced apoptosis of HT-29 cells, whereas c9t11 had no effect. T10c12 decreased the levels of ErbB1, ErbB2, and ErbB3 proteins and transcripts in a dose-dependent manner, whereas c9t11 had no effect. Immunoprecipitation/Western blot studies revealed that t10c12 inhibited HRG-β-stimulated phosphorylation of ErbB3, recruitment of the p85 subunit of phosphoinositide 3-kinase (PI3K) to ErbB3, ErbB3-associated PI3K activities, and phosphorylation of Akt. However, c9t11 had no effect on phospho Akt levels. Neither t10c12 nor c9t11 had any effect on HRG-β-induced phosphorylation of ERK-1/2.
CONCLUSION: These results indicate that the inhibition of HT-29 cell growth by t10c12 may be induced via its modulation of ErbB3 signaling leading to inhibition of Akt activation.
PMCID: PMC4320386  PMID: 16127743
Akt; Phosphoinositide 3-kinase; DNA synthesis; Apoptosis; ERK-1/2
3.  Kaempferol Induces Cell Cycle Arrest in HT-29 Human Colon Cancer Cells 
Journal of Cancer Prevention  2013;18(3):257-263.
A greater intake of vegetables and fruits has been linked to a reduced incidence of colon cancer. Flavonoids are polyphenolic compounds which are broadly distributed in fruits and vegetables and display a remarkable spectrum of physiological activities, including anti-carcinogenic effects. The objective of this study was to determine the mechanisms by which kaempferol, a flavonol present in tea, apples, strawberries, and beans, inhibits the growth of HT-29 human colon cancer cells.
To examine the effects of kaempferol on cell cycle progression in HT-29 cells, cells were treated with various concentrations (0–60 μmol/L) of kaempferol. Cell proliferation and DNA synthesis were evaluated by MTT assay and [3H]thymidine incorporation assay, respectively. Fluorescence-activated cell sorting analyses were conducted to calculate cell cycle phase distribution. Western blot analyses and in vitro kinase assays were used to estimate the expression of proteins involved in the regulation of cell cycle progression and the activity of cyclin-dependent kinase (CDK)s, respectively.
Kaempferol decreased viable cell numbers and [3H]thymidine incorporation into DNA of HT-29 cells in a dose-dependent manner. Kaempferol induced G1 cell cycle arrest within 6 h and G2/M arrest at 12 h. Kaempferol inhibited the activity of CDK2 and CDK4 as well as the protein expression of CDK2, CDK4, cyclins D1, cyclin E, and cyclin A, and suppressed the phosphorylation of retinoblastoma protein. Additionally, kaempferol decreased the levels of Cdc25C, Cdc2, and cyclin B1 proteins, as well as the activity of Cdc2.
The present results indicate that kaempferol induces G1 and G2/M cell cycle arrest by inhibiting the activity of CDK2, CDK4, and Cdc2. The induction of cell cycle arrest may be one of the mechanisms by which kaempferol exerts anti-carcinogenic effects in colon cancer cells.
PMCID: PMC4189462  PMID: 25337553
Kaempferol; Colon cancer; Cell cycle progression; Chemoprevention
4.  Isoangustone A, a novel licorice compound, inhibits cell proliferation by targeting PI3-K, MKK4 and MKK7 in human melanoma 
Cancer prevention research (Philadelphia, Pa.)  2013;6(12):10.1158/1940-6207.CAPR-13-0134.
Licorice root is known to possess various bioactivities, including anti-inflammatory and anticancer effects. Glycyrrhizin (Gc), a triterpene compound, is the most abundant constituent of dried licorice root. However, high intake or long-term consumption of Gc causes several side effects, such as hypertension, hypertensive encephalopathy, and hypokalemia. Therefore, finding additional active compounds other than Gc in licorice that exhibit anticancer effects is worthwhile. We found that isoangustone A (IAA), a novel flavonoid from licorice root, suppressed proliferation of human melanoma cells. IAA significantly blocked cell cycle progression at the G1 phase and inhibited the expression of G1-phase regulatory proteins, including cyclin D1 and cyclin E in the SK-MEL-28 human melanoma cell line. IAA suppressed the phosphorylation of Akt, GSK3β and JNK1/2. IAA also bound to phosphatidylinositol 3-kinase (PI3-K), MKK4, and MKK7, strongly inhibiting their kinase activities in an ATP-competitive manner. Moreover, in a xenograft mouse model, IAA significantly decreased tumor growth, volume, and weight of SK-MEL-28 xenografts. Collectively, these results suggest that PI3-K, MKK4, and MKK7 are the primary molecular targets of IAA in the suppression of cell proliferation. This insight into the biological actions of IAA provides a molecular basis for the potential development of a new chemotherapeutic agent.
