PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (35)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  Molecular Differentiation of Metastriate Tick Immatures 
Hard ticks, family Ixodidae, are divided into two groups, the Metastriata and the Prostriata, based on morphological differences. In the United States, there are four medically important genera of the Ixodidae: Ixodes, Amblyomma, Dermacentor, and Rhipicephalus. Ixodes is the only genus in and representative of the Prostriata, whereas the latter three genera are members of the Metastriata. All developmental stages of the Prostriata can be easily differentiated from the Metastriata using morphology. Similarly, the three Metastriate genera are highly identifiable as adults, yet as immatures, the discriminating characteristics can be difficult to use for differentiation, especially if the specimens are damaged or engorged with blood. All three Metastriate genera represent medically important vectors, thus accurate differentiation is necessary. To this end, we have developed a multiplexed-PCR diagnostic assay that, when combined with RFLP analysis will differentiate between the Metastriate genera—Amblyomma, Dermacentor, Rhipicephalus, and Haemaphysalis based on the length of the PCR amplicon and subsequent restriction digestion profile. The intended use for this diagnostic is to verify morphological identifications, especially of immatures, as well as to identify samples destroyed for molecular analysis, which will lead to more accurate field data as well as implication of vectors in disease transmission.
PMCID: PMC4152316  PMID: 15682516
Metastriate; Amblyomma; Dermacentor; Haemaphysalis; Rhipicephalus; diagnostic
2.  Mammal Diversity and Infection Prevalence in the Maintenance of Enzootic Borrelia burgdorferi along the Western Coastal Plains of Maryland 
The primary vector of Borrelia burgdorferi in North America, Ixodes scapularis, feeds on various mammalian, avian, and reptilian hosts. Several small mammal hosts; Peromyscus leucopus, Tamias striatus, Microtus pennsylvanicus, and Blarina spp. can serve as reservoirs in an enzootic cycle of Lyme disease. The primary reservoir in the northeast United States is the white-footed mouse, P. leucopus. The infection prevalence of this reservoir as well as the roles of potential secondary reservoirs has not been established in southern Maryland, a region of low to moderate Borrelia infection in humans. Intensive trapping at 96 locations throughout the western Coastal Plains of Maryland was conducted and we found that 31.6% of P. leucopus were infected with B. burgdorferi. Sequence and phylogenetic analysis revealed that only B. burgdorferi sensu stricto circulated in southern Maryland. Feral house mice and voles also were infected and may serve as secondary hosts. Peromyscus gender, age and month of capture were significantly associated with infection status. Larval I. scapularis were the dominant ectoparasite collected from captured rodents even though host seeking A. americanum and D. variabilis were collected in greater numbers across the sampling region. Our findings illustrate that the enzootic cycle of LD is maintained in the western Coastal Plains region of southern Maryland between I. scapularis and P. leucopus as the dominant reservoir.
doi:10.1089/vbz.2006.6.411
PMCID: PMC4128254  PMID: 17187577
Lyme disease; Ixodes scapularis; Peromyscus leucopus; Borrelia burgdorferi
3.  Identification and characterization of microsatellite markers in the Chagas disease vector Triatoma dimidiata 
Triatoma dimidiata, one of the major vectors of Chagas disease in Central America, is found in both domestic and peri-domestic habitats. Questions concerning population boundaries, infestation rates, insecticide resistance, and geographic dispersal of triatomine bugs persist and may be resolved using genetic markers such as microsatellites. Microsatellites are short tandem repeats found dispersed throughout a genome and can be useful for genotypic identification. We developed a plasmid library from the genomic DNA isolated from a single T. dimidiata adult collected in Guatamala. Ten thousand clones were screened using a probe consisting of nine microsatellite oligonucleotides. Eight loci appear polymorphic among populations found in Guatemala, Honduras, and Mexico, and thus are potentially useful for population genetic applications.
