Search tips
Search criteria

Results 1-19 (19)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Juvenile hormone and insulin suppress lipolysis between periods of lactation during tsetse fly pregnancy 
Tsetse flies are viviparous insects that nurture a single intrauterine progeny per gonotrophic cycle. The developing larva is nourished by the lipid-rich, milk-like secretions from a modified female accessory gland (milk gland). An essential feature of the lactation process involves lipid mobilization for incorporation into the milk. In this study, we examined roles for juvenile hormone (JH) and insulin/IGF-like (IIS) signaling pathways during tsetse pregnancy. In particular, we examined the roles for these pathways in regulating lipid homeostasis during transitions between non-lactating (dry) and lactating periods. The dry period occurs over the course of oogenesis and embryogenesis, while the lactation period spans intrauterine larvigenesis. Genes involved in the JH and IIS pathways were upregulated during dry periods, correlating with lipid accumulation between bouts of lactation. RNAi suppression of Forkhead Box Sub Group O (FOXO) expression impaired lipolysis during tsetse lactation and reduced fecundity. Similar reduction of the JH receptor Methoprene tolerant (Met), but not its paralog germ cell expressed (gce), reduced lipid accumulation during dry periods, indicating functional divergence between Met and gce during tsetse reproduction. Reduced lipid levels following Met knockdown led to impaired fecundity due to inadequate fat reserves at the initiation of milk production. Both the application of the JH analog (JHA) methoprene and injection of insulin into lactating females increased stored lipids by suppressing lipolysis and reduced transcripts of lactation-specific genes, leading to elevated rates of larval abortion. To our knowledge, this study is the first to address the molecular physiology of JH and IIS in a viviparous insect, and specifically to provide a role for JH signaling through Met in the regulation of lipid metabolism.
PMCID: PMC4222070  PMID: 23499946
Insulin; juvenile hormone; lipid metabolism; lactation; reproduction; tsetse; Diptera
3.  A Novel Highly Divergent Protein Family Identified from a Viviparous Insect by RNA-seq Analysis: A Potential Target for Tsetse Fly-Specific Abortifacients 
PLoS Genetics  2014;10(4):e1003874.
In tsetse flies, nutrients for intrauterine larval development are synthesized by the modified accessory gland (milk gland) and provided in mother's milk during lactation. Interference with at least two milk proteins has been shown to extend larval development and reduce fecundity. The goal of this study was to perform a comprehensive characterization of tsetse milk proteins using lactation-specific transcriptome/milk proteome analyses and to define functional role(s) for the milk proteins during lactation. Differential analysis of RNA-seq data from lactating and dry (non-lactating) females revealed enrichment of transcripts coding for protein synthesis machinery, lipid metabolism and secretory proteins during lactation. Among the genes induced during lactation were those encoding the previously identified milk proteins (milk gland proteins 1–3, transferrin and acid sphingomyelinase 1) and seven new genes (mgp4–10). The genes encoding mgp2–10 are organized on a 40 kb syntenic block in the tsetse genome, have similar exon-intron arrangements, and share regions of amino acid sequence similarity. Expression of mgp2–10 is female-specific and high during milk secretion. While knockdown of a single mgp failed to reduce fecundity, simultaneous knockdown of multiple variants reduced milk protein levels and lowered fecundity. The genomic localization, gene structure similarities, and functional redundancy of MGP2–10 suggest that they constitute a novel highly divergent protein family. Our data indicates that MGP2–10 function both as the primary amino acid resource for the developing larva and in the maintenance of milk homeostasis, similar to the function of the mammalian casein family of milk proteins. This study underscores the dynamic nature of the lactation cycle and identifies a novel family of lactation-specific proteins, unique to Glossina sp., that are essential to larval development. The specificity of MGP2–10 to tsetse and their critical role during lactation suggests that these proteins may be an excellent target for tsetse-specific population control approaches.
Author Summary
Tsetse flies are the sole vector for African trypanosomes, causative agents of sleeping sickness in humans and nagana in cattle. Transcriptome and proteome analyses were utilized to examine the underlying mechanisms of tsetse lactation that occur during each reproductive cycle. These analyses revealed a dramatic shift to the synthesis of milk proteins during lactation and a novel milk-specific protein family. All members of this family were co-localized, shared sequence similarity and were expressed at 40× basal levels during milk secretion. Suppression of gene from this lactation-associated family impaired progeny development by reducing milk protein content and altering milk homeostasis. These novel genes represent an excellent target for tsetse-specific reproductive-based control mechanisms. In addition, the characterization of tsetse milk production revealed multiple factors that are functionally analogous between tsetse and mammalian lactation.