PMCID: PMC3855899  PMID: 24104352
Isoangustone A; PI3K; MKK4; MKK7; melanoma
5.  Berteroin Present in Cruciferous Vegetables Exerts Potent Anti-Inflammatory Properties in Murine Macrophages and Mouse Skin 
Berteroin (5-methylthiopentyl isothiocyanate) is a sulforaphane analog present in cruciferous vegetables, including Chinese cabbage, rucola salad leaves, and mustard oil. We examined whether berteroin exerts anti-inflammatory activities using lipopolysaccharide (LPS)-stimulated Raw 264.7 macrophages and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin inflammation models. Berteroin decreased LPS-induced release of inflammatory mediators and pro-inflammatory cytokines in Raw 264.7 macrophages. Berteroin inhibited LPS-induced degradation of inhibitor of κBα (IκBα) and nuclear factor-κB p65 translocation to the nucleus and DNA binding activity. Furthermore, berteroin suppressed degradation of IL-1 receptor-associated kinase and phosphorylation of transforming growth factor β activated kinase-1. Berteroin also inhibited LPS-induced phosphorylation of p38 MAPK, ERK1/2, and AKT. In the mouse ear, berteroin effectively suppressed TPA-induced edema formation and down-regulated iNOS and COX-2 expression as well as phosphorylation of AKT and ERK1/2. These results demonstrate that berteroin exhibits potent anti-inflammatory properties and suggest that berteroin can be developed as a skin anti-inflammatory agent.
PMCID: PMC4264190  PMID: 25393510
inflammation; berteroin; iNOS; COX-2
6.  Astragalin inhibits airway eotaxin-1 induction and epithelial apoptosis through modulating oxidative stress-responsive MAPK signaling 
BMC Pulmonary Medicine  2014;14:122.
Eotaxin proteins are a potential therapeutic target in treating the peribronchial eosinophilia associated with allergic airway diseases. Since inflammation is often associated with an increased generation of reactive oxygen species (ROS), oxidative stress is a mechanistically imperative factor in asthma. Astragalin (kaempferol-3-O-glucoside) is a flavonoid with anti-inflammatory activity and newly found in persimmon leaves and green tea seeds. This study elucidated that astragalin inhibited endotoxin-induced oxidative stress leading to eosinophilia and epithelial apoptosis in airways.
Airway epithelial BEAS-2B cells were exposed to lipopolysaccharide (LPS) in the absence and presence of 1–20 μM astragalin. Western blot and immunocytochemical analyses were conducted to determine induction of target proteins. Cell and nuclear staining was also performed for ROS production and epithelial apoptosis.
When airway epithelial cells were exposed to 2 μg/ml LPS, astragalin nontoxic at ≤20 μM suppressed cellular induction of Toll-like receptor 4 (TLR4) and ROS production enhanced by LPS. Both LPS and H2O2 induced epithelial eotaxin-1 expression, which was blocked by astragalin. LPS activated and induced PLCγ1, PKCβ2, and NADPH oxidase subunits of p22phox and p47phox in epithelial cells and such activation and induction were demoted by astragalin or TLR4 inhibition antagonizing eotaxin-1 induction. H2O2-upregulated phosphorylation of JNK and p38 MAPK was dampened by adding astragalin to epithelial cells, while this compound enhanced epithelial activation of Akt and ERK. H2O2 and LPS promoted epithelial apoptosis concomitant with nuclear condensation or caspase-3 activation, which was blunted by astragalin.
Astragalin ameliorated oxidative stress-associated epithelial eosinophilia and apoptosis through disturbing TLR4-PKCβ2-NADPH oxidase-responsive signaling. Therefore, astragalin may be a potent agent antagonizing endotoxin-induced oxidative stress leading to airway dysfunction and inflammation.
