PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Hepatic transcriptome analysis of inter-family variability in flesh n-3 long-chain polyunsaturated fatty acid content in Atlantic salmon 
BMC Genomics  2012;13:410.
Background
Genetic selection of Atlantic salmon families better adapted to alternative feed formulations containing high levels of vegetable ingredients has been suggested to ensure sustainable growth of aquaculture. The present study aimed to identify molecular pathways that could underlie phenotypic differences in flesh n-3 long-chain polyunsaturated fatty acid (LC-PUFA) levels when fish are fed vegetable oil diets. Liver transcriptome was analyzed and compared in four families presenting higher or lower n-3 LC-PUFA contents at two contrasting flesh total lipid levels.
Results
The main effect of n-3 LC-PUFA contents was in the expression of immune response genes (38% of all significantly affected genes), broadly implicated in the modulation of inflammatory processes and innate immune response. Although genetic evaluations of traits used in the breeding program revealed that the chosen families were not balanced for viral disease resistance, this did not fully explain the preponderance of immune response genes in the transcriptomic analysis. Employing stringent statistical analysis no lipid metabolism genes were detected as being significantly altered in liver when comparing families with high and low n-3 LC-PUFA flesh contents. However, relaxing the statistical analysis enabled identification of potentially relevant effects, further studied by RT-qPCR, in cholesterol biosynthesis, lipoprotein metabolism and lipid transport, as well as eicosanoid metabolism particularly affecting the lipoxygenase pathway. Total lipid level in flesh also showed an important effect on immune response and 8% of significantly affected genes related to lipid metabolism, including a fatty acyl elongase (elovl2), an acyl carrier protein and stearoyl-CoA desaturase.
Conclusions
Inter-family differences in n-3 LC-PUFA content could not be related to effects on lipid metabolism, including transcriptional modulation of the LC-PUFA biosynthesis pathway. An association was found between flesh adiposity and n-3 LC-PUFA in regulation of cholesterol biosynthesis, which was most likely explained by variation in tissue n-3 LC-PUFA levels regulating transcription of cholesterol metabolism genes through srebp2. A preponderance of immune response genes significantly affected by n-3 LC-PUFA contents could be potentially associated with disease resistance, possibly involving anti-inflammatory actions of tissue n-3 LC-PUFA through eicosanoid metabolism. This association may have been fortuitous, but it is important to clarify if this trait is included in future salmon breeding programmes.
doi:10.1186/1471-2164-13-410
PMCID: PMC3463449  PMID: 22905698
2.  Genotype-specific responses in Atlantic salmon (Salmo salar) subject to dietary fish oil replacement by vegetable oil: a liver transcriptomic analysis 
BMC Genomics  2011;12:255.
Background
Expansion of aquaculture is seriously limited by reductions in fish oil (FO) supply for aquafeeds. Terrestrial alternatives such as vegetable oils (VO) have been investigated and recently a strategy combining genetic selection with changes in diet formulations has been proposed to meet growing demands for aquaculture products. This study investigates the influence of genotype on transcriptomic responses to sustainable feeds in Atlantic salmon.
Results
A microarray analysis was performed to investigate the liver transcriptome of two family groups selected according to their estimated breeding values (EBVs) for flesh lipid content, 'Lean' or 'Fat', fed diets containing either FO or a VO blend. Diet principally affected metabolism genes, mainly of lipid and carbohydrate, followed by immune response genes. Genotype had a much lower impact on metabolism-related genes and affected mostly signalling pathways. Replacement of dietary FO by VO caused an up-regulation of long-chain polyunsaturated fatty acid biosynthesis, but there was a clear genotype effect as fatty acyl elongase (elovl2) was only up-regulated and desaturases (Δ5 fad and Δ6 fad) showed a higher magnitude of response in Lean fish, which was reflected in liver fatty acid composition. Fatty acid synthase (FAS) was also up-regulated by VO and the effect was independent of genotype. Genetic background of the fish clearly affected regulation of lipid metabolism, as PPARα and PPARβ were down-regulated by the VO diet only in Lean fish, while in Fat salmon SREBP-1 expression was up-regulated by VO. In addition, all three genes had a lower expression in the Lean family group than in the Fat, when fed VO. Differences in muscle adiposity between family groups may have been caused by higher levels of hepatic fatty acid and glycerophospholipid synthesis in the Fat fish, as indicated by the expression of FAS, 1-acyl-sn-glycerol-3-phosphate acyltransferase and lipid phosphate phosphohydrolase 2.
Conclusions
This study has identified metabolic pathways and key regulators that may respond differently to alternative plant-based feeds depending on genotype. Further studies are required but data suggest that it will be possible to identify families better adapted to alternative diet formulations that might be appropriate for future genetic selection programmes.
doi:10.1186/1471-2164-12-255
PMCID: PMC3113789  PMID: 21599965
3.  Functional Feeds Reduce Heart Inflammation and Pathology in Atlantic Salmon (Salmo salar L.) following Experimental Challenge with Atlantic Salmon Reovirus (ASRV) 
PLoS ONE  2012;7(11):e40266.