PMCID: PMC4152310  PMID: 12798021
Chagas disease; Microsatellites; Triatoma
4.  Leishmania major, the Predominant Leishmania Species Responsible for Cutaneous Leishmaniasis in Mali 
Leishmania major is the only species of Leishmania known to cause cutaneous leishmanisis (CL) in Mali. We amplified Leishmania DNA stored on archived Giemsa-stained dermal scraping slides obtained from self-referral patients with clinically suspected CL seen in the Center National d'Appui A La Lutte Contre La Maladie (CNAM) in Bamako, Mali, to determine if any other Leishmania species were responsible for CL in Mali and evaluate its geographic distribution. Polymerase chain reaction (PCR) amplification was performed using a Leishmania species-specific primer pair that can amplify DNA from L. major, L. tropica, L. infantum, and L. donovani parasites, possible causative agents of CL in Mali. L. major was the only species detected in 41 microscopically confirmed cases of CL from five regions of Mali (Kayes, Koulikoro, Ségou, Mopti, and Tombouctou). These results implicate L. major as the predominant, possibly exclusive species responsible for CL in Mali.
doi:10.4269/ajtmh.12-0434
PMCID: PMC3592546  PMID: 23324218
5.  Geographic Distribution and Genetic Characterization of Lassa Virus in Sub-Saharan Mali 
Background
Lassa fever is an acute viral illness characterized by multi-organ failure and hemorrhagic manifestations. Lassa fever is most frequently diagnosed in Nigeria, Sierra Leone, Liberia, and Guinea, although sporadic cases have been recorded in other West African countries, including Mali. The etiological agent of Lassa fever is Lassa virus (LASV), an Arenavirus which is maintained in nature and frequently transmitted to humans by Mastomys natalensis. The purpose of this study was to better define the geographic distribution of LASV-infected rodents in sub-Saharan Mali.
Methodologies/Principal Findings
Small mammals were live-trapped at various locations across Mali for the purpose of identifying potential zoonotic pathogens. Serological and molecular assays were employed and determined LASV infected rodents were exclusively found in the southern Mali near the border of Côte d'Ivoire. Overall, 19.4% of Mastomys natalensis sampled in this region had evidence of LASV infection, with prevalence rates for individual villages ranging from 0 to 52%. Full-length genomic sequences were determined using high throughput sequencing methodologies for LASV isolates generated from tissue samples of rodents collected in four villages and confirmed the phylogenetic clustering of Malian LASV with strain AV.
Conclusions/Significance
The risk of human infections with LASV is greatest in villages in southern Mali. Lassa fever should be considered in the differential diagnosis for febrile individuals and appropriate diagnostic techniques need to be established to determine the incidence of infection and disease in these regions.
Author Summary
Lassa fever is an acute infection associated with hemorrhagic manifestations and multi-organ failure in West Africa. The etiological agent of Lassa fever is Lassa virus (LASV), a rodent-borne arenavirus, which is maintained in nature and transmitted to humans by the multimammate rat, Mastomys natalensis. Despite the ubiquitous nature of the rodent reservoir, LASV-infected animals are most commonly documented in Nigeria, Sierra Leone, Guinea and Liberia. These four countries represent the historic endemic region for Lassa fever, although there is increasing evidence of sporadic cases occurring in other West African nations including Mali. To better define the geographic distribution of LASV-infected rodents in Mali, we tested samples from small animals collected at 27 sites across the country. Although M. natalensis was the predominant rodent species in the majority of villages, evidence of LASV infection was exclusively found in southern Mali, where overall nearly 20% of rodents were positive. The full genomic sequence was determined for five isolates and confirmed LASV in Mali is closely related to strain AV. We conclude that there is a risk of human exposure to LASV in villages in southern Mali and Lassa fever should be considered in the differential diagnosis for acutely ill, febrile patients.
doi:10.1371/journal.pntd.0002582
PMCID: PMC3855028  PMID: 24340119
6.  Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study 
The Lancet infectious diseases  2012;12(11):851-858.
