PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (33)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Evaluation of the Murine Immune Response to Xenopsylla cheopis Flea Saliva and Its Effect on Transmission of Yersinia pestis 
Background/Aims
Arthropod-borne pathogens are transmitted into a unique intradermal microenvironment that includes the saliva of their vectors. Immunomodulatory factors in the saliva can enhance infectivity; however, in some cases the immune response that develops to saliva from prior uninfected bites can inhibit infectivity. Most rodent reservoirs of Yersinia pestis experience fleabites regularly, but the effect this has on the dynamics of flea-borne transmission of plague has never been investigated. We examined the innate and acquired immune response of mice to bites of Xenopsylla cheopis and its effects on Y. pestis transmission and disease progression in both naïve mice and mice chronically exposed to flea bites.
Methods/Principal Findings
The immune response of C57BL/6 mice to uninfected flea bites was characterized by flow cytometry, histology, and antibody detection methods. In naïve mice, flea bites induced mild inflammation with limited recruitment of neutrophils and macrophages to the bite site. Infectivity and host response in naïve mice exposed to flea bites followed immediately by intradermal injection of Y. pestis did not differ from that of mice infected with Y. pestis without prior flea feeding. With prolonged exposure, an IgG1 antibody response primarily directed to the predominant component of flea saliva, a family of 36–45 kDa phosphatase-like proteins, occurred in both laboratory mice and wild rats naturally exposed to X. cheopis, but a hypersensitivity response never developed. The incidence and progression of terminal plague following challenge by infective blocked fleas were equivalent in naïve mice and mice sensitized to flea saliva by repeated exposure to flea bites over a 10-week period.
Conclusions
Unlike what is observed with many other blood-feeding arthropods, the murine immune response to X. cheopis saliva is mild and continued exposure to flea bites leads more to tolerance than to hypersensitivity. The immune response to flea saliva had no detectable effect on Y. pestis transmission or plague pathogenesis in mice.
Author Summary
The saliva of blood-feeding arthropods contains a variety of components that prevent blood clotting and interfere with the immune system of the vertebrate host. These properties have been shown to enhance or inhibit the transmission of different pathogens transmitted by arthropods. Yersinia pestis, the bacterial agent of plague, is maintained in nature by flea to rodent transmission cycles. Most rodents live in close association with fleas and are constantly being bitten by them, but the influence this has on plague transmission is unknown - previous studies used laboratory animals which have never experienced a flea bite. We found that flea bites caused a mild inflammatory response in mice, and eventually an antibody response to components of flea saliva, but did not significantly affect pathogenesis. The transmission of Y. pestis by infected fleas and the incidence rate of bubonic plague mortality were the same in mice that had been exposed to frequent uninfected flea bites and mice with no prior exposure to fleas. Therefore, in contrast to what has been shown for many other arthropod-borne disease systems, vector saliva did not enhance or inhibit Y. pestis infection in mice, regardless of the immune status of the host to flea saliva.
doi:10.1371/journal.pntd.0003196
PMCID: PMC4177749  PMID: 25255317
2.  Induction of the Yersinia pestis PhoP-PhoQ Regulatory System in the Flea and Its Role in Producing a Transmissible Infection 
Journal of Bacteriology  2013;195(9):1920-1930.
Transmission of Yersinia pestis is greatly enhanced after it forms a bacterial biofilm in the foregut of the flea vector that interferes with normal blood feeding. Here we report that the ability to produce a normal foregut-blocking infection depends on induction of the Y. pestis PhoP-PhoQ two-component regulatory system in the flea. Y. pestis phoP-negative mutants achieved normal infection rates and bacterial loads in the flea midgut but produced a less cohesive biofilm both in vitro and in the flea and had a greatly reduced ability to localize to and block the flea foregut. Thus, not only is the PhoP-PhoQ system induced in the flea gut environment, but also this induction is required to produce a normal transmissible infection. The altered biofilm phenotype in the flea was not due to lack of PhoPQ-dependent or PmrAB-dependent addition of aminoarabinose to the Y. pestis lipid A, because an aminoarabinose-deficient mutant that is highly sensitive to cationic antimicrobial peptides had a normal phenotype in the flea digestive tract. In addition to enhancing transmissibility, induction of the PhoP-PhoQ system in the arthropod vector prior to transmission may preadapt Y. pestis to resist the initial encounter with the mammalian innate immune response.
doi:10.1128/JB.02000-12
PMCID: PMC3624595  PMID: 23435973
3.  Role of Yersinia pestis Toxin Complex Family Proteins in Resistance to Phagocytosis by Polymorphonuclear Leukocytes 
Infection and Immunity  2013;81(11):4041-4052.