PMCID: PMC3998918  PMID: 24763277
4.  Amelioration of Reproduction-Associated Oxidative Stress in a Viviparous Insect Is Critical to Prevent Reproductive Senescence 
PLoS ONE  2014;9(4):e87554.
Impact of reproductive processes upon female health has yielded conflicting results; particularly in relation to the role of reproduction-associated stress. We used the viviparous tsetse fly to determine if lactation, birth and involution lead to damage from oxidative stress (OS) that impairs subsequent reproductive cycles. Tsetse females carry an intrauterine larva to full term at each pregnancy cycle, and lactate to nourish them with milk secretions produced by the accessory gland ( = milk gland) organ. Unlike most K-strategists, tsetse females lack an apparent period of reproductive senescence allowing the production of 8–10 progeny over their entire life span. In a lactating female, over 47% of the maternal transcriptome is associated with the generation of milk proteins. The resulting single larval offspring weighs as much as the mother at birth. In studying this process we noted an increase in specific antioxidant enzyme (AOE) transcripts and enzymatic activity at critical times during lactation, birth and involution in the milk gland/fat body organ and the uterus. Suppression of superoxide dismutase (sod) decreased fecundity in subsequent reproductive cycles in young mothers and nearly abolished fecundity in geriatric females. Loss of fecundity was in part due to the inability of the mother to produce adequate milk to support larval growth. Longevity was also impaired after sod knockdown. Generation of OS in virgin females through exogenous treatment with hydrogen peroxide at times corresponding to pregnancy intervals reduced survival, which was exacerbated by sod knockdown. AOE expression may prevent oxidative damage associated with the generation of nutrients by the milk gland, parturition and milk gland breakdown. Our results indicate that prevention of OS is essential for females to meet the growing nutritional demands of juveniles during pregnancy and to repair the damage that occurs at birth. This process is particularly important for females to remain fecund during the latter portion of their lifetime.
PMCID: PMC3998933  PMID: 24763119
5.  Aquaporins Are Critical for Provision of Water during Lactation and Intrauterine Progeny Hydration to Maintain Tsetse Fly Reproductive Success 
Tsetse flies undergo drastic fluctuations in their water content throughout their adult life history due to events such as blood feeding, dehydration and lactation, an essential feature of the viviparous reproductive biology of tsetse. Aquaporins (AQPs) are transmembrane proteins that allow water and other solutes to permeate through cellular membranes. Here we identify tsetse aquaporin (AQP) genes, examine their expression patterns under different physiological conditions (blood feeding, lactation and stress response) and perform functional analysis of three specific genes utilizing RNA interference (RNAi) gene silencing. Ten putative aquaporins were identified in the Glossina morsitans morsitans (Gmm) genome, two more than has been previously documented in any other insect. All organs, tissues, and body parts examined had distinct AQP expression patterns. Two AQP genes, gmmdripa and gmmdripb ( = gmmaqp1a and gmmaqp1b) are highly expressed in the milk gland/fat body tissues. The whole-body transcript levels of these two genes vary over the course of pregnancy. A set of three AQPs (gmmaqp5, gmmaqp2a, and gmmaqp4b) are expressed highly in the Malpighian tubules. Knockdown of gmmdripa and gmmdripb reduced the efficiency of water loss following a blood meal, increased dehydration tolerance and reduced heat tolerance of adult females. Knockdown of gmmdripa extended pregnancy length, and gmmdripb knockdown resulted in extended pregnancy duration and reduced progeny production. We found that knockdown of AQPs increased tsetse milk osmolality and reduced the water content in developing larva. Combined knockdown of gmmdripa, gmmdripb and gmmaqp5 extended pregnancy by 4–6 d, reduced pupal production by nearly 50%, increased milk osmolality by 20–25% and led to dehydration of feeding larvae. Based on these results, we conclude that gmmDripA and gmmDripB are critical for diuresis, stress tolerance and intrauterine lactation through the regulation of water and/or other uncharged solutes.
Author Summary
Glossina sp. are responsible for transmission of African trypanosomes, the causative agents of sleeping sickness in humans and Nagana in cattle. Blood feeding and nutrient provisioning through lactation during intrauterine progeny development are periods when considerable water movement occurs within tsetse flies. With the completion of the tsetse fly genome, we sought to characterize the role of aquaporins in relation water homeostasis during blood feeding, stress tolerance and the lactation cycle. We provide evidence that specific AQPs are 1. critical during diuresis following a bloodmeal, 2. important in the regulation of dehydration resistance and heat tolerance and 3. crucial in the allocation of water within tsetse milk that is necessary for progeny hydration. Specifically, we discovered a novel tsetse AQP that is imperative to lactation and may represent a potential target for population control of this disease vector.
