Search tips
Search criteria

Results 1-25 (27)

Clipboard (0)

Select a Filter Below

more »
more »
Year of Publication
Document Types
1.  Transcriptome Sequencing and Developmental Regulation of Gene Expression in Anopheles aquasalis 
Anopheles aquasalis is a major malaria vector in coastal areas of South and Central America where it breeds preferentially in brackish water. This species is very susceptible to Plasmodium vivax and it has been already incriminated as responsible vector in malaria outbreaks. There has been no high-throughput investigation into the sequencing of An. aquasalis genes, transcripts and proteins despite its epidemiological relevance. Here we describe the sequencing, assembly and annotation of the An. aquasalis transcriptome.
Methodology/Principal Findings
A total of 419 thousand cDNA sequence reads, encompassing 164 million nucleotides, were assembled in 7544 contigs of ≥2 sequences, and 1999 singletons. The majority of the An. aquasalis transcripts encode proteins with their closest counterparts in another neotropical malaria vector, An. darlingi. Several analyses in different protein databases were used to annotate and predict the putative functions of the deduced An. aquasalis proteins. Larval and adult-specific transcripts were represented by 121 and 424 contig sequences, respectively. Fifty-one transcripts were only detected in blood-fed females. The data also reveal a list of transcripts up- or down-regulated in adult females after a blood meal. Transcripts associated with immunity, signaling networks and blood feeding and digestion are discussed.
This study represents the first large-scale effort to sequence the transcriptome of An. aquasalis. It provides valuable information that will facilitate studies on the biology of this species and may lead to novel strategies to reduce malaria transmission on the South American continent. The An. aquasalis transcriptome is accessible at
Author Summary
The mosquito Anopheles aquasalis is responsible for transmitting malaria parasites to humans in South America coastal areas. An. aquasalis females transmit Plasmodium vivax and Plasmodium falciparum, the two major malaria etiological agents in these endemic sites. Although the vectorial importance of this mosquito has been demonstrated, molecular aspects of its biology have been poorly explored. In this study, we present the transcriptome of An. aquasalis using 454 sequencing followed by automated bioinformatic analyses. Our study identified and annotated more than 9,000 putative proteins based on homology, gene ontology, and/or biochemical pathways, including putative secretory proteins. The comparison of RNAs present in samples extracted from larvae, sugar fed adult females, or blood fed adult females, reveal gene expression regulation during mosquito development. The present dataset provides a useful resource and adds greatly to our understanding of a human malaria vector from developing countries.
PMCID: PMC4102416  PMID: 25033462
2.  Integrated proteomic and transcriptomic analysis of the Aedes aegypti eggshell 
Mosquito eggshells show remarkable diversity in physical properties and structure consistent with adaptations to the wide variety of environments exploited by these insects. We applied proteomic, transcriptomic, and hybridization in situ techniques to identify gene products and pathways that participate in the assembly of the Aedes aegypti eggshell. Aedes aegypti population density is low during cold and dry seasons and increases immediately after rainfall. The survival of embryos through unfavorable periods is a key factor in the persistence of their populations. The work described here supports integrated vector control approaches that target eggshell formation and result in Ae. aegypti drought-intolerant phenotypes for public health initiatives directed to reduce mosquito-borne diseases.
A total of 130 proteins were identified from the combined mass spectrometric analyses of eggshell preparations.
Classification of proteins according to their known and putative functions revealed the complexity of the eggshell structure. Three novel Ae. aegypti vitelline membrane proteins were discovered. Odorant-binding and cysteine-rich proteins that may be structural components of the eggshell were identified. Enzymes with peroxidase, laccase and phenoloxidase activities also were identified, and their likely involvements in cross-linking reactions that stabilize the eggshell structure are discussed.
PMCID: PMC4234484  PMID: 24707823
Aedes aegypti; Eggshell; Chorion; Vitelline membrane; Estivation; Oogenesis; Mosquito
3.  Expression and accumulation of the two-domain odorant-binding protein AaegOBP45 in the ovaries of blood-fed Aedes aegypti 
Parasites & Vectors  2013;6:364.
Aedes aegypti mosquitoes are the main vectors of dengue viruses. Despite global efforts to reduce the prevalence of dengue using integrated vector management strategies, innovative alternatives are necessary to help prevent virus transmission. Detailed characterizations of Ae. aegypti genes and their products provide information about the biology of mosquitoes and may serve as foundations for the design of new vector control methods.
We studied the Ae. aegypti gene, AAEL010714, that encodes a two-domain odorant-binding protein, AaegOBP45. The predicted gene structure and sequence were validated, although single nucleotide polymorphisms were observed. Transcriptional and translational products accumulate in the ovaries of blood fed females and are not detected or are at low abundance in other tissues.
We validated the Ae. aegypti AAEL010714 gene sequence and characterized the expression profile of a two-domain OBP expressed in ovaries. We propose that AaegOBP45 function as a component of the mosquito eggshell.
PMCID: PMC3892079  PMID: 24367904
Aedes aegypti; Odorant-binding protein; OBP; Ovaries; Atypical; Two-domain
4.  Culex quinquefasciatus Storage Proteins 
PLoS ONE  2013;8(10):e77664.