Summary
Background
Artemisinin-resistant Plasmodium falciparum has been reported in Pailin, western Cambodia, detected as a slow parasite clearance rate in vivo. Emergence of this phenotype in western Thailand and possibly elsewhere threatens to compromise the effectiveness of all artemisinin-based combination therapies. Parasite genetics is associated with parasite clearance rate but does not account for all variation. We investigated contributions of both parasite genetics and host factors to the artemisinin-resistance phenotype in Pursat, western Cambodia.
Methods
Between June 19 and Nov 28, 2009, and June 26 and Dec 6, 2010, we enrolled patients aged 10 years or older with uncomplicated falciparum malaria, a density of asexual parasites of at least 10 000 per μL of whole blood, no symptoms or signs of severe malaria, no other cause of febrile illness, and no chronic illness. We gave participants 4 mg/kg artesunate at 0, 24, and 48 h, 15 mg/kg mefloquine at 72 h, and 10 mg/kg mefloquine at 96 h. We assessed parasite density on thick blood films every 6 h until undetectable. The parasite clearance half-life was calculated from the parasite clearance curve. We genotyped parasites with 18 microsatellite markers and patients for haemoglobin E, α-thalassaemia, and a mutation of G6PD, which encodes glucose-6-phosphate dehydrogenase. To account for the possible effects of acquired immunity on half-life, we used three surrogates for increased likelihood of exposure to P falciparum: age, sex, and place of residence. This study is registered with ClinicalTrials.gov, number NCT00341003.
Findings
We assessed 3504 individuals from all six districts of Pursat province seeking treatment for malaria symptoms. We enrolled 168 patients with falciparum malaria who met inclusion criteria. The geometric mean half-life was 5.85 h (95% CI 5.54–6.18) in Pursat, similar to that reported in Pailin (p=0.109). We identified two genetically different parasite clone groups: parasite group 1 (PG1) and parasite group 2 (PG2). Non-significant increases in parasite clearance half-life were seen in patients with haemoglobin E (0.55 h; p=0.078), those of male sex (0.96 h; p=0.064), and in 2010 (0.68 h; p=0.068); PG1 was associated with a significant increase (0.79 h; p=0.033). The mean parasite heritability of half-life was 0.40 (SD 0.17).
Interpretation
Heritable artemisinin resistance is established in a second Cambodian province. To accurately identify parasites that are intrinsically susceptible or resistant to artemisinins, future studies should explore the effect of erythrocyte polymorphisms and specific immune responses on half-life variation.
Funding
Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health.
doi:10.1016/S1473-3099(12)70181-0
PMCID: PMC3786328  PMID: 22940027
7.  Ex Vivo Susceptibility of Plasmodium falciparum to Antimalarial Drugs in Western, Northern, and Eastern Cambodia, 2011-2012: Association with Molecular Markers 
Antimicrobial Agents and Chemotherapy  2013;57(11):5277-5283.