PMCID: PMC4118077  PMID: 25069610
Asthma; Airway apoptosis; Astragalin; Eotaxin-1; Oxidative stress
7.  Carnosic Acid Inhibits the Epithelial-Mesenchymal Transition in B16F10 Melanoma Cells: A Possible Mechanism for the Inhibition of Cell Migration 
Carnosic acid is a natural benzenediol abietane diterpene found in rosemary and exhibits anti-inflammatory, antioxidant, and anti-carcinogenic activities. In this study, we evaluated the effects of carnosic acid on the metastatic characteristics of B16F10 melanoma cells. When B16F10 cells were cultured in an in vitro Transwell system, carnosic acid inhibited cell migration in a dose-dependent manner. Carnosic acid suppressed the adhesion of B16F10 cells, as well as the secretion of matrix metalloproteinase (MMP)-9, tissue inhibitor of metalloproteinase (TIMP)-1, urokinase plasminogen activator (uPA), and vascular cell adhesion molecule (VCAM)-1. Interestingly, secretion of TIMP-2 increased significantly in B16F10 cells treated with 10 μmol/L carnosic acid. Additionally, carnosic acid suppressed the mesenchymal markers snail, slug, vimentin, and N-cadherin and induced epithelial marker E-cadherin. Furthermore, carnosic acid suppressed phosphorylation of Src, FAK, and AKT. These results indicate that inhibition of the epithelial-mesenchymal transition may be important for the carnosic acid-induced inhibition of B16F10 cell migration.
PMCID: PMC4139869  PMID: 25036034
carnosic acid; melanoma; migration; epithelial-mesenchymal transition
8.  Mechanisms Underlying Apoptosis-Inducing Effects of Kaempferol in HT-29 Human Colon Cancer Cells 
We previously noted that kaempferol, a flavonol present in vegetables and fruits, reduced cell cycle progression of HT-29 cells. To examine whether kaempferol induces apoptosis of HT-29 cells and to explore the underlying molecular mechanisms, cells were treated with various concentrations (0–60 μmol/L) of kaempferol and analyzed by Hoechst staining, Annexin V staining, JC-1 labeling of the mitochondria, immunoprecipitation, in vitro kinase assays, Western blot analyses, and caspase-8 assays. Kaempferol increased chromatin condensation, DNA fragmentation and the number of early apoptotic cells in HT-29 cells in a dose-dependent manner. In addition, kaempferol increased the levels of cleaved caspase-9, caspase-3 and caspase-7 as well as those of cleaved poly (ADP-ribose) polymerase. Moreover, it increased mitochondrial membrane permeability and cytosolic cytochrome c concentrations. Further, kaempferol decreased the levels of Bcl-xL proteins, but increased those of Bik. It also induced a reduction in Akt activation and Akt activity and an increase in mitochondrial Bad. Additionally, kaempferol increased the levels of membrane-bound FAS ligand, decreased those of uncleaved caspase-8 and intact Bid and increased caspase-8 activity. These results indicate that kaempferol induces the apoptosis of HT-29 cells via events associated with the activation of cell surface death receptors and the mitochondrial pathway.
PMCID: PMC3958878  PMID: 24549175
kaempferol; colon cancer; apoptosis; mitochondrial pathway; cell-death receptor pathway
9.  Erucin Exerts Anti-Inflammatory Properties in Murine Macrophages and Mouse Skin: Possible Mediation through the Inhibition of NFκB Signaling 
Erucin, an isothiocyanate, is a hydrolysis product of glucoerucin found in arugula and has recently been reported to have anti-cancer properties in various cancer cells. In this study, we assessed the anti-inflammatory effects of erucin and the underlying mechanisms, using lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophages and 12-O-tetradecanoylphorbol-13-acetate-treated mouse skin. In RAW 264.7 cells, erucin (2.5, 5 μmol/L) inhibited LPS-induced production of nitric oxide and prostaglandin E2. Erucin inhibited LPS-induced degradation of the inhibitor of κBα and translocation of p65 to the nucleus and, subsequently, reduced LPS-induced nuclear factor κB (NFκB) DNA binding activities, as well as the transcriptional activity of NFκB, leading to the decreased expression of NFκB-target genes, including tumor necrosis factor-α, interleukin (IL)-6, IL-1β, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, as well as transcriptional activity of iNOS and COX-2. In mice, erucin (100, 300 nmoles) treatment significantly inhibited phorbol ester-induced formation of ear edema and expression of iNOS and COX-2 proteins. These results indicate that erucin exerts a potent anti-inflammatory activity by inhibiting the pro-inflammatory enzymes and cytokines, which may be mediated, at least in part, via the inhibition of NFκB signaling.