Insect storage proteins accumulate at high levels during larval development of holometabolous insects. During metamorphosis they are degraded, supplying energy and amino acids for the completion of adult development. The genome of Culex quinquefasciatus contains eleven storage protein-coding genes. Their transcripts are more abundant in larvae than in pupae and in adults. In fact, only four of these genes are transcribed in adults, two of which in blood-fed adult females but not in adult males. Transcripts corresponding to all Cx. quinquefasciatus storage proteins were detected by RT-PCR, while mass spectrometric analysis of larval and pupal proteins identified all storage proteins with the exception of one encoded by Cq LSP1.8. Our results indicate that the identified Cx. quinquefasciatus storage protein-coding genes are candidates for identifying regulatory sequences for the development of molecular tools for vector control.
PMCID: PMC3812268  PMID: 24204911
5.  Probing functional polymorphisms in the dengue vector, Aedes aegypti 
BMC Genomics  2013;14:739.
Dengue is the most prevalent arboviral disease world-wide and its primary vector is the mosquito Aedes aegypti. The current lack of commercially-available vaccines makes control of vector populations the only effective strategy to prevent dengue transmission. Aedes aegypti geographic populations exhibit great variability in insecticide resistance and susceptibility to dengue infection. The characterization of single nucleotide polymorphisms (SNPs) as molecular markers to study quantitatively this variation is needed greatly because this species has a low abundance of microsatellite markers and limited known restriction fragments length polymorphisms (RFLPs) and single-strand conformation polymorphism (SSCP) markers.
We used RNA-seq to characterize SNPs in three Ae. aegypti strains, including the Liverpool (LVP) strain, from which the current genome annotation is derived. We identified 131,764 unique genome locations with at least one alternative nucleotide to what is reported in the reference annotation. These comprised changes in both open-reading frames (ORFs) and untranslated regions (UTRs) of transcripts. An in depth-look at sequence variation in immunity genes revealed that those associated with autophagy, MD2-like receptors and Peptidoglycan Recognition Proteins had more sequence variation in their 3’UTRs than mutations associated with non-synonymous changes. This supports the conclusion that these genes had maintained their functional specificity while being adapted to different regulatory domains. In contrast, a number of peroxidases, serpins and Clip-domain serine proteases exhibited conservation of putative UTR regulatory sequences while displaying diversification of the ORFs. Transcriptome evidence also was found for ~2500 novel transcriptional units (NTUs) not annotated in the reference genome.
The transcriptome-wide assessment of within and inter-strain polymorphisms in Ae. aegypti adds considerably to the number of molecular markers available for genetic studies in this mosquito. Additionally, data supporting NTU discovery emphasizes the need for continuous amendments of the reference genome annotation.
PMCID: PMC4007706  PMID: 24168143
Mosquito; Variation; RNA-seq; SNP; Immunity
6.  Gene Expression-Based Biomarkers for Anopheles gambiae Age Grading 
PLoS ONE  2013;8(7):e69439.
Information on population age structure of mosquitoes under natural conditions is fundamental to the understanding of vectorial capacity and crucial for assessing the impact of vector control measures on malaria transmission. Transcriptional profiling has been proposed as a method for predicting mosquito age for Aedes and Anopheles mosquitoes, however, whether this new method is adequate for natural conditions is unknown. This study tests the applicability of transcriptional profiling for age-grading of Anopheles gambiae, the most important malaria vector in Africa. The transcript abundance of two An. gambiae genes, AGAP009551 and AGAP011615, was measured during aging under laboratory and field conditions in three mosquito strains. Age-dependent monotonic changes in transcript levels were observed in all strains evaluated. These genes were validated as age-grading biomarkers using the mark, release and recapture (MRR) method. The MRR method determined a good correspondence between actual and predicted age, and thus demonstrated the value of age classifications derived from the transcriptional profiling of these two genes. The technique was used to establish the age structure of mosquito populations from two malaria-endemic areas in western Kenya. The population age structure determined by the transcriptional profiling method was consistent with that based on mosquito parity. This study demonstrates that the transcription profiling method based on two genes is valuable for age determination of natural mosquitoes, providing a new approach for determining a key life history trait of malaria vectors.
PMCID: PMC3720620  PMID: 23936017
7.  The Co-Expression Pattern of Odorant Binding Proteins and Olfactory Receptors Identify Distinct Trichoid Sensilla on the Antenna of the Malaria Mosquito Anopheles gambiae 
PLoS ONE  2013;8(7):e69412.