Yersinia pestis carries homologues of the toxin complex (Tc) family proteins, which were first identified in other Gram-negative bacteria as having potent insecticidal activity. The Y. pestis Tc proteins are neither toxic to fleas nor essential for survival of the bacterium in the flea, even though tc gene expression is highly upregulated and much more of the Tc proteins YitA and YipA are produced in the flea than when Y. pestis is grown in vitro. We show that Tc+ and Tc− Y. pestis strains are transmitted equivalently from coinfected fleas, further demonstrating that the Tc proteins have no discernible role, either positive or negative, in transmission by the flea vector. Tc proteins did, however, confer Y. pestis with increased resistance to killing by polymorphonuclear leukocytes (PMNs). Resistance to killing was not the result of decreased PMN viability or increased intracellular survival but instead correlated with a Tc protein-dependent resistance to phagocytosis that was independent of the type III secretion system (T3SS). Correspondingly, we did not detect T3SS-dependent secretion of the native Tc proteins YitA and YipA or the translocation of YitA– or YipA–β-lactamase fusion proteins into CHO-K1 (CHO) cells or human PMNs. Thus, although highly produced by Y. pestis within the flea and related to insecticidal toxins, the Tc proteins do not affect interaction with the flea or transmission. Rather, the Y. pestis Tc proteins inhibit phagocytosis by mouse PMNs, independent of the T3SS, and may be important for subverting the mammalian innate immune response immediately following transmission from the flea.
doi:10.1128/IAI.00648-13
PMCID: PMC3811843  PMID: 23959716
4.  Na+/H+ Antiport Is Essential for Yersinia pestis Virulence 
Infection and Immunity  2013;81(9):3163-3172.
Na+/H+ antiporters are ubiquitous membrane proteins that play a central role in the ion homeostasis of cells. In this study, we examined the possible role of Na+/H+ antiport in Yersinia pestis virulence and found that Y. pestis strains lacking the major Na+/H+ antiporters, NhaA and NhaB, are completely attenuated in an in vivo model of plague. The Y. pestis derivative strain lacking the nhaA and nhaB genes showed markedly decreased survival in blood and blood serum ex vivo. Complementation of either nhaA or nhaB in trans restored the survival of the Y. pestis nhaA nhaB double deletion mutant in blood. The nhaA nhaB double deletion mutant also showed inhibited growth in an artificial serum medium, Opti-MEM, and a rich LB-based medium with Na+ levels and pH values similar to those for blood. Taken together, these data strongly suggest that intact Na+/H+ antiport is indispensable for the survival of Y. pestis in the bloodstreams of infected animals and thus might be regarded as a promising noncanonical drug target for infections caused by Y. pestis and possibly for those caused by other blood-borne bacterial pathogens.
doi:10.1128/IAI.00071-13
PMCID: PMC3754208  PMID: 23774602
5.  Yersinia pestis Subverts the Dermal Neutrophil Response in a Mouse Model of Bubonic Plague 
mBio  2013;4(5):e00170-13.
ABSTRACT
The majority of human Yersinia pestis infections result from introduction of bacteria into the skin by the bite of an infected flea. Once in the dermis, Y. pestis can evade the host’s innate immune response and subsequently disseminate to the draining lymph node (dLN). There, the pathogen replicates to large numbers, causing the pathognomonic bubo of bubonic plague. In this study, several cytometric and microscopic techniques were used to characterize the early host response to intradermal (i.d.) Y. pestis infection. Mice were infected i.d. with fully virulent or attenuated strains of dsRed-expressing Y. pestis, and tissues were analyzed by flow cytometry. By 4 h postinfection, there were large numbers of neutrophils in the infected dermis and the majority of cell-associated bacteria were associated with neutrophils. We observed a significant effect of the virulence plasmid (pCD1) on bacterial survival and neutrophil activation in the dermis. Intravital microscopy of i.d. Y. pestis infection revealed dynamic interactions between recruited neutrophils and bacteria. In contrast, very few bacteria interacted with dendritic cells (DCs), indicating that this cell type may not play a major role early in Y. pestis infection. Experiments using neutrophil depletion and a CCR7 knockout mouse suggest that dissemination of Y. pestis from the dermis to the dLN is not dependent on neutrophils or DCs. Taken together, the results of this study show a very rapid, robust neutrophil response to Y. pestis in the dermis and that the virulence plasmid pCD1 is important for the evasion of this response.
IMPORTANCE
Yersinia pestis remains a public health concern today because of sporadic plague outbreaks that occur throughout the world and the potential for its illegitimate use as a bioterrorism weapon. Since bubonic plague pathogenesis is initiated by the introduction of Y. pestis into the skin, we sought to characterize the response of the host’s innate immune cells to bacteria early after intradermal infection. We found that neutrophils, innate immune cells that engulf and destroy microbes, are rapidly recruited to the injection site, irrespective of strain virulence, indicating that Y. pestis is unable to subvert neutrophil recruitment to the site of infection. However, we saw a decreased activation of neutrophils that were associated with Y. pestis strains harboring the pCD1 plasmid, which is essential for virulence. These findings indicate a role for pCD1-encoded factors in suppressing the activation/stimulation of these cells in vivo.
doi:10.1128/mBio.00170-13
PMCID: PMC3760243  PMID: 23982068
6.  Yersinia-flea interactions and the evolution of the arthropod-borne transmission route of plague 
Current Opinion in Microbiology  2012;15(3):239-246.