PMCID: PMC3821631  PMID: 24132147
erucin; inflammation; mouse skin; murine macrophages
10.  Mechanisms by Which Licochalcone E Exhibits Potent Anti-Inflammatory Properties: Studies with Phorbol Ester-Treated Mouse Skin and Lipopolysaccharide-Stimulated Murine Macrophages 
In this study we found that licochalcone E (LicE), a recently isolated retrochalcone from Glycyrrhiza inflata, exhibits potent anti-inflammatory effects in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse ear edema and lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophage models. Topical application of LicE (0.5–2 mg) effectively inhibited TPA-induced (1) ear edema formation; (2) phosphorylation of stress-activated protein kinase/c-Jun-N-terminal kinase (SAPK/JNK), c-Jun, and extracellular signal regulated kinase 1/2; and (3) expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 proteins in mouse skin. The treatment of RAW 264.7 cells with LicE (2.5–7.5 μmol/L) induced a profound reduction in LPS-induced (1) release of NO and prostaglandin E2; (2) mRNA expression and secretion of interleukin (IL)-6, IL-1β and tumor necrosis factor-α; (3) promoter activity of iNOS and COX-2 and expression of their corresponding mRNAs and proteins; (4) activation of AKT, p38 mitogen activated protein kinase (MAPK), SAPK/JNK and c-Jun; (5) phosphorylation of inhibitor of κB (IκB) kinase-αβ and IκBα, degradation of IκBα, translocation of p65 (RelA) to the nucleus and transcriptional activity of nuclear factor (NF)-κB; and (6) transcriptional activity of activator protein (AP)-1. These results indicate that the LicE inhibition of NF-κB and AP-1 transcriptional activity through the inhibition of AKT and MAPK activation contributes to decreases in the expression of pro-inflammatory cytokines and the inducible enzymes iNOS and COX-2.
PMCID: PMC3709710  PMID: 23708096
licochalcone E; inflammation; mouse skin
11.  Time-course microarrays reveal early activation of the immune transcriptome and adipokine dysregulation leads to fibrosis in visceral adipose depots during diet-induced obesity 
BMC Genomics  2012;13:450.
Visceral white adipose tissue (WAT) hypertrophy, adipokine production, inflammation and fibrosis are strongly associated with obesity, but the time-course of these changes in-vivo are not fully understood. Therefore, the aim of this study was to establish the time-course of changes in adipocyte morphology, adipokines and the global transcriptional landscape in visceral WAT during the development of diet-induced obesity.
C57BL/6 J mice were fed a high-fat diet (HFD) or normal diet (ND) and sacrificed at 8 time-points over 24 weeks. Excessive fat accumulation was evident in visceral WAT depots (Epidydimal, Perirenal, Retroperitoneum, Mesentery) after 2–4 weeks. Fibrillar collagen accumulation was evident in epidydimal adipocytes at 24 weeks. Plasma adipokines, leptin, resistin and adipsin, increased early and time-dependently, while adiponectin decreased late after 20 weeks. Only plasma leptin and adiponectin levels were associated with their respective mRNA levels in visceral WAT. Time-course microarrays revealed early and sustained activation of the immune transcriptome in epididymal and mesenteric depots. Up-regulated inflammatory genes included pro-inflammatory cytokines, chemokines (Tnf, Il1rn, Saa3, Emr1, Adam8, Itgam, Ccl2, 3, 4, 6, 7 and 9) and their upstream signalling pathway genes (multiple Toll-like receptors, Irf5 and Cd14). Early changes also occurred in fibrosis, extracellular matrix, collagen and cathepsin related-genes, but histological fibrosis was only visible in the later stages.
In diet-induced obesity, early activation of TLR-mediated inflammatory signalling cascades by CD antigen genes, leads to increased expression of pro-inflammatory cytokines and chemokines, resulting in chronic low-grade inflammation. Early changes in collagen genes may trigger the accumulation of ECM components, promoting fibrosis in the later stages of diet-induced obesity. New therapeutic approaches targeting visceral adipose tissue genes altered early by HFD feeding may help ameliorate the deleterious effects of diet-induced obesity.