The initial steps of odorant recognition in the insect olfactory system involve odorant binding proteins (OBPs) and odorant receptors (ORs). While large families of OBPs have been identified in the malaria vector A. gambiae, little is known about their expression pattern in the numerous sensory hairs of the female antenna. We applied whole mount fluorescence in Situ hybridization (WM-FISH) and fluorescence immunohistochemistry (WM-FIHC) to investigate the sensilla co-expression of eight A. gambiae OBPs (AgOBPs), most notably AgOBP1 and AgOBP4, which all have abundant transcripts in female antenna. WM-FISH analysis of female antennae using AgOBP-specific probes revealed marked differences in the number of cells expressing each various AgOBPs. Testing combinations of AgOBP probes in two-color WM-FISH resulted in distinct cellular labeling patterns, indicating a combinatorial expression of AgOBPs and revealing distinct AgOBP requirements for various functional sensilla types. WM-FIHC with antisera to AgOBP1 and AgOBP4 confirmed expression of the respective proteins by support cells and demonstrated a location of OBPs within sensilla trichodea. Based on the finding that AgOBP1 and AgOBP4 as well as the receptor type AgOR2 are involved in the recognition of indole, experiments were performed to explore if the AgOBP-types and AgOR2 are co-expressed in distinct olfactory sensilla. Applying two-color WM-FISH with AgOBP-specific probes and probes specific for AgOR2 revealed a close association of support cells bearing transcripts for AgOBP1 and AgOBP4 and neurons with a transcript for the receptor AgOR2. Moreover, combined WM-FISH/-FIHC approaches using an AgOR2-specific riboprobe and AgOBP-specific antisera revealed the expression of the “ligand-matched” AgOBP1, AgOBP4 and AgOR2 to single trichoid hairs. This result substantiates the notion that a specific response to indole is mediated by an interplay of the proteins.
PMCID: PMC3702612  PMID: 23861970
8.  The Genome of Anopheles darlingi, the main neotropical malaria vector 
Marinotti, Osvaldo | Cerqueira, Gustavo C. | de Almeida, Luiz Gonzaga Paula | Ferro, Maria Inês Tiraboschi | Loreto, Elgion Lucio da Silva | Zaha, Arnaldo | Teixeira, Santuza M. R. | Wespiser, Adam R. | Almeida e Silva, Alexandre | Schlindwein, Aline Daiane | Pacheco, Ana Carolina Landim | da Silva, Artur Luiz da Costa | Graveley, Brenton R. | Walenz, Brian P. | Lima, Bruna de Araujo | Ribeiro, Carlos Alexandre Gomes | Nunes-Silva, Carlos Gustavo | de Carvalho, Carlos Roberto | Soares, Célia Maria de Almeida | de Menezes, Claudia Beatriz Afonso | Matiolli, Cleverson | Caffrey, Daniel | Araújo, Demetrius Antonio M. | de Oliveira, Diana Magalhães | Golenbock, Douglas | Grisard, Edmundo Carlos | Fantinatti-Garboggini, Fabiana | de Carvalho, Fabíola Marques | Barcellos, Fernando Gomes | Prosdocimi, Francisco | May, Gemma | de Azevedo Junior, Gilson Martins | Guimarães, Giselle Moura | Goldman, Gustavo Henrique | Padilha, Itácio Q. M. | Batista, Jacqueline da Silva | Ferro, Jesus Aparecido | Ribeiro, José M. C. | Fietto, Juliana Lopes Rangel | Dabbas, Karina Maia | Cerdeira, Louise | Agnez-Lima, Lucymara Fassarella | Brocchi, Marcelo | de Carvalho, Marcos Oliveira | Teixeira, Marcus de Melo | Diniz Maia, Maria de Mascena | Goldman, Maria Helena S. | Cruz Schneider, Maria Paula | Felipe, Maria Sueli Soares | Hungria, Mariangela | Nicolás, Marisa Fabiana | Pereira, Maristela | Montes, Martín Alejandro | Cantão, Maurício E. | Vincentz, Michel | Rafael, Miriam Silva | Silverman, Neal | Stoco, Patrícia Hermes | Souza, Rangel Celso | Vicentini, Renato | Gazzinelli, Ricardo Tostes | Neves, Rogério de Oliveira | Silva, Rosane | Astolfi-Filho, Spartaco | Maciel, Talles Eduardo Ferreira | Ürményi, Turán P. | Tadei, Wanderli Pedro | Camargo, Erney Plessmann | de Vasconcelos, Ana Tereza Ribeiro
Nucleic Acids Research  2013;41(15):7387-7400.
Anopheles darlingi is the principal neotropical malaria vector, responsible for more than a million cases of malaria per year on the American continent. Anopheles darlingi diverged from the African and Asian malaria vectors ∼100 million years ago (mya) and successfully adapted to the New World environment. Here we present an annotated reference A. darlingi genome, sequenced from a wild population of males and females collected in the Brazilian Amazon. A total of 10 481 predicted protein-coding genes were annotated, 72% of which have their closest counterpart in Anopheles gambiae and 21% have highest similarity with other mosquito species. In spite of a long period of divergent evolution, conserved gene synteny was observed between A. darlingi and A. gambiae. More than 10 million single nucleotide polymorphisms and short indels with potential use as genetic markers were identified. Transposable elements correspond to 2.3% of the A. darlingi genome. Genes associated with hematophagy, immunity and insecticide resistance, directly involved in vector–human and vector–parasite interactions, were identified and discussed. This study represents the first effort to sequence the genome of a neotropical malaria vector, and opens a new window through which we can contemplate the evolutionary history of anopheline mosquitoes. It also provides valuable information that may lead to novel strategies to reduce malaria transmission on the South American continent. The A. darlingi genome is accessible at
PMCID: PMC3753621  PMID: 23761445
9.  Complex Modulation of the Aedes aegypti Transcriptome in Response to Dengue Virus Infection 
PLoS ONE  2012;7(11):e50512.