Yersinia pestis, the causative agent of plague, is unique among the enteric group of Gram-negative bacteria in relying on a blood-feeding insect for transmission. The Yersinia-flea interactions that enable plague transmission cycles have had profound historical consequences as manifested by human plague pandemics. The arthropod-borne transmission route was a radical ecologic change from the food- and water-borne transmission route of Yersinia pseudotuberculosis, from which Y. pestis diverged only within the last 20,000 years. Thus, the interactions of Y. pestis with its flea vector that lead to colonization and successful transmission are the result of a recent evolutionary adaptation that required relatively few genetic changes. These changes from the Y. pseudotuberculosis progenitor included loss of insecticidal activity, increased resistance to antibacterial factors in the flea midgut, and extending Yersinia biofilm-forming ability to the flea host environment.
doi:10.1016/j.mib.2012.02.003
PMCID: PMC3386424  PMID: 22406208
7.  Kinetics of Innate Immune Response to Yersinia pestis after Intradermal Infection in a Mouse Model 
Infection and Immunity  2012;80(11):4034-4045.
A hallmark of Yersinia pestis infection is a delayed inflammatory response early in infection. In this study, we use an intradermal model of infection to study early innate immune cell recruitment. Mice were injected intradermally in the ear with wild-type (WT) or attenuated Y. pestis lacking the pYV virulence plasmid (pYV−). The inflammatory responses in ear and draining lymph node samples were evaluated by flow cytometry and immunohistochemistry. As measured by flow cytometry, total neutrophil and macrophage recruitment to the ear in WT-infected mice did not differ from phosphate-buffered saline (PBS) controls or mice infected with pYV−, except for a transient increase in macrophages at 6 h compared to the PBS control. Limited inflammation was apparent even in animals with high bacterial loads (105 to 106 CFU). In addition, activation of inflammatory cells was significantly reduced in WT-infected mice as measured by CD11b and major histocompatibility complex class II (MHC-II) expression. When mice infected with WT were injected 12 h later at the same intradermal site with purified LPS, Y. pestis did not prevent recruitment of neutrophils. However, significant reduction in neutrophil activation remained compared to that of PBS and pYV− controls. Immunohistochemistry revealed qualitative differences in neutrophil recruitment to the skin and draining lymph node, with WT-infected mice producing a diffuse inflammatory response. In contrast, focal sites of neutrophil recruitment were sustained through 48 h postinfection in pYV−-infected mice. Thus, an important feature of Y. pestis infection is reduced activation and organization of inflammatory cells that is at least partially dependent on the pYV virulence plasmid.
doi:10.1128/IAI.00606-12
PMCID: PMC3486050  PMID: 22966041
8.  Role of a New Intimin/Invasin-Like Protein in Yersinia pestis Virulence 
Infection and Immunity  2012;80(10):3559-3569.
A comprehensive TnphoA mutant library was constructed in Yersinia pestis KIM6 to identify surface proteins involved in Y. pestis host cell invasion and bacterial virulence. Insertion site analysis of the library repeatedly identified a 9,042-bp chromosomal gene (YPO3944), intimin/invasin-like protein (Ilp), similar to the Gram-negative intimin/invasin family of surface proteins. Deletion mutants of ilp were generated in Y. pestis strains KIM5(pCD1+) Pgm− (pigmentation negative)/, KIM6(pCD1−) Pgm+, and CO92. Comparative analyses were done with the deletions and the parental wild type for bacterial adhesion to and internalization by HEp-2 cells in vitro, infectivity and maintenance in the flea vector, and lethality in murine models of systemic and pneumonic plague. Deletion of ilp had no effect on bacterial blockage of flea blood feeding or colonization. The Y. pestis KIM5 Δilp strain had reduced adhesion to and internalization by HEp-2 cells compared to the parental wild-type strain (P < 0.05). Following intravenous challenge with Y. pestis KIM5 Δilp, mice had a delayed time to death and reduced dissemination to the lungs, livers, and kidneys as monitored by in vivo imaging using a lux reporter system (in vivo imaging system [IVIS]) and bacterial counts. Intranasal challenge in mice with Y. pestis CO92 Δilp had a 55-fold increase in the 50% lethal dose ([LD50] 1.64 × 104 CFU) compared to the parental wild-type strain LD50 (2.98 × 102 CFU). These findings identified Ilp as a novel virulence factor of Y. pestis.
doi:10.1128/IAI.00294-12
PMCID: PMC3457552  PMID: 22851752
9.  Specific targeting and killing of Gram-negative pathogens with an engineered phage lytic enzyme 
Virulence  2013;4(1):90-91.
doi:10.4161/viru.22683
PMCID: PMC3544754  PMID: 23314572
pesticin; FyuA; plague; phage
10.  Yersinia pestis insecticidal-like toxin complex (Tc) family proteins: characterization of expression, subcellular localization, and potential role in infection of the flea vector 
BMC Microbiology  2012;12:296.
Background
Toxin complex (Tc) family proteins were first identified as insecticidal toxins in Photorhabdus luminescens and have since been found in a wide range of bacteria. The genome of Yersinia pestis, the causative agent of bubonic plague, contains a locus that encodes the Tc protein homologues YitA, YitB, YitC, and YipA and YipB. Previous microarray data indicate that the Tc genes are highly upregulated by Y. pestis while in the flea vector; however, their role in the infection of fleas and pathogenesis in the mammalian host is unclear.