PMCID: PMC3447724  PMID: 22947075
Adipocytokine dysregulation; Transcriptional response; Adipose tissue; Extracellular matrix; Cathepsin; Fibrosis
12.  Bone marrow-derived, alternatively activated macrophages enhance solid tumor growth and lung metastasis of mammary carcinoma cells in a Balb/C mouse orthotopic model 
Tumor-associated macrophages, which are derived from the infiltration of circulating bone marrow-derived monocytes, consist primarily of a polarized M2 macrophage (M2-Mϕ) population and are associated with poor prognosis in various cancers. In the present study, we attempted to assess whether M2-Mϕs derived from bone marrow stimulate the promotion and progression of mammary tumors.
4T1 murine mammary carcinoma cells were injected either alone or coupled with M2-Mϕs into the mammary fat pads of syngeneic female Balb/C mice. M2-Mϕs were prepared by treating monocytes isolated from female Balb/C mouse bone marrow with IL-4. Tumor cell growth was determined using an in vivo imaging system and the expression of cell proliferation-related, angiogenesis-related, and lymphangiogenesis-related proteins in tumor tissues was immunohistochemically analyzed. To evaluate the effects of the crosstalk between 4T1 cells and M2-Mϕs on the secretion and mRNA expression of cytokines and the migration of monocytes, 4T1 cells and M2-Mϕs were co-cultured and cytokine antibody array, real-time RT-PCR, and trans-well migration assays were conducted.
The co-injection of M2-Mϕs into the mammary fat pads of mice increased solid tumor growth and lung metastasis of 4T1 cells as well as the infiltration of CD45+ leukocytes into tumor tissues. The proportions of Ki-67+ proliferating cells and the expression of hypoxia inducible factor-1α, vascular endothelial cell growth factor A, CD31, vascular endothelial cell growth factor C, and lymphatic vessel endothelial receptor-1 were increased significantly in the tumor tissues of mice co-injected with 4T1 cells and M2-Mϕs. The in vitro results revealed that the proliferation of 4T1 cells, the migration of monocytes, and the secretion of granulocyte colony-stimulating factor, IFNγ, IL-1α, IL-2, IL-16, IFNγ-induced protein-10, keratinocyte-derived chemokine, macrophage colony-stimulating factor, monocyte chemotactic protein-1, macrophage inflammatory protein-1α, and RANTES were increased when 4T1 cells were co-cultured with M2-Mϕs, as compared with when the 4T1 cells were cultured alone.
The crosstalk between 4T1 cells and M2-Mϕs increased the production of cytokines, which may have induced immune cell infiltration into tumor tissues, tumor cell proliferation, angiogenesis, and lymph angiogenesis, thereby increasing solid tumor growth and lung metastasis.
PMCID: PMC3446344  PMID: 22616919
13.  Luteolin decreases IGF-II production and downregulates insulin-like growth factor-I receptor signaling in HT-29 human colon cancer cells 
BMC Gastroenterology  2012;12:9.
Luteolin is a 3',4',5,7-tetrahydroxyflavone found in various fruits and vegetables. We have shown previously that luteolin reduces HT-29 cell growth by inducing apoptosis and cell cycle arrest. The objective of this study was to examine whether luteolin downregulates the insulin-like growth factor-I receptor (IGF-IR) signaling pathway in HT-29 cells.
In order to assess the effects of luteolin and/or IGF-I on the IGF-IR signaling pathway, cells were cultured with or without 60 μmol/L luteolin and/or 10 nmol/L IGF-I. Cell proliferation, DNA synthesis, and IGF-IR mRNA levels were evaluated by a cell viability assay, [3H]thymidine incorporation assays, and real-time polymerase chain reaction, respectively. Western blot analyses, immunoprecipitation, and in vitro kinase assays were conducted to evaluate the secretion of IGF-II, the protein expression and activation of IGF-IR, and the association of the p85 subunit of phophatidylinositol-3 kinase (PI3K) with IGF-IR, the phosphorylation of Akt and extracellular signal-regulated kinase (ERK)1/2, and cell division cycle 25c (CDC25c), and PI3K activity.