Dengue fever is the most important arboviral disease world-wide, with Aedes aegypti being the major vector. Interactions between the mosquito host and dengue viruses (DENV) are complex and vector competence varies among geographically-distinct Ae. aegypti populations. Additionally, dengue is caused by four antigenically-distinct viral serotypes (DENV1–4), each with multiple genotypes. Each virus genotype interacts differently with vertebrate and invertebrate hosts. Analyses of alterations in mosquito transcriptional profiles during DENV infection are expected to provide the basis for identifying networks of genes involved in responses to viruses and contribute to the molecular-genetic understanding of vector competence. In addition, this knowledge is anticipated to support the development of novel disease-control strategies. RNA-seq technology was used to assess genome-wide changes in transcript abundance at 1, 4 and 14 days following DENV2 infection in carcasses, midguts and salivary glands of the Ae. aegypti Chetumal strain. DENV2 affected the expression of 397 Ae. aegypti genes, most of which were down-regulated by viral infection. Differential accumulation of transcripts was mainly tissue- and time-specific. Comparisons of our data with other published reports reveal conservation of functional classes, but limited concordance of specific mosquito genes responsive to DENV2 infection. These results indicate the necessity of additional studies of mosquito-DENV interactions, specifically those focused on recently-derived mosquito strains with multiple dengue virus serotypes and genotypes.
PMCID: PMC3507784  PMID: 23209765
10.  Strain Variation in the Transcriptome of the Dengue Fever Vector, Aedes aegypti 
G3: Genes|Genomes|Genetics  2012;2(1):103-114.
Studies of transcriptome dynamics provide a basis for understanding functional elements of the genome and the complexity of gene regulation. The dengue vector mosquito, Aedes aegypti, exhibits great adaptability to diverse ecological conditions, is phenotypically polymorphic, and shows variation in vectorial capacity to arboviruses. Previous genome sequencing showed richness in repetitive DNA and transposable elements that can contribute to genome plasticity. Population genetic studies revealed a varying degree of worldwide genetic polymorphism. However, the extent of functional genetic polymorphism across strains is unknown. The transcriptomes of three Ae. aegypti strains, Chetumal (CTM), Rexville D-Puerto Rico (Rex-D) and Liverpool (LVP), were compared. CTM is more susceptible than Rex- D to infection by dengue virus serotype 2. A total of 4188 transcripts exhibit either no or small variation (<2-fold) among sugar-fed samples of the three strains and between sugar- and blood-fed samples within each strain, corresponding most likely to genes encoding products necessary for vital functions. Transcripts enriched in blood-fed mosquitoes encode proteins associated with catalytic activities, molecular transport, metabolism of lipids, carbohydrates and amino acids, and functions related to blood digestion and the progression of the gonotropic cycle. Significant qualitative and quantitative differences were found in individual transcripts among strains including differential representation of paralogous gene products. The majority of immunity-associated transcripts decreased in accumulation after a bloodmeal and the results are discussed in relation to the different susceptibility of CTM and Rex-D mosquitoes to DENV2 infection.
PMCID: PMC3276191  PMID: 22384387
Aedes aegypti; strain variation; bloodmeal; RNA-seq
11.  Transgene-mediated suppression of dengue viruses in the salivary glands of the yellow fever mosquito, Aedes aegypti 
Insect molecular biology  2010;19(6):753-763.
Controlled sex-, stage- and tissue-specific expression of anti-pathogen effector molecules is important for genetic engineering strategies to control mosquito-borne diseases. Adult female salivary glands are involved in pathogen transmission to human hosts and are target sites for expression of anti-pathogen effector molecules. The Aedes aegypti 30K a and 30K b genes are expressed exclusively in adult female salivary glands and are transcribed divergently from start sites separated by 263 nucleotides. The intergenic, 5’- and 3’-end untranslated regions of both genes are sufficient to express simultaneously two different transgene products in the distal-lateral lobes of the female salivary glands. An anti-dengue effector gene, Mnp, driven by the 30K b promoter, expresses an inverted-repeat RNA with sequences derived from the premembrane protein-encoding region of the dengue virus serotype 2 genome and reduces significantly the prevalence and mean intensities of viral infection in mosquito salivary glands and saliva.
PMCID: PMC2976824  PMID: 20738425
Dengue; mosquito; salivary glands; promoter; transgenesis; Aedes aegypti
12.  Genome-Wide Transcriptional Analysis of Genes Associated with Acute Desiccation Stress in Anopheles gambiae 
PLoS ONE  2011;6(10):e26011.