Results
We show that the Tc proteins YitA and YipA are highly produced by Y. pestis while in the flea but not during growth in brain heart infusion (BHI) broth at the same temperature. Over-production of the LysR-type regulator YitR from an exogenous plasmid increased YitA and YipA synthesis in broth culture. The increase in production of YitA and YipA correlated with the yitR copy number and was temperature-dependent. Although highly synthesized in fleas, deletion of the Tc proteins did not alter survival of Y. pestis in the flea or prevent blockage of the proventriculus. Furthermore, YipA was found to undergo post-translational processing and YipA and YitA are localized to the outer membrane of Y. pestis. YitA was also detected by immunofluorescence microscopy on the surface of Y. pestis. Both YitA and YipA are produced maximally at low temperature but persist for several hours after transfer to 37°C.
Conclusions
Y. pestis Tc proteins are highly expressed in the flea but are not essential for Y. pestis to stably infect or produce a transmissible infection in the flea. However, YitA and YipA localize to the outer membrane and YitA is exposed on the surface, indicating that at least YitA is present on the surface when Y. pestis is transmitted into the mammalian host from the flea.
doi:10.1186/1471-2180-12-296
PMCID: PMC3543167  PMID: 23249165
Yersinia pestis; Toxin complex proteins; YitA; YipA; YitR; Xenopsylla cheopis
11.  Structural insights into Ail-mediated adhesion in Yersinia pestis 
Structure (London, England : 1993)  2011;19(11):1672-1682.
SUMMARY
Ail is an outer membrane protein from Yersinia pestis that is highly expressed in a rodent model of bubonic plague, making it a good candidate for vaccine development. Ail is important for attaching to host cells and evading host immune responses, facilitating rapid progression of a plague infection. Binding to host cells is important for injection of cytotoxic Yersinia outer proteins. To learn more about how Ail mediates adhesion, we solved two high-resolution crystal structures of Ail, with no ligand bound and in complex with a heparin analog called sucrose octasulfate. We identified multiple adhesion targets, including laminin and heparin, and showed that a 40 kDa domain of laminin called LG4-5 specifically binds to Ail. We also evaluated the contribution of laminin to delivery of Yops to HEp-2 cells. This work constitutes a structural description of how a bacterial outer membrane protein uses a multivalent approach to bind host cells.
doi:10.1016/j.str.2011.08.010
PMCID: PMC3217190  PMID: 22078566
ail; plague; Yersinia pestis; adhesion; invasion; extracellular matrix proteins; outer membrane protein; crystal structure
12.  The Yersinia pestis Rcs Phosphorelay Inhibits Biofilm Formation by Repressing Transcription of the Diguanylate Cyclase Gene hmsT 
Journal of Bacteriology  2012;194(8):2020-2026.
Yersinia pestis, which causes bubonic plague, forms biofilms in fleas, its insect vectors, as a means to enhance transmission. Biofilm development is positively regulated by hmsT, encoding a diguanylate cyclase that synthesizes the bacterial second messenger cyclic-di-GMP. Biofilm development is negatively regulated by the Rcs phosphorelay signal transduction system. In this study, we show that Rcs-negative regulation is accomplished by repressing transcription of hmsT.
doi:10.1128/JB.06243-11
PMCID: PMC3318482  PMID: 22328676
13.  Role of the Yersinia pestis Ail Protein in Preventing a Protective Polymorphonuclear Leukocyte Response during Bubonic Plague▿  
Infection and Immunity  2011;79(12):4984-4989.
The ability of Yersinia pestis to forestall the mammalian innate immune response is a fundamental aspect of plague pathogenesis. In this study, we examined the effect of Ail, a 17-kDa outer membrane protein that protects Y. pestis against complement-mediated lysis, on bubonic plague pathogenesis in mice and rats. The Y. pestis ail mutant was attenuated for virulence in both rodent models. The attenuation was greater in rats than in mice, which correlates with the ability of normal rat serum, but not mouse serum, to kill ail-negative Y. pestis in vitro. Intradermal infection with the ail mutant resulted in an atypical, subacute form of bubonic plague associated with extensive recruitment of polymorphonuclear leukocytes (PMN or neutrophils) to the site of infection in the draining lymph node and the formation of large purulent abscesses that contained the bacteria. Systemic spread and mortality were greatly attenuated, however, and a productive adaptive immune response was generated after high-dose challenge, as evidenced by high serum antibody levels against Y. pestis F1 antigen. The Y. pestis Ail protein is an important bubonic plague virulence factor that inhibits the innate immune response, in particular the recruitment of a protective PMN response to the infected lymph node.
doi:10.1128/IAI.05307-11
PMCID: PMC3232667  PMID: 21969002
14.  Transcriptomic and Innate Immune Responses to Yersinia pestis in the Lymph Node during Bubonic Plague▿ †  
Infection and Immunity  2010;78(12):5086-5098.