PMCID: PMC3998938  PMID: 24762803
6.  The Homeodomain Protein Ladybird Late Regulates Synthesis of Milk Proteins during Pregnancy in the Tsetse Fly (Glossina morsitans) 
Regulation of tissue and development specific gene expression patterns underlies the functional specialization of organs in multi-cellular organisms. In the viviparous tsetse fly (Glossina), the female accessory gland is specialized to generate nutrients in the form of a milk-like secretion to support growth of intrauterine larva. Multiple milk protein genes are expressed specifically in the female accessory gland and are tightly linked with larval development. Disruption of milk protein synthesis deprives developing larvae of nutrients and results in extended larval development and/or in abortion. The ability to cause such a disruption could be utilized as a tsetse control strategy. Here we identify and delineate the regulatory sequence of a major milk protein gene (milk gland protein 1:mgp1) by utilizing a combination of molecular techniques in tsetse, Drosophila transgenics, transcriptomics and in silico sequence analyses. The function of this promoter is conserved between tsetse and Drosophila. In transgenic Drosophila the mgp1 promoter directs reporter gene expression in a tissue and stage specific manner orthologous to that of Glossina. Analysis of the minimal required regulatory region of mgp1, and the regulatory regions of other Glossina milk proteins identified putative homeodomain protein binding sites as the sole common feature. Annotation and expression analysis of Glossina homeodomain proteins identified ladybird late (lbl) as being accessory gland/fat body specific and differentially expressed between lactating/non-lactating flies. Knockdown of lbl in tsetse resulted in a significant reduction in transcript abundance of multiple milk protein genes and in a significant loss of fecundity. The role of Lbl in adult reproductive physiology is previously unknown. These results suggest that Lbl is part of a conserved reproductive regulatory system that could have implications beyond tsetse to other vector insects such as mosquitoes. This system is critical for tsetse fecundity and provides a potential target for development of a reproductive inhibitor.
Author Summary
Female tsetse flies (Diptera: Glossina) harbor and give birth to live young. To do this, they nourish their intrauterine larvae with milk secretions. This work focuses upon understanding the regulation of tsetse milk proteins, which are essential for fecundity and are expressed in a temporally and spatially specific manner by pregnant females. We identified the minimal upstream regulatory DNA sequence of the major milk protein gene mgp1, which confers tissue specific expression in the female accessory glands of reproductively active flies. This regulatory sequence functions similarly in transgenic fruit flies (Drosophila melanogaster) and drives expression of reporter gene products in the adult female accessory gland. Comparison of this regulatory sequence with sequences from other characterized milk proteins indicates that conserved homeodomain transcription factors may be responsible for regulating these genes. Analysis of Glossina homeodomain proteins identified an accessory gland/fat body specific factor, Ladybird late (lbl), which appears to regulate the expression of multiple milk proteins. Reduction of lbl levels interferes with milk protein gene expression, which in turn reduces Glossina fecundity. These results suggest that milk proteins in Glossina are regulated by a conserved regulatory system mediated in part by the homeodomain transcription factor lbl. Components of this system could provide a target for development of a tsetse reproductive inhibitor.
PMCID: PMC3998940  PMID: 24763082
7.  Four-way regulation of mosquito yolk protein precursor genes by juvenile hormone-, ecdysone-, nutrient-, and insulin-like peptide signaling pathways 
Anautogenous mosquito females require a meal of vertebrate blood in order to initiate the production of yolk protein precursors by the fat body. Yolk protein precursor gene expression is tightly repressed in a state-of-arrest before blood meal-related signals activate it and expression levels rise rapidly. The best understood example of yolk protein precursor gene regulation is the vitellogenin-A gene (vg) of the yellow fever mosquito Aedes aegypti. Vg-A is regulated by (1) juvenile hormone signaling, (2) the ecdysone-signaling cascade, (3) the nutrient sensitive target-of-rapamycin signaling pathway, and (4) the insulin-like peptide (ILP) signaling pathway. A plethora of new studies have refined our understanding of the regulation of yolk protein precursor genes since the last review on this topic in 2005 (Attardo et al., 2005). This review summarizes the role of these four signaling pathways in the regulation of vg-A and focuses upon new findings regarding the interplay between them on an organismal level.
PMCID: PMC3960487  PMID: 24688471
mosquito; vitellogenesis; insulin; juvenile hormone; ecdysone; target of rapamycin; yolk proteins
8.  Sphingomyelinase Activity in Mother's Milk Is Essential for Juvenile Development: A Case from Lactating Tsetse Flies1  
Biology of Reproduction  2012;87(1):17.