Luteolin (0 - 60 μmol/L) dose-dependently reduced the IGF-II secretion of HT-29 cells. IGF-I stimulated HT-29 cell growth but did not abrogate luteolin-induced growth inhibition. Luteolin reduced the levels of the IGF-IR precursor protein and IGF-IR transcripts. Luteolin reduced the IGF-I-induced tyrosine phosphorylation of IGF-IR and the association of p85 with IGF-IR. Additionally, luteolin inhibited the activity of PI3K activity as well as the phosphorylation of Akt, ERK1/2, and CDC25c in the presence and absence of IGF-I stimulation.
The present results demonstrate that luteolin downregulates the activation of the PI3K/Akt and ERK1/2 pathways via a reduction in IGF-IR signaling in HT-29 cells; this may be one of the mechanisms responsible for the observed luteolin-induced apoptosis and cell cycle arrest.
PMCID: PMC3298530  PMID: 22269172
14.  Anti-inflammatory/Anti-oxidative Stress Activities and Differential Regulation of Nrf2-Mediated Genes by Non-Polar Fractions of Tea Chrysanthemum zawadskii and Licorice Glycyrrhiza uralensis 
The AAPS Journal  2010;13(1):1-13.
Accumulating evidence from epidemiological studies indicates that chronic inflammation and oxidative stress play critical roles in neoplastic development. The aim of this study was to investigate the anti-inflammatory, anti-oxidative stress activities, and differential regulation of Nrf2-mediated genes by tea Chrysanthemum zawadskii (CZ) and licorice Glycyrrhiza uralensis (LE) extracts. The anti-inflammatory and anti-oxidative stress activities of hexane/ethanol extracts of CZ and LE were investigated using in vitro and in vivo approaches, including quantitative real-time PCR (qPCR) and microarray. Additionally, the role of the transcriptional factor Nrf2 (nuclear erythroid-related factor 2) signaling pathways was examined. Our results show that CZ and LE extracts exhibited potent anti-inflammatory activities by suppressing the mRNA and protein expression levels of pro-inflammatory biomarkers IL-1β, IL-6, COX-2 and iNOS in LPS-stimulated murine RAW 264.7 macrophage cells. CZ and LE also significantly suppressed the NO production of LPS-stimulated RAW 264.7 cells. Additionally, CZ and LE suppressed the NF-κB luciferase activity in human HT-29 colon cancer cells. Both extracts also showed strong Nrf2-mediated antioxidant/Phase II detoxifying enzymes induction. CZ and LE induced NQO1, Nrf2, and UGT and antioxidant response element (ARE)-luciferase activity in human hepatoma HepG2 C8 cells. Using Nrf2 knockout [Nrf2 (−/−)] and Nrf2 wild-type (+/+) mice, LE and CZ showed Nrf2-dependent transactivation of Nrf2-mediated antioxidant and phase II detoxifying genes. In summary, CZ and LE possess strong inhibitory effects against NF-κB-mediated inflammatory as well as strong activation of the Nrf2-ARE-anti-oxidative stress signaling pathways, which would contribute to their overall health promoting pharmacological effects against diseases including cancer.
PMCID: PMC3032091  PMID: 20967519
anti-inflammatory; anti-oxidative stress; chrysanthemum; licorice; Nrf2; phase II drug metabolizing/detoxifying enzymes
15.  Fucoidan present in brown algae induces apoptosis of human colon cancer cells 
BMC Gastroenterology  2010;10:96.
Fucoidan is a sulfated polysaccharide found in brown algae; it has been shown to exhibit a number of biological effects, including anti-tumor effects. In this study, we evaluated the effects of fucoidan on apoptosis in HT-29 and HCT116 human colon cancer cells.
HT-29 and HCT116 cells were cultured with various concentrations of fucoidan (0 - 20 μg/mL). Apoptosis was assayed via Hoechst staining and Annexin V staining followed by flow cytometric analysis. Western blot analyses and JC-1 staining were conducted to determine the levels of apoptosis-regulating proteins and mitochondrial membrane permeability, respectively.