A delayed inflammatory response is a prominent feature of infection with Yersinia pestis, the agent of bubonic and pneumonic plague. Using a rat model of bubonic plague, we examined lymph node histopathology, transcriptome, and extracellular cytokine levels to broadly characterize the kinetics and extent of the host response to Y. pestis and how it is influenced by the Yersinia virulence plasmid (pYV). Remarkably, dissemination and multiplication of wild-type Y. pestis during the bubonic stage of disease did not induce any detectable gene expression or cytokine response by host lymph node cells in the developing bubo. Only after systemic spread had led to terminal septicemic plague was a transcriptomic response detected, which included upregulation of several cytokine, chemokine, and other immune response genes. Although an initial intracellular phase of Y. pestis infection has been postulated, a Th1-type cytokine response associated with classical activation of macrophages was not observed during the bubonic stage of disease. However, elevated levels of interleukin-17 (IL-17) were present in infected lymph nodes. In the absence of pYV, sustained recruitment to the lymph node of polymorphonuclear leukocytes (PMN, or neutrophils), the major IL-17 effector cells, correlated with clearance of infection. Thus, the ability to counteract a PMN response in the lymph node appears to be a major in vivo function of the Y. pestis virulence plasmid.
doi:10.1128/IAI.00256-10
PMCID: PMC2981309  PMID: 20876291
15.  Differential Control of Yersinia pestis Biofilm Formation In Vitro and in the Flea Vector by Two c-di-GMP Diguanylate Cyclases 
PLoS ONE  2011;6(4):e19267.
Yersinia pestis forms a biofilm in the foregut of its flea vector that promotes transmission by flea bite. As in many bacteria, biofilm formation in Y. pestis is controlled by intracellular levels of the bacterial second messenger c-di-GMP. Two Y. pestis diguanylate cyclase (DGC) enzymes, encoded by hmsT and y3730, and one phosphodiesterase (PDE), encoded by hmsP, have been shown to control biofilm production in vitro via their opposing c-di-GMP synthesis and degradation activities, respectively. In this study, we provide further evidence that hmsT, hmsP, and y3730 are the only three genes involved in c-di-GMP metabolism in Y. pestis and evaluated the two DGCs for their comparative roles in biofilm formation in vitro and in the flea vector. As with HmsT, the DGC activity of Y3730 depended on a catalytic GGDEF domain, but the relative contribution of the two enzymes to the biofilm phenotype was influenced strongly by the environmental niche. Deletion of y3730 had a very minor effect on in vitro biofilm formation, but resulted in greatly reduced biofilm formation in the flea. In contrast, the predominant effect of hmsT was on in vitro biofilm formation. DGC activity was also required for the Hms-independent autoaggregation phenotype of Y. pestis, but was not required for virulence in a mouse model of bubonic plague. Our results confirm that only one PDE (HmsP) and two DGCs (HmsT and Y3730) control c-di-GMP levels in Y. pestis, indicate that hmsT and y3730 are regulated post-transcriptionally to differentially control biofilm formation in vitro and in the flea vector, and identify a second c-di-GMP-regulated phenotype in Y. pestis.
doi:10.1371/journal.pone.0019267
PMCID: PMC3084805  PMID: 21559445
16.  Delineation and Analysis of Chromosomal Regions Specifying Yersinia pestis▿ †  
Infection and Immunity  2010;78(9):3930-3941.
Yersinia pestis, the causative agent of plague, has recently diverged from the less virulent enteropathogen Yersinia pseudotuberculosis. Its emergence has been characterized by massive genetic loss and inactivation and limited gene acquisition. The acquired genes include two plasmids, a filamentous phage, and a few chromosomal loci. The aim of this study was to characterize the chromosomal regions acquired by Y. pestis. Following in silico comparative analysis and PCR screening of 98 strains of Y. pseudotuberculosis and Y. pestis, we found that eight chromosomal loci (six regions [R1pe to R6pe] and two coding sequences [CDS1pe and CDS2pe]) specified Y. pestis. Signatures of integration by site specific or homologous recombination were identified for most of them. These acquisitions and the loss of ancestral DNA sequences were concentrated in a chromosomal region opposite to the origin of replication. The specific regions were acquired very early during Y. pestis evolution and were retained during its microevolution, suggesting that they might bring some selective advantages. Only one region (R3pe), predicted to carry a lambdoid prophage, is most likely no longer functional because of mutations. With the exception of R1pe and R2pe, which have the potential to encode a restriction/modification and a sugar transport system, respectively, no functions could be predicted for the other Y. pestis-specific loci. To determine the role of the eight chromosomal loci in the physiology and pathogenicity of the plague bacillus, each of them was individually deleted from the bacterial chromosome. None of the deletants exhibited defects during growth in vitro. Using the Xenopsylla cheopis flea model, all deletants retained the capacity to produce a stable and persistent infection and to block fleas. Similarly, none of the deletants caused any acute flea toxicity. In the mouse model of infection, all deletants were fully virulent upon subcutaneous or aerosol infections. Therefore, our results suggest that acquisition of new chromosomal materials has not been of major importance in the dramatic change of life cycle that has accompanied the emergence of Y. pestis.
doi:10.1128/IAI.00281-10
PMCID: PMC2937459  PMID: 20605981
17.  Role of the Yersinia pestis Yersiniabactin Iron Acquisition System in the Incidence of Flea-Borne Plague 
PLoS ONE  2010;5(12):e14379.