In 2008, dihydroartemisinin (DHA)-piperaquine (PPQ) became the first-line treatment for uncomplicated Plasmodium falciparum malaria in western Cambodia. Recent reports of increased treatment failure rates after DHA-PPQ therapy in this region suggest that parasite resistance to DHA, PPQ, or both is now adversely affecting treatment. While artemisinin (ART) resistance is established in western Cambodia, there is no evidence of PPQ resistance. To monitor for resistance to PPQ and other antimalarials, we measured drug susceptibilities for parasites collected in 2011 and 2012 from Pursat, Preah Vihear, and Ratanakiri, in western, northern, and eastern Cambodia, respectively. Using a SYBR green I fluorescence assay, we calculated the ex vivo 50% inhibitory concentrations (IC50s) of 310 parasites to six antimalarials: chloroquine (CQ), mefloquine (MQ), quinine (QN), PPQ, artesunate (ATS), and DHA. Geometric mean IC50s (GMIC50s) for all drugs (except PPQ) were significantly higher in Pursat and Preah Vihear than in Ratanakiri (P ≤ 0.001). An increased copy number of P. falciparum mdr1 (pfmdr1), an MQ resistance marker, was more prevalent in Pursat and Preah Vihear than in Ratanakiri and was associated with higher GMIC50s for MQ, QN, ATS, and DHA. An increased copy number of a chromosome 5 region (X5r), a candidate PPQ resistance marker, was detected in Pursat but was not associated with reduced susceptibility to PPQ. The ex vivo IC50 and pfmdr1 copy number are important tools in the surveillance of multidrug-resistant (MDR) parasites in Cambodia. While MDR P. falciparum is prevalent in western and northern Cambodia, there is no evidence for PPQ resistance, suggesting that DHA-PPQ treatment failures result mainly from ART resistance.
doi:10.1128/AAC.00687-13
PMCID: PMC3811250  PMID: 23939897
8.  Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia 
Nature genetics  2013;45(6):10.1038/ng.2624.
We describe an analysis of genome variation in 825 Plasmodium falciparum samples from Asia and Africa that reveals an unusual pattern of parasite population structure at the epicentre of artemisinin resistance in western Cambodia. Within this relatively small geographical area we have discovered several distinct but apparently sympatric parasite subpopulations with extremely high levels of genetic differentiation. Of particular interest are three subpopulations, all associated with clinical resistance to artemisinin, which have skewed allele frequency spectra and remarkably high levels of haplotype homozygosity, indicative of founder effects and recent population expansion. We provide a catalogue of SNPs that show high levels of differentiation in the artemisinin-resistant subpopulations, including codon variants in various transporter proteins and DNA mismatch repair proteins. These data provide a population genetic framework for investigating the biological origins of artemisinin resistance and for defining molecular markers to assist its elimination.
doi:10.1038/ng.2624
PMCID: PMC3807790  PMID: 23624527
9.  Effects of Age, Hemoglobin Type and Parasite Strain on IgG Recognition of Plasmodium falciparum–Infected Erythrocytes in Malian Children 
PLoS ONE  2013;8(10):e76734.
Background
Naturally-acquired antibody responses to antigens on the surface of Plasmodium falciparum-infected red blood cells (iRBCs) have been implicated in antimalarial immunity. To profile the development of this immunity, we have been studying a cohort of Malian children living in an area with intense seasonal malaria transmission.
Methodology/Principal Findings
We collected plasma from a sub-cohort of 176 Malian children aged 3-11 years, before (May) and after (December) the 2009 transmission season. To measure the effect of hemoglobin (Hb) type on antibody responses, we enrolled age-matched HbAA, HbAS and HbAC children. To quantify antibody recognition of iRBCs, we designed a high-throughput flow cytometry assay to rapidly test numerous plasma samples against multiple parasite strains. We evaluated antibody reactivity of each plasma sample to 3 laboratory-adapted parasite lines (FCR3, D10, PC26) and 4 short-term-cultured parasite isolates (2 Malian and 2 Cambodian). 97% of children recognized ≥1 parasite strain and the proportion of IgG responders increased significantly during the transmission season for most parasite strains. Both strain-specific and strain-transcending IgG responses were detected, and varied by age, Hb type and parasite strain. In addition, the breadth of IgG responses to parasite strains increased with age in HbAA, but not in HbAS or HbAC, children.