Sphingosine is a structural component of sphingolipids. The metabolism of phosphoethanolamine ceramide (sphingomyelin) by sphingomyelinase (SMase), followed by the breakdown of ceramide by ceramidase (CDase) yields sphingosine. Female tsetse fly is viviparous and generates a single progeny within her uterus during each gonotrophic cycle. The mother provides her offspring with nutrients required for development solely via intrauterine lactation. Quantitative PCR showed that acid smase1 (asmase1) increases in mother's milk gland during lactation. aSMase1 was detected in the milk gland and larval gut, indicating this protein is generated during lactation and consumed by the larva. The higher levels of SMase activity in larval gut contents indicate that this enzyme is activated by the low gut pH. In addition, cdase is expressed at high levels in the larval gut. Breakdown of the resulting ceramide is likely accomplished by the larval gut-secreted CDase, which allows absorption of sphingosine. We used the tsetse system to understand the critical role(s) of SMase and CDase during pregnancy and lactation and their downstream effects on adult progeny fitness. Reduction of asmase1 by short interfering RNA negatively impacted pregnancy and progeny performance, resulting in a 4–5-day extension in pregnancy, 10%–15% reduction in pupal mass, lower pupal hatch rates, impaired heat tolerance, reduced symbiont levels, and reduced fecundity of adult progeny. This study suggests that the SMase activity associated with tsetse lactation and larval digestion is similar in function to that of mammalian lactation and represents a critical process for juvenile development, with important effects on the health of progeny during their adulthood.
Sphingomyelinase (SMase) is generated during tsetse fly lactation, but is only activated by acidic conditions within the larval gut contents; reduced SMase levels in tsetse milk leads to impaired progeny development and health.
PMCID: PMC3406556  PMID: 22517621
ceramide; Glossina; lactation; milk; sphingomyelin
9.  Analysis of lipolysis underlying lactation in the tsetse fly, Glossina morsitans 
Female tsetse flies undergo viviparous reproduction, generating one larva each gonotrophic cycle. Larval nourishment is provided by the mother in the form of milk secretions. The milk consists mostly of lipids during early larval development and shifts to a balanced combination of protein and lipids in the late larval instars. Provisioning of adequate lipids to the accessory gland is an indispensable process for tsetse fecundity. This work investigates the roles of Brummer lipase (Bmm) and the adipokinetic hormone (AKH)/adipokinetic hormone receptor (AKHR) systems on lipid metabolism and mobilization during lactation in tsetse. The contributions of each system were investigated by a knockdown approach utilizing siRNA injections. Starvation experiments revealed that silencing of either system results in prolonged female lifespan. Simultaneous suppression of bmm and akhr prolonged survival further than either individual knockdown. Knockdown of akhr and bmm transcript levels resulted in high levels of whole body lipids at death, indicating an inability to utilize lipid reserves during starvation. Silencing of bmm resulted in delayed oocyte development. Respective reductions in fecundity of 20 and 50% were observed upon knockdown of akhr and bmm, while simultaneous knockdown of both genes resulted in 80% reduction of larval production. Omission of one blood meal during larvigenesis (nutritional stress) after simultaneous knockdown led to almost complete supression of larval production. This phenotype likely results from tsetse’s inability to utilize lipid reserves as loss of both lipolysis systems leads to accumulation and retention of stored lipids during pregnancy. This shows that both Bmm lipolysis and AKH/AKHR signaling are critical for lipolysis required for milk production during tsetse pregnancy, and identifies the underlying mechanisms of lipid metabolism critical to tsetse lactation. The similarities in the lipid metabolic pathways and other aspects of milk production between tsetse and mammals indicate that this fly could be used as a novel model for lactation research.
PMCID: PMC3561780  PMID: 22509523
adipokinetic hormone; Glossina; lipolysis; lactation; Brummer lipase; viviparity
10.  Lipophorin acts as a shuttle of lipids to the milk gland during tsetse fly pregnancy 
Journal of insect physiology  2011;57(11):1553-1561.