Plague is a flea-borne zoonosis caused by the bacterium Yersinia pestis. Y. pestis mutants lacking the yersiniabactin (Ybt) siderophore-based iron transport system are avirulent when inoculated intradermally but fully virulent when inoculated intravenously in mice. Presumably, Ybt is required to provide sufficient iron at the peripheral injection site, suggesting that Ybt would be an essential virulence factor for flea-borne plague. Here, using a flea-to-mouse transmission model, we show that a Y. pestis strain lacking the Ybt system causes fatal plague at low incidence when transmitted by fleas. Bacteriology and histology analyses revealed that a Ybt-negative strain caused only primary septicemic plague and atypical bubonic plague instead of the typical bubonic form of disease. The results provide new evidence that primary septicemic plague is a distinct clinical entity and suggest that unusual forms of plague may be caused by atypical Y. pestis strains.
doi:10.1371/journal.pone.0014379
PMCID: PMC3003698  PMID: 21179420
18.  Phosphoglucomutase of Yersinia pestis Is Required for Autoaggregation and Polymyxin B Resistance▿  
Infection and Immunity  2009;78(3):1163-1175.
Yersinia pestis, the causative agent of plague, autoaggregates within a few minutes of cessation of shaking when grown at 28°C. To identify the autoaggregation factor of Y. pestis, we performed mariner-based transposon mutagenesis. Autoaggregation-defective mutants from three different pools were identified, each with a transposon insertion at a different position within the gene encoding phosphoglucomutase (pgmA; y1258). Targeted deletion of pgmA in Y. pestis KIM5 also resulted in loss of autoaggregation. Given the previously defined role for phosphoglucomutase in antimicrobial peptide resistance in other organisms, we tested the KIM5 ΔpgmA mutant for antimicrobial peptide sensitivity. The ΔpgmA mutant displayed >1,000-fold increased sensitivity to polymyxin B compared to the parental Y. pestis strain, KIM5. This sensitivity is not due to changes in lipopolysaccharide (LPS) since the LPSs from both Y. pestis KIM5 and the ΔpgmA mutant are identical based on a comparison of their structures by mass spectrometry (MS), tandem MS, and nuclear magnetic resonance analyses. Furthermore, the ability of polymyxin B to neutralize LPS toxicity was identical for LPS purified from both KIM5 and the ΔpgmA mutant. Our results indicate that increased polymyxin B sensitivity of the ΔpgmA mutant is due to changes in surface structures other than LPS. Experiments with mice via the intravenous and intranasal routes did not demonstrate any virulence defect for the ΔpgmA mutant, nor was flea colonization or blockage affected. Our findings suggest that the activity of PgmA results in modification and/or elaboration of a surface component of Y. pestis responsible for autoaggregation and polymyxin B resistance.
doi:10.1128/IAI.00997-09
PMCID: PMC2825912  PMID: 20028810
19.  Effective, Broad Spectrum Control of Virulent Bacterial Infections Using Cationic DNA Liposome Complexes Combined with Bacterial Antigens 
PLoS Pathogens  2010;6(5):e1000921.
Protection against virulent pathogens that cause acute, fatal disease is often hampered by development of microbial resistance to traditional chemotherapeutics. Further, most successful pathogens possess an array of immune evasion strategies to avoid detection and elimination by the host. Development of novel, immunomodulatory prophylaxes that target the host immune system, rather than the invading microbe, could serve as effective alternatives to traditional chemotherapies. Here we describe the development and mechanism of a novel pan-anti-bacterial prophylaxis. Using cationic liposome non-coding DNA complexes (CLDC) mixed with crude F. tularensis membrane protein fractions (MPF), we demonstrate control of virulent F. tularensis infection in vitro and in vivo. CLDC+MPF inhibited bacterial replication in primary human and murine macrophages in vitro. Control of infection in macrophages was mediated by both reactive nitrogen species (RNS) and reactive oxygen species (ROS) in mouse cells, and ROS in human cells. Importantly, mice treated with CLDC+MPF 3 days prior to challenge survived lethal intranasal infection with virulent F. tularensis. Similarly to in vitro observations, in vivo protection was dependent on the presence of RNS and ROS. Lastly, CLDC+MPF was also effective at controlling infections with Yersinia pestis, Burkholderia pseudomallei and Brucella abortus. Thus, CLDC+MPF represents a novel prophylaxis to protect against multiple, highly virulent pathogens.
Author Summary
Conventional treatment of bacterial infections typically includes administration of antibiotics. However, many pathogens have developed spontaneous resistance to commonly used antibiotics. Development of new compounds that stimulate the host immune system to directly kill bacteria by mechanisms different from those utilized by antibiotics may serve as effective alternatives to antibiotic therapy. In this report, we describe a novel compound capable of controlling infections mediated by different, unrelated bacteria via the induction of host derived reactive oxygen and reactive nitrogen species. This compound is comprised of cationic liposome DNA complexes (CLDC) and crude membrane preparations (MPF) obtained from attenuated Francisella tularensis Live Vaccine Strain (LVS). Pretreatment of primary mouse or human cells limited replication of virulent F. tularensis, Burkholderia pseudomallei, Yersinia pestis and Brucella abortus in vitro. CLDC+MPF was also effective for controlling lethal pulmonary infections with virulent F. tularensis. Thus, CLDC+MPF represents a novel antimicrobial for treatment of lethal, acute, bacterial infections.
doi:10.1371/journal.ppat.1000921
PMCID: PMC2877747  PMID: 20523903
20.  Transit through the Flea Vector Induces a Pretransmission Innate Immunity Resistance Phenotype in Yersinia pestis 
PLoS Pathogens  2010;6(2):e1000783.