Conclusions/Significance
Our assay detects both strain-specific and strain-transcending IgG responses to iRBCs. The magnitude and breadth of these responses varied not only by age, but also by Hb type and parasite strain used. These findings indicate that studies of acquired humoral immunity should account for Hb type and test large numbers of diverse parasite strains.
doi:10.1371/journal.pone.0076734
PMCID: PMC3790723  PMID: 24124591
10.  Delayed-Type Hypersensitivity to Sand Fly Saliva in Humans from a Leishmaniasis-Endemic Area of Mali is TH1-Mediated and Persists to Midlife 
Immunity to sand fly saliva in rodents induces a TH1 delayed-type hypersensitivity (DTH) response conferring protection against leishmaniasis. The relevance of DTH to sand fly bites in humans living in a leishmaniasis-endemic area remains unknown. Here, we describe the duration and nature of DTH to sand fly saliva in humans from an endemic area of Mali. DTH was assessed at 24, 48, 72 and 96h post-bite in volunteers exposed to colony-bred sand flies. Dermal biopsies were obtained 48h post-bite; cytokines were quantified from PBMCs stimulated with sand fly saliva in vitro. A DTH response to bites was observed in 75% of individuals aged 1–15 years, decreasing gradually to 48% by age 45, and dropping to 21% thereafter. Dermal biopsies were dominated by T lymphocytes and macrophages. Abundant expression of IFN-γ and absence of TGF-β establishes the TH1 nature of this DTH response. PBMCs from 98% of individuals responded to sand fly saliva. Of these, 23% were polarized to a TH1 and 25% to a TH2 response.
We demonstrate the durability and TH1 nature of DTH to sand fly bites in humans living in a CL-endemic area. A systemic TH2 response may explain why some individuals remain susceptible to disease.
doi:10.1038/jid.2012.315
PMCID: PMC3529997  PMID: 22992802
11.  Relationship between Malaria Incidence and IgG Levels to Plasmodium falciparum Merozoite Antigens in Malian Children: Impact of Hemoglobins S and C 
PLoS ONE  2013;8(3):e60182.
Heterozygous hemoglobin (Hb) AS (sickle-cell trait) and HbAC are hypothesized to protect against Plasmodium falciparum malaria in part by enhancing naturally-acquired immunity to this disease. To investigate this hypothesis, we compared antibody levels to four merozoite antigens from the P. falciparum 3D7 clone (apical membrane antigen 1, AMA1-3D7; merozoite surface protein 1, MSP1-3D7; 175 kDa erythrocyte-binding antigen, EBA175-3D7; and merozoite surface protein 2, MSP2-3D7) in a cohort of 103 HbAA, 73 HbAS and 30 HbAC children aged 3 to 11 years in a malaria-endemic area of Mali. In the 2009 transmission season we found that HbAS, but not HbAC, significantly reduced the risk of malaria compared to HbAA. IgG levels to MSP1 and MSP2 at the start of this transmission season inversely correlated with malaria incidence after adjusting for age and Hb type. However, HbAS children had significantly lower IgG levels to EBA175 and MSP2 compared to HbAA children. On the other hand, HbAC children had similar IgG levels to all four antigens. The parasite growth-inhibitory activity of purified IgG samples did not differ significantly by Hb type. Changes in antigen-specific IgG levels during the 2009 transmission and 2010 dry seasons also did not differ by Hb type, and none of these IgG levels dropped significantly during the dry season. These data suggest that sickle-cell trait does not reduce the risk of malaria by enhancing the acquisition of IgG responses to merozoite antigens.
doi:10.1371/journal.pone.0060182
PMCID: PMC3610890  PMID: 23555917
12.  Differential salivary gland transcript expression profile in Ixodes scapularis nymphs upon feeding or flavivirus infection 
Ticks and Tick-Borne Diseases  2012;3(1):18-26.
