PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Fully automated protein complex prediction based on topological similarity and community structure 
Proteome Science  2013;11(Suppl 1):S9.
To understand the function of protein complexes and their association with biological processes, a lot of studies have been done towards analyzing the protein-protein interaction (PPI) networks. However, the advancement in high-throughput technology has resulted in a humongous amount of data for analysis. Moreover, high level of noise, sparseness, and skewness in degree distribution of PPI networks limits the performance of many clustering algorithms and further analysis of their interactions.
In addressing and solving these problems we present a novel random walk based algorithm that converts the incomplete and binary PPI network into a protein-protein topological similarity matrix (PP-TS matrix). We believe that if two proteins share some high-order topological similarities they are likely to be interacting with each other. Using the obtained PP-TS matrix, we constructed and used weighted networks to further study and analyze the interaction among proteins. Specifically, we applied a fully automated community structure finding algorithm (Auto-HQcut) on the obtained weighted network to cluster protein complexes. We then analyzed the protein complexes for significance in biological processes. To help visualize and analyze these protein complexes we also developed an interface that displays the resulting complexes as well as the characteristics associated with each complex.
Applying our approach to a yeast protein-protein interaction network, we found that the predicted protein-protein interaction pairs with high topological similarities have more significant biological relevance than the original protein-protein interactions pairs. When we compared our PPI network reconstruction algorithm with other existing algorithms using gene ontology and gene co-expression, our algorithm produced the highest similarity scores. Also, our predicted protein complexes showed higher accuracy measure compared to the other protein complex predictions.
doi:10.1186/1477-5956-11-S1-S9
PMCID: PMC3908383  PMID: 24564887
PPI network; random walk; protein-protein interaction; protein complex; clustering
2.  Reducing confounding and suppression effects in TCGA data: an integrated analysis of chemotherapy response in ovarian cancer 
BMC Genomics  2012;13(Suppl 6):S13.
Background
Despite initial response in adjuvant chemotherapy, ovarian cancer patients treated with the combination of paclitaxel and carboplatin frequently suffer from recurrence after few cycles of treatment, and the underlying mechanisms causing the chemoresistance remain unclear. Recently, The Cancer Genome Atlas (TCGA) research network concluded an ovarian cancer study and released the dataset to the public. The TCGA dataset possesses large sample size, comprehensive molecular profiles, and clinical outcome information; however, because of the unknown molecular subtypes in ovarian cancer and the great diversity of adjuvant treatments TCGA patients went through, studying chemotherapeutic response using the TCGA data is difficult. Additionally, factors such as sample batches, patient ages, and tumor stages further confound or suppress the identification of relevant genes, and thus the biological functions and disease mechanisms.
Results
To address these issues, herein we propose an analysis procedure designed to reduce suppression effect by focusing on a specific chemotherapeutic treatment, and to remove confounding effects such as batch effect, patient's age, and tumor stages. The proposed procedure starts with a batch effect adjustment, followed by a rigorous sample selection process. Then, the gene expression, copy number, and methylation profiles from the TCGA ovarian cancer dataset are analyzed using a semi-supervised clustering method combined with a novel scoring function. As a result, two molecular classifications, one with poor copy number profiles and one with poor methylation profiles, enriched with unfavorable scores are identified. Compared with the samples enriched with favorable scores, these two classifications exhibit poor progression-free survival (PFS) and might be associated with poor chemotherapy response specifically to the combination of paclitaxel and carboplatin. Significant genes and biological processes are detected subsequently using classical statistical approaches and enrichment analysis.
Conclusions
The proposed procedure for the reduction of confounding and suppression effects and the semi-supervised clustering method are essential steps to identify genes associated with the chemotherapeutic response.
doi:10.1186/1471-2164-13-S6-S13
PMCID: PMC3481440  PMID: 23134756
3.  Pathway Distiller - multisource biological pathway consolidation 
BMC Genomics  2012;13(Suppl 6):S18.
Background
One method to understand and evaluate an experiment that produces a large set of genes, such as a gene expression microarray analysis, is to identify overrepresentation or enrichment for biological pathways. Because pathways are able to functionally describe the set of genes, much effort has been made to collect curated biological pathways into publicly accessible databases. When combining disparate databases, highly related or redundant pathways exist, making their consolidation into pathway concepts essential. This will facilitate unbiased, comprehensive yet streamlined analysis of experiments that result in large gene sets.
Methods
After gene set enrichment finds representative pathways for large gene sets, pathways are consolidated into representative pathway concepts. Three complementary, but different methods of pathway consolidation are explored. Enrichment Consolidation combines the set of the pathways enriched for the signature gene list through iterative combining of enriched pathways with other pathways with similar signature gene sets; Weighted Consolidation utilizes a Protein-Protein Interaction network based gene-weighting approach that finds clusters of both enriched and non-enriched pathways limited to the experiments' resultant gene list; and finally the de novo Consolidation method uses several measurements of pathway similarity, that finds static pathway clusters independent of any given experiment.
Results
We demonstrate that the three consolidation methods provide unified yet different functional insights of a resultant gene set derived from a genome-wide profiling experiment. Results from the methods are presented, demonstrating their applications in biological studies and comparing with a pathway web-based framework that also combines several pathway databases. Additionally a web-based consolidation framework that encompasses all three methods discussed in this paper, Pathway Distiller (http://cbbiweb.uthscsa.edu/PathwayDistiller), is established to allow researchers access to the methods and example microarray data described in this manuscript, and the ability to analyze their own gene list by using our unique consolidation methods.
Conclusions
By combining several pathway systems, implementing different, but complementary pathway consolidation methods, and providing a user-friendly web-accessible tool, we have enabled users the ability to extract functional explanations of their genome wide experiments.
doi:10.1186/1471-2164-13-S6-S18
PMCID: PMC3481446  PMID: 23134636
4.  Building and analyzing protein interactome networks by cross-species comparisons 
BMC Systems Biology  2010;4:36.
Background
A genomic catalogue of protein-protein interactions is a rich source of information, particularly for exploring the relationships between proteins. Numerous systems-wide and small-scale experiments have been conducted to identify interactions; however, our knowledge of all interactions for any one species is incomplete, and alternative means to expand these network maps is needed. We therefore took a comparative biology approach to predict protein-protein interactions across five species (human, mouse, fly, worm, and yeast) and developed InterologFinder for research biologists to easily navigate this data. We also developed a confidence score for interactions based on available experimental evidence and conservation across species.
Results
The connectivity of the resultant networks was determined to have scale-free distribution, small-world properties, and increased local modularity, indicating that the added interactions do not disrupt our current understanding of protein network structures. We show examples of how these improved interactomes can be used to analyze a genome-scale dataset (RNAi screen) and to assign new function to proteins. Predicted interactions within this dataset were tested by co-immunoprecipitation, resulting in a high rate of validation, suggesting the high quality of networks produced.
Conclusions
Protein-protein interactions were predicted in five species, based on orthology. An InteroScore, a score accounting for homology, number of orthologues with evidence of interactions, and number of unique observations of interactions, is given to each known and predicted interaction. Our website http://www.interologfinder.org provides research biologists intuitive access to this data.
doi:10.1186/1752-0509-4-36
PMCID: PMC2859380  PMID: 20353594

Results 1-4 (4)