Yersinia pestis, the agent of plague, is transmitted to mammals by infected fleas. Y. pestis exhibits a distinct life stage in the flea, where it grows in the form of a cohesive biofilm that promotes transmission. After transmission, the temperature shift to 37°C induces many known virulence factors of Y. pestis that confer resistance to innate immunity. These factors are not produced in the low-temperature environment of the flea, however, suggesting that Y. pestis is vulnerable to the initial encounter with innate immune cells at the flea bite site. In this study, we used whole-genome microarrays to compare the Y. pestis in vivo transcriptome in infective fleas to in vitro transcriptomes in temperature-matched biofilm and planktonic cultures, and to the previously characterized in vivo gene expression profile in the rat bubo. In addition to genes involved in metabolic adaptation to the flea gut and biofilm formation, several genes with known or predicted roles in resistance to innate immunity and pathogenicity in the mammal were upregulated in the flea. Y. pestis from infected fleas were more resistant to phagocytosis by macrophages than in vitro-grown bacteria, in part attributable to a cluster of insecticidal-like toxin genes that were highly expressed only in the flea. Our results suggest that transit through the flea vector induces a phenotype that enhances survival and dissemination of Y. pestis after transmission to the mammalian host.
Author Summary
Bubonic plague cycles depend on the ability of Yersinia pestis to alternately infect two very different hosts—a mammal and a flea. Like any arthropod-borne pathogen, Y. pestis must sense host-specific environmental cues and regulate gene expression accordingly to produce a transmissible infection in the flea after being taken up in a blood meal, and again when it exits the flea and enters the mammal. We examined the Y. pestis phenotype at the point of transmission by in vivo gene expression analyses, the first description of the transcriptome of an arthropod-borne bacterium in its vector. In addition to genes associated with physiological adaptation to the flea gut, several Y. pestis virulence factors required for resistance to innate immunity and dissemination in the mammal were induced in the flea, suggesting that the arthropod life stage primes Y. pestis for successful infection of the mammal.
doi:10.1371/journal.ppat.1000783
PMCID: PMC2829055  PMID: 20195507
21.  The Yersinia pestis caf1M1A1 Fimbrial Capsule Operon Promotes Transmission by Flea Bite in a Mouse Model of Bubonic Plague▿  
Infection and Immunity  2008;77(3):1222-1229.
Plague is a zoonosis transmitted by fleas and caused by the gram-negative bacterium Yersinia pestis. During infection, the plasmidic caf1M1A1 operon that encodes the Y. pestis F1 protein capsule is highly expressed, and anti-F1 antibodies are protective. Surprisingly, the capsule is not required for virulence after injection of cultured bacteria, even though it is an antiphagocytic factor and capsule-deficient Y. pestis strains are rarely isolated. We found that a caf-negative Y. pestis mutant was not impaired in either flea colonization or virulence in mice after intradermal inoculation of cultured bacteria. In contrast, absence of the caf operon decreased bubonic plague incidence after a flea bite. Successful development of plague in mice infected by flea bite with the caf-negative mutant required a higher number of infective bites per challenge. In addition, the mutant displayed a highly autoaggregative phenotype in infected liver and spleen. The results suggest that acquisition of the caf locus via horizontal transfer by an ancestral Y. pestis strain increased transmissibility and the potential for epidemic spread. In addition, our data support a model in which atypical caf-negative strains could emerge during climatic conditions that favor a high flea burden. Human infection with such strains would not be diagnosed by the standard clinical tests that detect F1 antibody or antigen, suggesting that more comprehensive surveillance for atypical Y. pestis strains in plague foci may be necessary. The results also highlight the importance of studying Y. pestis pathogenesis in the natural context of arthropod-borne transmission.
doi:10.1128/IAI.00950-08
PMCID: PMC2643634  PMID: 19103769
22.  Loss of a Biofilm-Inhibiting Glycosyl Hydrolase during the Emergence of Yersinia pestis▿  
Journal of Bacteriology  2008;190(24):8163-8170.