During pregnancy in the viviparous tsetse fly, lipid mobilization is essential for the production of milk to feed the developing intrauterine larva. Lipophorin (Lp) functions as the major lipid transport protein in insects and closely-related arthropods. In this study, we assessed the role of Lp and the lipophorin receptor (LpR) in the lipid mobilization process during tsetse reproduction. We identified single gene sequences for GmmLp and GmmLpR from the genome of Glossina morsitans morsitans, and measured spatial and temporal expression of gmmlp and gmmlpr during the female reproductive cycle. Our results show that expression of gmmlp is specific to the adult fat body and larvae. In the adult female, gmmlp expression is constitutive. However transcript levels increase in the larva as it matures within the mother’s uterus, reaching peak expression just prior to parturition. GmmLp was detected in the hemolymph of pregnant females and larvae, but not in the uterine fluid or larval gut contents ruling out the possibility of direct transfer of GmmLp from mother to offspring. Transcripts for gmmlpr were detected in the head, ovaries, midgut, milk gland/fat body, ovaries and developing larva. Levels of gmmlpr remain stable throughout the first and second gonotrophic cycles with a slight dip observed during the first gonotrophic cycle. GmmLpR was detected in multiple tissues, including the midgut, fat body, milk gland, spermatheca and head. Knockdown of gmmlp by RNA interference resulted in reduced hemolymph lipid levels, delayed oocyte development and extended larval gestation. Similar suppresion of gmmlpr did not significantly reduce hemolymph lipid levels or oogenesis duration, but did extend the duration of larval development. Thus, GmmLp and GmmLpR function as the primary shuttle for lipids originating from the midgut and fat body to the ovaries and milk gland to supply resources for developing oocytes and larval nourishment, respectively. Once in the milk gland however, lipids are apparently transferred into the developing larva not by lipophorin but by another carrier lipoprotein.
PMCID: PMC3209505  PMID: 21875592
Lipid movement; lipophorin; tsetse development; Glossina
11.  Polyandry Is a Common Event in Wild Populations of the Tsetse Fly Glossina fuscipes fuscipes and May Impact Population Reduction Measures 
Glossina fuscipes fuscipes is the main vector of human and animal trypanosomiasis in Africa, particularly in Uganda. Attempts to control/eradicate this species using biological methods require knowledge of its reproductive biology. An important aspect is the number of times a female mates in the wild as this influences the effective population size and may constitute a critical factor in determining the success of control methods. To date, polyandry in G.f. fuscipes has not been investigated in the laboratory or in the wild. Interest in assessing the presence of remating in Ugandan populations is driven by the fact that eradication of this species is at the planning stage in this country.
Methodology/Principal Findings
Two well established populations, Kabukanga in the West and Buvuma Island in Lake Victoria, were sampled to assess the presence and frequency of female remating. Six informative microsatellite loci were used to estimate the number of matings per female by genotyping sperm preserved in the female spermathecae. The direct count of the minimum number of males that transferred sperm to the spermathecae was compared to Maximum Likelihood and Bayesian probability estimates. The three estimates provided evidence that remating is common in the populations but the frequency is substantially different: 57% in Kabukanga and 33% in Buvuma.
The presence of remating, with females maintaining sperm from different mates, may constitute a critical factor in cases of re-infestation of cleared areas and/or of residual populations. Remating may enhance the reproductive potential of re-invading propagules in terms of their effective population size. We suggest that population age structure may influence remating frequency. Considering the seasonal demographic changes that this fly undergoes during the dry and wet seasons, control programmes based on SIT should release large numbers of sterile males, even in residual surviving target populations, in the dry season.
Author Summary
Glossina fuscipes fuscipes is the most common tsetse species in Uganda where it is responsible for transmitting Trypanosoma brucei rhodensiense and Trypanosoma brucei gambiense parasites causing sleeping sickness in humans in addition to related trypanosomes that cause Nagana in cattle. An understanding of the reproductive biology of this vector is essential for the application of sustainable control/eradication methods such as Sterile Insect Technique (SIT). We have analysed the number of times a female mates in the wild as this aspect of the reproductive behaviour may affect the stability and size of populations. We provide evidence that remating is a common event in the wild and females store sperm from multiple males, which may potentially be used for insemination. In vector eradication programmes, re-infestation of cleared areas and/or in cases of residual populations, the occurrence of remating may unfortunately enhance the reproductive potential of the re-invading propagules. We suggest that population age structure may influence remating frequency. Considering the seasonal demographic changes that this fly undergoes during the dry and wet seasons, control programmes based on SIT should release large numbers of sterile males, even in residual surviving target populations, in the dry season.
PMCID: PMC3110164  PMID: 21666797
12.  Molecular characterization of two novel milk proteins in the tsetse fly (Glossina morsitans morsitans) 
Insect molecular biology  2010;19(2):253-262.
Tsetse reproduction is unique among insects due to the small numbers of offspring the flies produce and because the female fly carries and nourishes her offspring for their entire immature development. Larval nourishment is supplied by the female as a “milk” substance synthesized by a specialized accessory gland. The milk consists of ~50% fat and ~50% protein. Two milk proteins were identified as the Major Milk gland Protein (GmmMGP) and Transferrin (GmmTsf). Here we describe the identification of two novel gene transcripts (gmmmgp2 and gmmmgp3) produced by the milk gland tissue. These putative secretory products bear no homology to known proteins in the NCBI nr database. Transcripts for these genes can only be detected in the milk gland and their temporal expression correlates with larval development. Functional analysis of these products by RNA interference (RNAi) knockdown analysis shows that GmmMGP2 is critical to reproductive function. The protein appears to affect ovulation, suggesting that it may play a regulatory role in the tsetse reproductive cycle. GmmMGP3 knockdown lacks a phenotype, suggesting its function as a milk protein is possibly redundant.