Fucoidan induced substantial reductions in viable cell numbers and apoptosis of HT-29 and HCT116 cells in a dose-dependent manner. In HT-29 cells, fucoidan also increased the levels of cleaved caspases-8, -9, -7, and -3, and cleaved poly (ADP-ribose) polymerase (PARP) levels. The levels of the X-linked inhibitor of apoptosis protein and survivin were attenuated in the fucoidan-treated cells. Fucoidan was also shown to enhance mitochondrial membrane permeability, as well as the cytochrome c and Smac/Diablo release from the mitochondria. Fucoidan increased the levels of the Bak and truncated Bid proteins, but reduced the levels of Mcl-1. Additionally, fucoidan increased the levels of the tumor necrosis factor-related apoptosis-inducing ligand, Fas and death receptor 5 proteins. The caspase-8 and -9 inhibitors Z-IETD-FMK and Z-LEHD-FMK induced a reduction in fucoidan-mediated apoptosis. Caspase-8 inhibitor inhibited the fucoidan-induced cleavage of Bid, caspases-9 and -3, and PARP.
The findings of this study indicate that fucoidan induces apoptosis in HT-29 and HCT116 human colon cancer cells, and that this phenomenon is mediated via both the death receptor-mediated and mitochondria-mediated apoptotic pathways. These results suggest that fucoidan may prove useful in the development of a colon cancer-preventive protocol.
PMCID: PMC2931458  PMID: 20727207
16.  Anti-Inflammatory Effects of Licorice and Roasted Licorice Extracts on TPA-Induced Acute Inflammation and Collagen-Induced Arthritis in Mice 
The anti-inflammatory activity of licorice (LE) and roated licorice (rLE) extracts determined in the murine phorbol ester-induced acute inflammation model and collagen-induced arthritis (CIA) model of human rheumatoid arthritis. rLE possessed greater activity than LE in inhibiting phorbol ester-induced ear edema. Oral administration of LE or rLE reduced clinical arthritis score, paw swelling, and histopathological changes in a murine CIA. LE and rLE decreased the levels of proinflammatory cytokines in serum and matrix metalloproteinase-3 expression in the joints. Cell proliferation and cytokine secretion in response to type II collagen or lipopolysaccharide stimulation were suppressed in spleen cells from LE or rLE-treated CIA mice. Furthermore, LE and rLE treatment prevented oxidative damages in liver and kidney tissues of CIA mice. Taken together, LE and rLE have benefits in protecting against both acute inflammation and chronic inflammatory conditions including rheumatoid arthritis. rLE may inhibit the acute inflammation more potently than LE.
PMCID: PMC2841253  PMID: 20300198
17.  Induction of G1 and G2/M cell cycle arrests by the dietary compound 3,3'-diindolylmethane in HT-29 human colon cancer cells 
BMC Gastroenterology  2009;9:39.
3,3'-Diindolylmethane (DIM), an indole derivative produced in the stomach after the consumption of broccoli and other cruciferous vegetables, has been demonstrated to exert anti-cancer effects in both in vivo and in vitro models. We have previously determined that DIM (0 – 30 μmol/L) inhibited the growth of HT-29 human colon cancer cells in a concentration-dependent fashion. In this study, we evaluated the effects of DIM on cell cycle progression in HT-29 cells.
HT-29 cells were cultured with various concentrations of DIM (0 – 30 μmol/L) and the DNA was stained with propidium iodide, followed by flow cytometric analysis. [3H]Thymidine incorporation assays, Western blot analyses, immunoprecipitation and in vitro kinase assays for cyclin-dependent kinase (CDK) and cell division cycle (CDC)2 were conducted.
The percentages of cells in the G1 and G2/M phases were dose-dependently increased and the percentages of cells in S phase were reduced within 12 h in DIM-treated cells. DIM also reduced DNA synthesis in a dose-dependent fashion. DIM markedly reduced CDK2 activity and the levels of phosphorylated retinoblastoma proteins (Rb) and E2F-1, and also increased the levels of hypophosphorylated Rb. DIM reduced the protein levels of cyclin A, D1, and CDK4. DIM also increased the protein levels of CDK inhibitors, p21CIP1/WAF1 and p27KIPI. In addition, DIM reduced the activity of CDC2 and the levels of CDC25C phosphatase and cyclin B1.
Here, we have demonstrated that DIM induces G1 and G2/M phase cell cycle arrest in HT-29 cells, and this effect may be mediated by reduced CDK activity.
PMCID: PMC2700124  PMID: 19480695

Results 1-17 (17)