Malaria transmission in sub-Saharan Africa varies seasonally in intensity. Outbreaks of malaria occur after the beginning of the rainy season, whereas, during the dry season, reports of the disease are less frequent. Anopheles gambiae mosquitoes, the main malaria vector, are observed all year long but their densities are low during the dry season that generally lasts several months. Aestivation, seasonal migration, and local adaptation have been suggested as mechanisms that enable mosquito populations to persist through the dry season. Studies of chromosomal inversions have shown that inversions 2La, 2Rb, 2Rc, 2Rd, and 2Ru are associated with various physiological changes that confer aridity resistance. However, little is known about how phenotypic plasticity responds to seasonally dry conditions. This study examined the effects of desiccation stress on transcriptional regulation in An. gambiae. We exposed female An. gambiae G3 mosquitoes to acute desiccation and conducted a genome-wide analysis of their transcriptomes using the Affymetrix Plasmodium/Anopheles Genome Array. The transcription of 248 genes (1.7% of all transcripts) was significantly affected in all experimental conditions, including 96 with increased expression and 152 with decreased expression. In general, the data indicate a reduction in the metabolic rate of mosquitoes exposed to desiccation. Transcripts accumulated at higher levels during desiccation are associated with oxygen radical detoxification, DNA repair and stress responses. The proportion of transcripts within 2La and 2Rs (2Rb, 2Rc, 2Rd, and 2Ru) (67/248, or 27%) is similar to the percentage of transcripts located within these inversions (31%). These data may be useful in efforts to elucidate the role of chromosomal inversions in aridity tolerance. The scope of application of the anopheline genome demonstrates that examining transcriptional activity in relation to genotypic adaptations greatly expands the number of candidate regions involved in the desiccation response in this important malaria vector.
PMCID: PMC3186805  PMID: 21991392
13.  Proteomics reveals novel components of the Anopheles gambiae eggshell 
Journal of insect physiology  2010;56(10):1414-1419.
While genome and transcriptome sequencing has revealed a large number and diversity of Anopheles gambiae predicted proteins, identifying their functions and biosynthetic pathways remains challenging. Applied mass spectrometry based proteomics in conjunction with mosquito genome and transcriptome databases were used to identify 44 proteins as putative components of the eggshell. Among the identified molecules are two vitelline membrane proteins and a group of seven putative chorion proteins. Enzymes with peroxidase, laccase and phenoloxidase activities, likely involved in cross-linking reactions that stabilize the eggshell structure, also were identified. Seven odorant binding proteins were found in association with the mosquito eggshell, although their role has yet to be demonstrated. This analysis fills a considerable gap of knowledge about proteins that build the eggshell of anopheline mosquitoes.
PMCID: PMC2918668  PMID: 20433845
chorion; vitelline membrane; OBPs; phenoloxidase; peroxidase; mosquito
14.  Engineered Resistance to Plasmodium falciparum Development in Transgenic Anopheles stephensi 
PLoS Pathogens  2011;7(4):e1002017.
Transposon-mediated transformation was used to produce Anopheles stephensi that express single-chain antibodies (scFvs) designed to target the human malaria parasite, Plasmodium falciparum. The scFvs, m1C3, m4B7, and m2A10, are derived from mouse monoclonal antibodies that inhibit either ookinete invasion of the midgut or sporozoite invasion of salivary glands. The scFvs that target the parasite surface, m4B7 and m2A10, were fused to an Anopheles gambiae antimicrobial peptide, Cecropin A. Previously-characterized Anopheles cis-acting DNA regulatory elements were included in the transgenes to coordinate scFv production with parasite development. Gene amplification and immunoblot analyses showed promoter-specific increases in transgene expression in blood-fed females. Transgenic mosquito lines expressing each of the scFv genes had significantly lower infection levels than controls when challenged with P. falciparum.
Author Summary
Malaria eradication will require vector-control strategies that are both self-sustaining and not affected by migration of infected humans and mosquitoes. Replacement of wild malaria-susceptible mosquito populations with transgenic strains refractory to parasite development could interrupt the cycle of disease transmission and support eradication efforts. Production of P. falciparum-resistant mosquitoes is a necessary first step towards investigating the population replacement strategy. Here we show that An. stephensi engineered to produce P. falciparum-targeting effector molecules are resistant to this important human malaria parasite. Two of the three effector molecules represent a novel combination of components derived from the immune systems of mosquitoes and mice. An important feature of these molecules is that they are unlikely to significantly harm the mosquito, as the mosquito component is an Anopheles antimicrobial peptide with activity against Plasmodium, while the other component is based on a murine antibody selected for its ability to bind specifically to a parasite protein. Transgenes with this design coupled with a gene-drive system could be used alongside vaccines and drugs to provide sustainable local elimination of malaria as part of a long-term strategy for eradication.
PMCID: PMC3080844  PMID: 21533066
15.  Comparative Fitness Assessment of Anopheles stephensi Transgenic Lines Receptive to Site-Specific Integration 
Insect molecular biology  2010;19(2):263-269.
Genetically-modified mosquitoes that are unable to transmit pathogens offer opportunities for controlling vector-borne diseases such as malaria and dengue. Site-specific gene recombination technologies are advantageous in the development of these insects because anti-pathogen effector genes can be inserted at integration sites in the genome that cause the least alteration in mosquito fitness. Here we describe Anopheles stephensi transgenic lines containing φC31 attP “docking” sites linked to a fluorescent marker gene. Chromosomal insertion sites were determined and life-table parameters were assessed for transgenic mosquitoes of each line. No significant differences in fitness between the transgenic and non-transgenic mosquitoes were detected in this study. These transgenic lines are suitable for future site-specific integrations of anti-parasite transgenes into the attP sites.