Ixodid ticks are vectors of human diseases such as Lyme disease, babesiosis, anaplasmosis, and tick-borne encephalitis. These diseases cause significant morbidity and mortality worldwide and are transmitted to humans during tick feeding. The tick-host-pathogen interface is a complex environment where host responses are modulated by the molecules in tick saliva to enable the acquisition of a blood meal. Disruption of host responses at the site of the tick bite may also provide an advantage for pathogens to survive and replicate. Thus, the molecules in tick saliva not only aid the tick in securing a nutrient-rich blood meal, but can also enhance the transmission and acquisition of pathogens. To investigate the effect of feeding and flavivirus infection on the salivary gland transcript expression profile in ticks, a first-generation microarray was developed using ESTs from a cDNA library derived from Ixodes scapularis salivary glands. When the salivary gland transcript profile in ticks feeding over the course of 3 days was compared to that in unfed ticks, a dramatic increase in transcripts related to metabolism was observed. Specifically, 578 transcripts were up-regulated compared to 151 down-regulated transcripts in fed ticks. When specific time points post attachment were analyzed, a temporal pattern of gene expression was observed. When Langat virus-infected ticks were compared to mock-infected ticks, transcript expression changes were observed at all 3 days of feeding. Differentially regulated transcripts include putative secreted proteins, lipocalins, Kunitz domain-containing proteins, anti-microbial peptides, and transcripts of unknown function. These studies identify salivary gland transcripts that are differentially regulated during feeding or in the context of flavivirus infection in Ixodes scapularis nymphs, a medically important disease vector. Further analysis of these transcripts may identify salivary factors that affect the transmission or replication of tick-borne flaviviruses.
doi:10.1016/j.ttbdis.2011.09.003
PMCID: PMC3275779  PMID: 22309855
Tick vector; Ixodes scapularis; Nymph; Salivary gland; Gene expression; Feeding; Flavivirus
13.  A Potential Role for Plasma Uric Acid in the Endothelial Pathology of Plasmodium falciparum malaria 
PLoS ONE  2013;8(1):e54481.
Background
Inflammatory cytokinemia and systemic activation of the microvascular endothelium are central to the pathogenesis of Plasmodium falciparum malaria. Recently, ‘parasite-derived’ uric acid (UA) was shown to activate human immune cells in vitro, and plasma UA levels were associated with inflammatory cytokine levels and disease severity in Malian children with malaria. Since UA is associated with endothelial inflammation in non-malaria diseases, we hypothesized that elevated UA levels contribute to the endothelial pathology of P. falciparum malaria.
Methodology/Principal Findings
We measured levels of UA and soluble forms of intercellular adhesion molecule-1 (sICAM-1), vascular cell adhesion molecule-1 (sVCAM-1), E-selectin (sE-Selectin), thrombomodulin (sTM), tissue factor (sTF) and vascular endothelial growth factor (VEGF) in the plasma of Malian children aged 0.5–17 years with uncomplicated malaria (UM, n = 487) and non-cerebral severe malaria (NCSM, n = 68). In 69 of these children, we measured these same factors once when they experienced a malaria episode and twice when they were healthy (i.e., before and after the malaria transmission season). We found that levels of UA, sICAM-1, sVCAM-1, sE-Selectin and sTM increase during a malaria episode and return to basal levels at the end of the transmission season (p<0.0001). Plasma levels of UA and these four endothelial biomarkers correlate with parasite density and disease severity. In children with UM, UA levels correlate with parasite density (r = 0.092, p = 0.043), sICAM-1 (r  = 0.255, p<0.0001) and sTM (r = 0.175, p = 0.0001) levels. After adjusting for parasite density, UA levels predict sTM levels.
Conclusions/Significance
Elevated UA levels may contribute to malaria pathogenesis by damaging endothelium and promoting a procoagulant state. The correlation between UA levels and parasite densities suggests that parasitized erythrocytes are one possible source of excess UA. UA-induced shedding of endothelial TM may represent a novel mechanism of malaria pathogenesis, in which activated thrombin induces fibrin deposition and platelet aggregation in microvessels. This protocol is registered at clinicaltrials.gov (NCT00669084).