Heart and Skeletal Muscle Inflammation (HSMI), recently associated with a novel Atlantic salmon reovirus (ASRV), is currently one of the most prevalent inflammatory diseases in commercial Atlantic salmon farms in Norway. Mortality varies from low to 20%, but morbidity can be very high, reducing growth performance and causing considerable financial impact. Clinical symptoms, including myocarditis, myocardial and red skeletal muscle necrosis, correlate with the intensity of the inflammatory response. In the present study, the effects of two functional feeds (FF1 and FF2) were compared to a standard commercial reference feed (ST) in Atlantic salmon subjected to an ASRV challenge. The functional feeds had reduced levels of total lipid and digestible energy, and different levels and proportions of long-chain polyunsaturated fatty acids (LC-PUFA). The objective was to determine whether these feeds could provide effective protection by decreasing the inflammatory response associated with HSMI. Histopathology, viral load, fatty acid composition and gene expression of heart tissue were assessed over a period of 16 weeks post-infection with ASRV. The viral load and histopathology scores in heart tissue in response to ASRV infection were reduced in fish fed both functional feeds, with FF1 showing the greatest effect. Microarray hierarchical cluster analysis showed that the functional feeds greatly affected expression of inflammation/immune related genes over the course of the ASRV infection. Viral load correlated with up-regulation of pro-inflammatory genes at the early-mid stages of infection in fish fed the ST diet. Expression of inflammatory genes 16-weeks after ASRV challenge reflected the difference in efficacy between the functional feeds, with fish fed FF1 showing lower expression. Thus, severity of the lesions in heart tissue correlated with the intensity of the innate immune response and was associated with tissue fatty acid compositions. The present study demonstrated that dietary modulation through clinical nutrition had major influences on the development and severity of the response to ASRV infection in salmon. Thus, HSMI was reduced in fish fed the functional feeds, particularly FF1. The modulation of gene expression between fish fed the different feeds provided further insight into the molecular mechanisms and progression of the inflammatory and immune responses to ASRV infection in salmon.
doi:10.1371/journal.pone.0040266
PMCID: PMC3511526  PMID: 23226193
4.  Effects of genotype and dietary fish oil replacement with vegetable oil on the intestinal transcriptome and proteome of Atlantic salmon (Salmo salar) 
BMC Genomics  2012;13:448.
Background
Expansion of aquaculture requires alternative feeds and breeding strategies to reduce dependency on fish oil (FO) and better utilization of dietary vegetable oil (VO). Despite the central role of intestine in maintaining body homeostasis and health, its molecular response to replacement of dietary FO by VO has been little investigated. This study employed transcriptomic and proteomic analyses to study effects of dietary VO in two family groups of Atlantic salmon selected for flesh lipid content, 'Lean' or 'Fat'.
Results
Metabolism, particularly of lipid and energy, was the functional category most affected by diet. Important effects were also measured in ribosomal proteins and signalling. The long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis pathway, assessed by fatty acid composition and gene expression, was influenced by genotype. Intestinal tissue contents of docosahexaenoic acid were equivalent in Lean salmon fed either a FO or VO diet and expression of LC-PUFA biosynthesis genes was up-regulated in VO-fed fish in Fat salmon. Dietary VO increased lipogenesis in Lean fish, assessed by expression of FAS, while no effect was observed on β-oxidation although transcripts of the mitochondrial respiratory chain were down-regulated, suggesting less active energetic metabolism in fish fed VO. In contrast, dietary VO up-regulated genes and proteins involved in detoxification, antioxidant defence and apoptosis, which could be associated with higher levels of polycyclic aromatic hydrocarbons in this diet. Regarding genotype, the following pathways were identified as being differentially affected: proteasomal proteolysis, response to oxidative and cellular stress (xenobiotic and oxidant metabolism and heat shock proteins), apoptosis and structural proteins particularly associated with tissue contractile properties. Genotype effects were accentuated by dietary VO.
Conclusions
Intestinal metabolism was affected by diet and genotype. Lean fish may have higher responsiveness to low dietary n-3 LC-PUFA, up-regulating the biosynthetic pathway when fed dietary VO. As global aquaculture searches for alternative oils for feeds, this study alerts to the potential of VO introducing contaminants and demonstrates the detoxifying role of intestine. Finally, data indicate genotype-specific responses in the intestinal transcriptome and proteome to dietary VO, including possibly structural properties of the intestinal layer and defence against cellular stress, with Lean fish being more susceptible to diet-induced oxidative stress.
doi:10.1186/1471-2164-13-448
PMCID: PMC3460786  PMID: 22943471

Results 1-4 (4)