PMCID: PMC2862888  PMID: 20113372
Life-table analyses; site-specific recombination; hybridizations in situ
16.  RNA-seq analyses of blood-induced changes in gene expression in the mosquito vector species, Aedes aegypti 
BMC Genomics  2011;12:82.
Hematophagy is a common trait of insect vectors of disease. Extensive genome-wide transcriptional changes occur in mosquitoes after blood meals, and these are related to digestive and reproductive processes, among others. Studies of these changes are expected to reveal molecular targets for novel vector control and pathogen transmission-blocking strategies. The mosquito Aedes aegypti (Diptera, Culicidae), a vector of Dengue viruses, Yellow Fever Virus (YFV) and Chikungunya virus (CV), is the subject of this study to look at genome-wide changes in gene expression following a blood meal.
Transcriptional changes that follow a blood meal in Ae. aegypti females were explored using RNA-seq technology. Over 30% of more than 18,000 investigated transcripts accumulate differentially in mosquitoes at five hours after a blood meal when compared to those fed only on sugar. Forty transcripts accumulate only in blood-fed mosquitoes. The list of regulated transcripts correlates with an enhancement of digestive activity and a suppression of environmental stimuli perception and innate immunity. The alignment of more than 65 million high-quality short reads to the Ae. aegypti reference genome permitted the refinement of the current annotation of transcript boundaries, as well as the discovery of novel transcripts, exons and splicing variants. Cis-regulatory elements (CRE) and cis-regulatory modules (CRM) enriched significantly at the 5'end flanking sequences of blood meal-regulated genes were identified.
This study provides the first global view of the changes in transcript accumulation elicited by a blood meal in Ae. aegypti females. This information permitted the identification of classes of potentially co-regulated genes and a description of biochemical and physiological events that occur immediately after blood feeding. The data presented here serve as a basis for novel vector control and pathogen transmission-blocking strategies including those in which the vectors are modified genetically to express anti-pathogen effector molecules.
PMCID: PMC3042412  PMID: 21276245
17.  Spatial mapping of gene expression in the salivary glands of the dengue vector mosquito, aedes aegypti 
Aedes aegypti mosquitoes are the main vectors of dengue viruses to humans. Understanding their biology and interactions with the pathogen are prerequisites for development of dengue transmission control strategies. Mosquito salivary glands are organs involved directly in pathogen transmission to vertebrate hosts. Information on the spatial distribution of gene expression in these organs is expected to assist in the development of novel disease control strategies, including those that entail the release of transgenic mosquitoes with impaired vector competence.
We report here the hybridization in situ patterns of 30 transcripts expressed in the salivary glands of adult Ae. aegypti females. Distinct spatial accumulation patterns were identified. The products of twelve genes are localized exclusively in the proximal-lateral lobes. Among these, three accumulate preferentially in the most anterior portion of the proximal-lateral lobe. This pattern revealed a salivary gland cell type previously undescribed in Ae. aegypti, which was validated by transmission electron microscopy. Five distinct gene products accumulate in the distal-lateral lobes and another five localize in the medial lobe. Seven transcripts are found in the distal-lateral and medial lobes. The transcriptional product of one gene accumulates in proximal- and distal-lateral lobes. Seven genes analyzed by quantitative PCR are expressed constitutively. The most abundant salivary gland transcripts are those localized within the proximal-lateral lobes, while previous work has shown that the distal-lateral lobes are the most active in protein synthesis. This incongruity suggests a role for translational regulation in mosquito saliva production.
Transgenic mosquitoes with reduced vector competence have been proposed as tools for the control of dengue virus transmission. Expression of anti-dengue effector molecules in the distal-lateral lobes of Ae. aegypti salivary glands has been shown to reduce prevalence and mean intensities of viral infection. We anticipate greater efficiency of viral suppression if effector genes are expressed in all lobes of the salivary glands. Based on our data, a minimum of two promoters is necessary to drive the expression of one or more anti-dengue genes in all cells of the female salivary glands.
PMCID: PMC3043528  PMID: 21205315
18.  The Aquaporin Gene Family of the Yellow Fever Mosquito, Aedes aegypti 
PLoS ONE  2010;5(12):e15578.
The mosquito, Aedes aegypti, is the principal vector of the Dengue and yellow fever viruses. During feeding, an adult female can take up more than its own body weight in vertebrate blood. After a blood meal females excrete large amounts of urine through their excretion system, the Malpighian tubules (MT). Diuresis starts within seconds after the mosquito starts feeding. Aquaporins (AQPs) are a family of membrane transporters that regulate the flow of water, glycerol and other small molecules across cellular membranes in both prokaryotic and eukaryotic cells. Our aim was to identify aquaporins that function as water channels, mediating transcellular water transport in MTs of adult female Ae. aegypti.