PMCID: PMC2862765  PMID: 20136662
Tsetse; larvigenesis; milk gland; fecundity
13.  An insight into the sialome of Glossina morsitans morsitans 
BMC Genomics  2010;11:213.
Blood feeding evolved independently in worms, arthropods and mammals. Among the adaptations to this peculiar diet, these animals developed an armament of salivary molecules that disarm their host's anti-bleeding defenses (hemostasis), inflammatory and immune reactions. Recent sialotranscriptome analyses (from the Greek sialo = saliva) of blood feeding insects and ticks have revealed that the saliva contains hundreds of polypeptides, many unique to their genus or family. Adult tsetse flies feed exclusively on vertebrate blood and are important vectors of human and animal diseases. Thus far, only limited information exists regarding the Glossina sialome, or any other fly belonging to the Hippoboscidae.
As part of the effort to sequence the genome of Glossina morsitans morsitans, several organ specific, high quality normalized cDNA libraries have been constructed, from which over 20,000 ESTs from an adult salivary gland library were sequenced. These ESTs have been assembled using previously described ESTs from the fat body and midgut libraries of the same fly, thus totaling 62,251 ESTs, which have been assembled into 16,743 clusters (8,506 of which had one or more EST from the salivary gland library). Coding sequences were obtained for 2,509 novel proteins, 1,792 of which had at least one EST expressed in the salivary glands. Despite library normalization, 59 transcripts were overrepresented in the salivary library indicating high levels of expression. This work presents a detailed analysis of the salivary protein families identified. Protein expression was confirmed by 2D gel electrophoresis, enzymatic digestion and mass spectrometry. Concurrently, an initial attempt to determine the immunogenic properties of selected salivary proteins was undertaken.
The sialome of G. m. morsitans contains over 250 proteins that are possibly associated with blood feeding. This set includes alleles of previously described gene products, reveals new evidence that several salivary proteins are multigenic and identifies at least seven new polypeptide families unique to Glossina. Most of these proteins have no known function and thus, provide a discovery platform for the identification of novel pharmacologically active compounds, innovative vector-based vaccine targets, and immunological markers of vector exposure.
PMCID: PMC2853526  PMID: 20353571
14.  Transcriptome analysis of reproductive tissue and intrauterine developmental stages of the tsetse fly (Glossina morsitans morsitans) 
BMC Genomics  2010;11:160.
Tsetse flies, vectors of African trypanosomes, undergo viviparous reproduction (the deposition of live offspring). This reproductive strategy results in a large maternal investment and the deposition of a small number of progeny during a female's lifespan. The reproductive biology of tsetse has been studied on a physiological level; however the molecular analysis of tsetse reproduction requires deeper investigation. To build a foundation from which to base molecular studies of tsetse reproduction, a cDNA library was generated from female tsetse (Glossina morsitans morsitans) reproductive tissues and the intrauterine developmental stages. 3438 expressed sequence tags were sequenced and analyzed.
Analysis of a nonredundant catalogue of 1391 contigs resulted in 520 predicted proteins. 475 of these proteins were full length. We predict that 412 of these represent cytoplasmic proteins while 57 are secreted. Comparison of these proteins with other tissue specific tsetse cDNA libraries (salivary gland, fat body/milk gland, and midgut) identified 51 that are unique to the reproductive/immature cDNA library. 11 unique proteins were homologus to uncharacterized putative proteins within the NR database suggesting the identification of novel genes associated with reproductive functions in other insects (hypothetical conserved). The analysis also yielded seven putative proteins without significant homology to sequences present in the public database (unknown genes). These proteins may represent unique functions associated with tsetse's viviparous reproductive cycle. RT-PCR analysis of hypothetical conserved and unknown contigs was performed to determine basic tissue and stage specificity of the expression of these genes.
This paper identifies 51 putative proteins specific to a tsetse reproductive/immature EST library. 11 of these proteins correspond to hypothetical conserved genes and 7 proteins are tsetse specific.
PMCID: PMC2846916  PMID: 20214793
15.  Analysis of milk gland structure and function in Glossina morsitans: Milk protein production, symbiont populations and fecundity 
Journal of insect physiology  2008;54(8):1236-1242.