Yersinia pestis, the bacterial agent of plague, forms a biofilm in the foregut of its flea vector to produce a transmissible infection. The closely related Yersinia pseudotuberculosis, from which Y. pestis recently evolved, can colonize the flea midgut but does not form a biofilm in the foregut. Y. pestis biofilm in the flea and in vitro is dependent on an extracellular matrix synthesized by products of the hms genes; identical genes are present in Y. pseudotuberculosis. The Yersinia Hms proteins contain functional domains present in Escherichia coli and Staphylococcus proteins known to synthesize a poly-β-1,6-N-acetyl-d-glucosamine biofilm matrix. In this study, we show that the extracellular matrices (ECM) of Y. pestis and staphylococcal biofilms are antigenically related, indicating a similar biochemical structure. We also characterized a glycosyl hydrolase (NghA) of Y. pseudotuberculosis that cleaved β-linked N-acetylglucosamine residues and reduced biofilm formation by staphylococci and Y. pestis in vitro. The Y. pestis nghA ortholog is a pseudogene, and overexpression of functional nghA reduced ECM surface accumulation and inhibited the ability of Y. pestis to produce biofilm in the flea foregut. Mutational loss of this glycosidase activity in Y. pestis may have contributed to the recent evolution of flea-borne transmission.
doi:10.1128/JB.01181-08
PMCID: PMC2593235  PMID: 18931111
23.  Human Dendritic Cell-Specific Intercellular Adhesion Molecule-Grabbing Nonintegrin (CD209) Is a Receptor for Yersinia pestis That Promotes Phagocytosis by Dendritic Cells▿  
Infection and Immunity  2008;76(5):2070-2079.
Yersinia pestis is the etiologic agent of bubonic and pneumonic plagues. It is speculated that Y. pestis hijacks antigen-presenting cells (APCs), such as dendritic cells (DCs) and alveolar macrophages, in order to be delivered to lymph nodes. However, how APCs initially capture the bacterium remains uncharacterized. It is well known that HIV-1 uses human DC-specific intercellular adhesion molecule-grabbing nonintegrin (DC-SIGN) (CD209) receptor, expressed by APCs, to be captured and delivered to target cell, such as CD4+ lymphocytes. Several gram-negative bacteria utilize their core lipopolysaccharides (LPS) as ligands to interact with the human DC-SIGN. Therefore, it is possible that Y. pestis, whose core LPS is naturally exposed, might exploit DC-SIGN to invade APCs. We demonstrate in this study that Y. pestis directly interacts with DC-SIGN and invades both DCs and alveolar macrophages. In contrast, when engineered to cover the core LPS, Y. pestis loses its ability to invade DCs, alveolar macrophages, and DC-SIGN-expressing transfectants. The interaction between Y. pestis and human DCs can be reduced by a combination treatment with anti-CD209 and anti-CD207 antibodies. This study shows that human DC-SIGN is a receptor for Y. pestis that promotes phagocytosis by DCs in vitro.
doi:10.1128/IAI.01246-07
PMCID: PMC2346686  PMID: 18285492
24.  Resistance of Yersinia pestis to Complement-Dependent Killing Is Mediated by the Ail Outer Membrane Protein▿  
Infection and Immunity  2007;76(2):612-622.
Yersinia pestis, the causative agent of plague, must survive in blood in order to cause disease and to be transmitted from host to host by fleas. Members of the Ail/Lom family of outer membrane proteins provide protection from complement-dependent killing for a number of pathogenic bacteria. The Y. pestis KIM genome is predicted to encode four Ail/Lom family proteins. Y. pestis mutants specifically deficient in expression of each of these proteins were constructed using lambda Red-mediated recombination. The Ail outer membrane protein was essential for Y. pestis to resist complement-mediated killing at 26 and 37°C. Ail was expressed at high levels at both 26 and 37°C, but not at 6°C. Expression of Ail in Escherichia coli provided protection from the bactericidal activity of complement. High-level expression of the three other Y. pestis Ail/Lom family proteins (the y1682, y2034, and y2446 proteins) provided no protection against complement-mediated bacterial killing. A Y. pestis ail deletion mutant was rapidly killed by sera obtained from all mammals tested except mouse serum. The role of Ail in infection of mice, Caenorhabditis elegans, and fleas was investigated.
doi:10.1128/IAI.01125-07
PMCID: PMC2223467  PMID: 18025094
25.  An insight into the sialome of the oriental rat flea, Xenopsylla cheopis (Rots) 
BMC Genomics  2007;8:102.
Background
The salivary glands of hematophagous animals contain a complex cocktail that interferes with the host hemostasis and inflammation pathways, thus increasing feeding success. Fleas represent a relatively recent group of insects that evolved hematophagy independently of other insect orders.
Results
Analysis of the salivary transcriptome of the flea Xenopsylla cheopis, the vector of human plague, indicates that gene duplication events have led to a large expansion of a family of acidic phosphatases that are probably inactive, and to the expansion of the FS family of peptides that are unique to fleas. Several other unique polypeptides were also uncovered. Additionally, an apyrase-coding transcript of the CD39 family appears as the candidate for the salivary nucleotide hydrolysing activity in X.cheopis, the first time this family of proteins is found in any arthropod salivary transcriptome.
Conclusion
Analysis of the salivary transcriptome of the flea X. cheopis revealed the unique pathways taken in the evolution of the salivary cocktail of fleas. Gene duplication events appear as an important driving force in the creation of salivary cocktails of blood feeding arthropods, as was observed with ticks and mosquitoes. Only five other flea salivary sequences exist at this time at NCBI, all from the cat flea C. felis. This work accordingly represents the only relatively extensive sialome description of any flea species. Sialotranscriptomes of additional flea genera will reveal the extent that these novel polypeptide families are common throughout the Siphonaptera.
doi:10.1186/1471-2164-8-102
PMCID: PMC1876217  PMID: 17437641

Results 1-25 (33)