Methodology/Principal Findings
Using a bioinformatics approach we screened genome databases and identified six putative AQPs in the genome of Ae. aegypti. Phylogenetic analysis showed that five of the six Ae. aegypti AQPs have high similarity to classical water-transporting AQPs of vertebrates. Using microarray, reverse transcription and real time PCR analysis we found that all six AQPs are expressed in distinct patterns in mosquito tissues/body parts. AaAQP1, 4, and 5 are strongly expressed in the adult female MT. RNAi-mediated knockdown of the MT-expressed mosquito AQPs resulted in significantly reduced diuresis.
Our results support the notion that AQP1, 4, and 5 function as water transporters in the MTs of adult female Ae. aegypti mosquitoes. Our results demonstrate the importance of these AQPs for mosquito diuresis after blood ingestion and highlight their potential as targets for the development of novel vector control strategies.
PMCID: PMC3014591  PMID: 21249121
19.  Genome-Wide Patterns of Gene Expression during Aging in the African Malaria Vector Anopheles gambiae 
PLoS ONE  2010;5(10):e13359.
The primary means of reducing malaria transmission is through reduction in longevity in days of the adult female stage of the Anopheles vector. However, assessing chronological age is limited to crude physiologic methods which categorize the females binomially as either very young (nulliparous) or not very young (parous). Yet the epidemiologically relevant reduction in life span falls within the latter category. Age-grading methods that delineate chronological age, using accurate molecular surrogates based upon gene expression profiles, will allow quantification of the longevity-reducing effects of vector control tools aimed at the adult, female mosquito. In this study, microarray analyses of gene expression profiles in the African malaria vector Anopheles gambiae were conducted during natural senescence of females in laboratory conditions. Results showed that detoxification-related and stress-responsive genes were up-regulated as mosquitoes aged. A total of 276 transcripts had age-dependent expression, independently of blood feeding and egg laying events. Expression of 112 (40.6%) of these transcripts increased or decreased monotonically with increasing chronologic age. Seven candidate genes for practical age assessment were tested by quantitative gene amplification in the An. gambiae G3 strain in a laboratory experiment and the Mbita strain in field enclosures set up in western Kenya under conditions closely resembling natural ones. Results were similar between experiments, indicating that senescence is marked by changes in gene expression and that chronological age can be gauged accurately and repeatedly with this method. These results indicate that the method may be suitable for accurate gauging of the age in days of field-caught, female An. gambiae.
PMCID: PMC2954169  PMID: 20967211
20.  aeGEPUCI: a database of gene expression in the dengue vector mosquito, Aedes aegypti 
BMC Research Notes  2010;3:248.
Aedes aegypti is the principal vector of dengue and yellow fever viruses. The availability of the sequenced and annotated genome enables genome-wide analyses of gene expression in this mosquito. The large amount of data resulting from these analyses requires efficient cataloguing before it becomes useful as the basis for new insights into gene expression patterns and studies of the underlying molecular mechanisms for generating these patterns.
We provide a publicly-accessible database and data-mining tool, aeGEPUCI, that integrates 1) microarray analyses of sex- and stage-specific gene expression in Ae. aegypti, 2) functional gene annotation, 3) genomic sequence data, and 4) computational sequence analysis tools. The database can be used to identify genes expressed in particular stages and patterns of interest, and to analyze putative cis-regulatory elements (CREs) that may play a role in coordinating these patterns. The database is accessible from the address
The combination of gene expression, function and sequence data coupled with integrated sequence analysis tools allows for identification of expression patterns and streamlines the development of CRE predictions and experiments to assess how patterns of expression are coordinated at the molecular level.
PMCID: PMC2958886  PMID: 20920356
21.  Aegyptin, a Novel Mosquito Salivary Gland Protein Specifically Binds to Collagen and Prevents its Interaction with Glycoprotein VI, Integrin α2β1 and von Willebrand Factor 
The Journal of biological chemistry  2007;282(37):26928-26938.
Blood-sucking arthropods have evolved a number of inhibitors of platelet aggregation and blood coagulation. In this report we have molecularly and functionally characterized aegyptin, a member of the family of 30-kDa salivary allergens from Aedes aegypti, whose function remained elusive thus far. Aegyptin displays a unique sequence characterized by glycine, glutamic acid, and aspartic acid repeats and was shown to specifically block collagen-induced human platelet aggregation and granule secretion. Plasmon resonance experiments demonstrate that aegyptin binds to collagen types I-V (Kd ≈ 1 nM) but does not interact with vitronectin, fibronectin, laminin, fibrinogen, and von Willebrand factor (vWf). In addition, aegyptin attenuates platelet adhesion to soluble or fibrillar collagen. Furthermore, aegyptin inhibits vWf interaction with collagen type III under static conditions and completely blocks platelet adhesion to collagen under flow conditions at high shear rates. Notably, aegyptin completely prevents collagen but not convulxin binding to recombinant glycoprotein VI. These findings indicate that aegyptin recognizes specific binding sites for glycoprotein VI, integrin α2β1, and vWf, thereby preventing collagen interaction with its three major ligands. Aegyptin is a novel tool to study collagen-platelet interaction and a prototype for development of molecules with antithrombotic properties.
PMCID: PMC2913440  PMID: 17650501
22.  Complete mtDNA genomes of Anopheles darlingi and an approach to anopheline divergence time 
Malaria Journal  2010;9:127.