A key process in the tsetse reproductive cycle is the transfer of essential nutrients and bacterial symbionts from mother to intrauterine offspring. The tissue mediating this transfer is the milk gland. This work focuses upon the localization and function of two milk proteins (milk gland protein (GmmMGP) and transferrin (GmmTsf)) and the tsetse endosymbionts (Sodalis and Wigglesworthia), in the context of milk gland physiology. Fluorescent in situ hybridization (FISH) and immunohistochemical analysis confirm that the milk gland secretory cells synthesize and secrete milk gland protein and transferrin. Knockdown of gmmmgp by double stranded RNA (dsRNA) mediated RNA interference results in reduction of tsetse fecundity, demonstrating its functional importance in larval nutrition and development. Bacterial species-specific in situ hybridizations of milk gland sections reveal large numbers of Sodalis and Wigglesworthia within the lumen of the milk gland. Sodalis is also localized within the cytoplasm of the secretory cells. Within the lumen, Wigglesworthia localize close to the channels leading to the milk storage reservoir of the milk gland secretory cells. We discuss the significance of the milk gland in larval nutrition and in transmission of symbiotic bacteria to developing offspring.
PMCID: PMC2613686  PMID: 18647605
Tsetse; reproduction; milk gland; Sodalis; Wigglesworthia
16.  Molecular aspects of transferrin expression in the tsetse fly (Glossina morsitans morsitans) 
Journal of insect physiology  2007;53(7):715-723.
Iron is an essential element for metabolic processes intrinsic to life, and yet the properties that make iron a necessity also make it potentially deleterious. To avoid harm, iron homeostasis is achieved via proteins involved in transport and storage of iron, one of which is transferrin. We describe the temporal and spatial aspects of transferrin (GmmTsf) expression and its transcriptional regulation in tsetse where both the male and female are strictly hematophagous. Using Northern, Western and immunohistochemical analysis, we show that GmmTsf is abundant in the hemolymph and is expressed in the adult developmental stages of male and female insects. It is preferentially expressed in the female milk gland tubules and its expression appears to be cyclical and possibly regulated in synchrony with the oogenic and/or larvigenic cycle. Although no mRNA is detected, GmmTsf protein is present in the immature stages of development, apparently being transported into the intrauterine larva from the mother via the milk gland ducts. Transferrin is also detected in the vitellogenic ovary and the adult male testes, further supporting its classification as a vitellogenic protein. Similar to reports in other insects, transferrin mRNA levels increase upon bacterial challenge in tsetse suggesting that transferrin may play an additional role in immunity. Although transferrin expression is induced following bacterial challenge, it is significantly reduced in tsetse carrying midgut trypanosome infections. Analysis of tsetse that have cured the parasite challenge shows normal levels of GmmTsf. This observation suggests that the parasite in competing for the availability of limited dietary iron may manipulate host gene expression.
PMCID: PMC2065764  PMID: 17498733
Viviparous reproduction; larvigenesis; oogenesis; tsetse; transferrin; trypanosome
17.  Infections with Immunogenic Trypanosomes Reduce Tsetse Reproductive Fitness: Potential Impact of Different Parasite Strains on Vector Population Structure 
The parasite Trypanosoma brucei rhodesiense and its insect vector Glossina morsitans morsitans were used to evaluate the effect of parasite clearance (resistance) as well as the cost of midgut infections on tsetse host fitness. Tsetse flies are viviparous and have a low reproductive capacity, giving birth to only 6–8 progeny during their lifetime. Thus, small perturbations to their reproductive fitness can have a major impact on population densities. We measured the fecundity (number of larval progeny deposited) and mortality in parasite-resistant tsetse females and untreated controls and found no differences. There was, however, a typanosome-specific impact on midgut infections. Infections with an immunogenic parasite line that resulted in prolonged activation of the tsetse immune system delayed intrauterine larval development resulting in the production of fewer progeny over the fly's lifetime. In contrast, parasitism with a second line that failed to activate the immune system did not impose a fecundity cost. Coinfections favored the establishment of the immunogenic parasites in the midgut. We show that a decrease in the synthesis of Glossina Milk gland protein (GmmMgp), a major female accessory gland protein associated with larvagenesis, likely contributed to the reproductive lag observed in infected flies. Mathematical analysis of our empirical results indicated that infection with the immunogenic trypanosomes reduced tsetse fecundity by 30% relative to infections with the non-immunogenic strain. We estimate that a moderate infection prevalence of about 26% with immunogenic parasites has the potential to reduce tsetse populations. Potential repercussions for vector population growth, parasite–host coevolution, and disease prevalence are discussed.