The complete sequences of the mitochondrial genomes (mtDNA) of members of the northern and southern genotypes of Anopheles (Nyssorhynchus) darlingi were used for comparative studies to estimate the time to the most recent common ancestor for modern anophelines, to evaluate differentiation within this taxon, and to seek evidence of incipient speciation.
The mtDNAs were sequenced from mosquitoes from Belize and Brazil and comparative analyses of structure and base composition, among others, were performed. A maximum likelihood approach linked with phylogenetic information was employed to detect evidence of selection and a Bayesian approach was used to date the split between the subgenus Nyssorhynchus and other Anopheles subgenera.
The comparison of mtDNA sequences within the Anopheles darlingi taxon does not provide sufficient resolution to establish different units of speciation within the species. In addition, no evidence of positive selection in any protein-coding gene of the mtDNA was detected, and purifying selection likely is the basis for this lack of diversity. Bayesian analysis supports the conclusion that the most recent ancestor of Nyssorhynchus and Anopheles+Cellia was extant ~94 million years ago.
Analyses of mtDNA genomes of Anopheles darlingi do not provide support for speciation in the taxon. The dates estimated for divergence among the anopheline groups tested is in agreement with the geological split of western Gondwana (95 mya), and provides additional support for explaining the absence of Cellia in the New World, and Nyssorhynchus in the Afro-Eurasian continents.
PMCID: PMC2877063  PMID: 20470395
23.  The Anopheles gambiae Odorant Binding Protein 1 (AgamOBP1) Mediates Indole Recognition in the Antennae of Female Mosquitoes 
PLoS ONE  2010;5(3):e9471.
Haematophagous insects are frequently carriers of parasitic diseases, including malaria. The mosquito Anopheles gambiae is the major vector of malaria in sub-Saharan Africa and is thus responsible for thousands of deaths daily. Although the role of olfaction in A. gambiae host detection has been demonstrated, little is known about the combinations of ligands and odorant binding proteins (OBPs) that can produce specific odor-related responses in vivo. We identified a ligand, indole, for an A. gambiae odorant binding protein, AgamOBP1, modeled the interaction in silico and confirmed the interaction using biochemical assays. RNAi-mediated gene silencing coupled with electrophysiological analyses confirmed that AgamOBP1 binds indole in A. gambiae and that the antennal receptor cells do not respond to indole in the absence of AgamOBP1. This case represents the first documented instance of a specific A. gambiae OBP–ligand pairing combination, demonstrates the significance of OBPs in odor recognition, and can be expanded to the identification of other ligands for OBPs of Anopheles and other medically important insects.
PMCID: PMC2830424  PMID: 20208991
24.  Molecular Genetic Manipulation of Vector Mosquitoes 
Cell host & microbe  2008;4(5):417-423.
Genetic strategies for reducing populations of vector mosquitoes or replacing them with those that are not able to transmit pathogens benefit greatly from molecular tools that allow gene manipulation and transgenesis. Mosquito genome sequences and associated EST (Expressed Sequence Tags) databases enable large-scale investigations to provide new insights into evolutionary, biochemical, genetic, metabolic and physiological pathways. Additionally, comparative genomics reveals the bases for evolutionary mechanisms with particular focus on specific interactions between vectors and pathogens. We discuss how this information may be exploited for the optimization of transgenes that interfere with the propagation and development of pathogens in their mosquito hosts.
PMCID: PMC2656434  PMID: 18996342
25.  The salivary gland transcriptome of the neotropical malaria vector Anopheles darlingi reveals accelerated evolution of genes relevant to hematophagy 
BMC Genomics  2009;10:57.
Mosquito saliva, consisting of a mixture of dozens of proteins affecting vertebrate hemostasis and having sugar digestive and antimicrobial properties, helps both blood and sugar meal feeding. Culicine and anopheline mosquitoes diverged ~150 MYA, and within the anophelines, the New World species diverged from those of the Old World ~95 MYA. While the sialotranscriptome (from the Greek sialo, saliva) of several species of the Cellia subgenus of Anopheles has been described thoroughly, no detailed analysis of any New World anopheline has been done to date. Here we present and analyze data from a comprehensive salivary gland (SG) transcriptome of the neotropical malaria vector Anopheles darlingi (subgenus Nyssorhynchus).
A total of 2,371 clones randomly selected from an adult female An. darlingi SG cDNA library were sequenced and used to assemble a database that yielded 966 clusters of related sequences, 739 of which were singletons. Primer extension experiments were performed in selected clones to further extend sequence coverage, allowing for the identification of 183 protein sequences, 114 of which code for putative secreted proteins.
Comparative analysis of sialotranscriptomes of An. darlingi and An. gambiae reveals significant divergence of salivary proteins. On average, salivary proteins are only 53% identical, while housekeeping proteins are 86% identical between the two species. Furthermore, An. darlingi proteins were found that match culicine but not anopheline proteins, indicating loss or rapid evolution of these proteins in the old world Cellia subgenus. On the other hand, several well represented salivary protein families in old world anophelines are not expressed in An. darlingi.
PMCID: PMC2644710  PMID: 19178717

Results 1-25 (27)