Author Summary
In many cases, parasites adapt to their hosts' biology over time and the extent of their harmful effects gradually diminishes. Insect-transmitted parasites such as African trypanosomes, however, are unusually pathogenic for their mammalian hosts because they rely on their invertebrate hosts for transmission to the next mammalian host. To ensure their maximum transmission, it is essential that parasite infections do not compromise insect host's fitness traits, including longevity and host-finding ability. Our results in tsetse indicate that, as theory predicts, trypanosome infections do not reduce host longevity. Instead, they divert host resources from reproduction and can reduce reproductive output by as much as 30%. Such loss of reproductive fitness occurs as a result of the induction of tsetse's immune responses. A closely related non-immunogenic parasite line does not induce host responses and does not compromise host fecundity. It is possible that host immune responses are needed in the case of the immunogenic line to control the parasite density to prevent excessive host damage. Because tsetse are viviparous and each adult female typically gives rise to only few progeny during their lifetime, even modest costs on reproduction can have a significant impact on host abundance. Our model predicts that if the prevalence of immunogenic parasite infections in tsetse populations reaches over 26%, they begin to have a negative impact on population growth rate. Infection rates as high as 30% have been reported with trypanosomes in the field. Our laboratory findings coupled with our modeling studies now provide a framework to investigate the status of co-infections, host immune activation processes, fecundity outcomes, transmission dynamics, and host virulence phenotypes in natural tsetse–trypanosome populations.
PMCID: PMC2265429  PMID: 18335067
18.  Molecular aspects of viviparous reproductive biology of the tsetse fly (Glossina morsitans morsitans): Regulation of yolk and milk gland protein synthesis 
Journal of insect physiology  2006;52(11-12):1128-1136.
Tsetse fly (Diptera: Glossinidae) viviparous reproductive physiology remains to be explored at the molecular level. Adult females carry their young in utero for the duration of embryonic and larval development, all the while supplying their offspring with nutrients in the form of a “milk” substance secreted from a modified accessory gland. Flies give birth to fully developed third instar larvae that pupariate shortly after birth. Here, we describe the spatial and temporal expression dynamics of two reproduction-associated genes and their products synthesized during the first and second gonotrophic cycles. The proteins studied include a putative yolk protein, Glossina morsitans morsitans yolk protein 1 (GmmYP1) and the major protein found in tsetse “milk” secretions (Glossina morsitans morsitans milk gland protein, GmmMGP). Developmental stage and tissue-specific expression of GmmYP1 show its presence exclusively in the reproductive tract of the fly during oogenesis, suggesting that GmmYP1 acts as a vitellogenic protein. Transcripts for GmmMGP are present only in the milk gland tissue and increase in coordination with the process of larvigenesis. Similarly, GmmMGP can be detected at the onset of larvigenesis in the milk gland, and is present during the full duration of pregnancy. Expression of GmmMGP is restricted to the adult stage and is not detected in the immature developmental stages. These phenomena indicate that the protein is transferred from mother to larvae as nourishment during its development. These results demonstrate that both GmmYP1 and GmmMGP are involved in tsetse reproductive biology, the former associated with the process of oogenesis and the latter with larvigenesis.
PMCID: PMC1779500  PMID: 17046784
Viviparous reproduction; Oogenesis; Larvagenesis; Tsetse; Milk gland
19.  Molecular Characterization of Iron Binding Proteins from Glossina morsitans morsitans (Diptera: Glossinidae) 
The regulation of iron is critical for maintaining homeostasis in the tsetse fly (Diptera:Glossinidae), in which both adult sexes are strict blood feeders. We have characterized the cDNAs for two putative iron-binding proteins (IBP) involved in transport and storage; transferrin (GmmTsf1) and ferritin from Glossina morsitans morsitans. GmmTsf1 transcripts are detected in the female fat body and in adult reproductive tissues, and only in the adult developmental stage in a bloodmeal independent manner. In contrast, the ferritin heavy chain (GmmFer1HCH) and light chain (GmmFer2LCH) transcripts are expressed ubiquitously, suggesting a more general role for these proteins in iron transport and storage. Protein domain predictions for each IBP suggest both the conservation and loss of several motifs present in their vertebrate homologues. In concert with many other described insect transferrins, putative secreted GmmTsf1 maintains 3 of the 5 residues necessary for iron-binding in the N-terminal lobe, but exhibits a loss of this iron-binding ability in the C-terminal role as well as a loss of large sequence blocks. Both putative GmmFer1HCH and GmmFer2LCH proteins have signal peptides, similar to other insect ferritins. GmmFer2LCH has lost the 5’UTR iron-responsive element (IRE) and, thus, translation is no longer regulated by cellular iron levels. On the other hand, GmmFer1HCH maintains both the conserved ferroxidase center and the 5’UTR IRE; however, transcript variants suggest a more extensive regulatory mechanism for this subunit.
PMCID: PMC1698469  PMID: 17098167
Iron; ferritin; transferrin; Glossina morsitans morsitans

Results 1-19 (19)