doi:10.1371/journal.pone.0054481
PMCID: PMC3551755  PMID: 23349902
14.  Endemic Foci of the Tick-Borne Relapsing Fever Spirochete Borrelia crocidurae in Mali, West Africa, and the Potential for Human Infection 
Background
Tick-borne relapsing fever spirochetes are maintained in endemic foci that involve a diversity of small mammals and argasid ticks in the genus Ornithodoros. Most epidemiological studies of tick-borne relapsing fever in West Africa caused by Borrelia crocidurae have been conducted in Senegal. The risk for humans to acquire relapsing fever in Mali is uncertain, as only a few human cases have been identified. Given the high incidence of malaria in Mali, and the potential to confuse the clinical diagnosis of these two diseases, we initiated studies to determine if there were endemic foci of relapsing fever spirochetes that could pose a risk for human infection.
Methodology/Principal Findings
We investigated 20 villages across southern Mali for the presence of relapsing fever spirochetes. Small mammals were captured, thin blood smears were examined microscopically for spirochetes, and serum samples were tested for antibodies to relapsing fever spirochetes. Ornithodoros sonrai ticks were collected and examined for spirochetal infection. In total, 11.0% of the 663 rodents and 14.3% of the 63 shrews tested were seropositive and 2.2% of the animals had active spirochete infections when captured. In the Bandiagara region, the prevalence of infection was higher with 35% of the animals seropositive and 10% infected. Here also Ornithodoros sonrai were abundant and 17.3% of 278 individual ticks tested were infected with Borrelia crocidurae. Fifteen isolates of B. crocidurae were established and characterized by multi-locus sequence typing.
Conclusions/Significance
The potential for human tick-borne relapsing fever exists in many areas of southern Mali.
Author Summary
Tick-borne relapsing fever is a spirochete-caused, recurrent illness acquired by the bite of fast-feeding ticks. In Mali, the potential for people to acquire relapsing fever is unknown although a few human cases have been reported there. Human malaria is also abundant in Mali, and could be complicating the diagnosis of relapsing fever. The relapsing fever spirochete, Borrelia crocidurae, is maintained in natural cycles involving small mammals and its tick vector Ornithodoros sonrai. Therefore, we investigated 20 villages across southern Mali to determine if relapsing fever spirochetes were circulating in small mammals and ticks that lived with people. We found that 11.3% of the 726 mammals tested showed evidence of prior infection, while 2.2% of the animals were actively infected. The tick vector was abundant in two villages we sampled, and overall 17.3% of the individual ticks tested were infected with spirochetes. We also isolated the spirochetes, Borrelia crocidurae, from rodents and ticks and compared their genetic makeup to other species of African spirochetes. We conclude that in some areas of Mali, people are at risk of acquiring tick-borne relapsing fever. Therefore, we recommend that blood smears from acutely ill patients be examined microscopically for spirochetes.
doi:10.1371/journal.pntd.0001924
PMCID: PMC3510061  PMID: 23209863
15.  An insight into the sialotranscriptome and proteome of the coarse bontlegged tick, Hyalomma marginatum rufipes 
Journal of proteomics  2011;74(12):2892-2908.
Ticks are mites specialized in acquiring blood from vertebrates as their sole source of food and are important disease vectors to humans and animals. Among the specializations required for this peculiar diet, ticks evolved a sophisticated salivary potion that can disarm their host’s hemostasis, inflammation, and immune reactions. Previous transcriptome analysis of tick salivary proteins has revealed many new protein families indicative of fast evolution, possibly due to host immune pressure. The hard ticks (family Ixodidae) are further divided into two basal groups, of which the Metastriata have 11 genera. While salivary transcriptomes and proteomes have been described for some of these genera, no tick of the genus Hyalomma has been studied so far. The analysis of 2,084 expressed sequence tags (EST) from a salivary gland cDNA library allowed an exploration of the proteome of this tick species by matching peptide ions derived from MS/MS experiments to this data set. We additionally compared these MS/MS derived peptide sequences against the proteins from the bovine host, finding many host proteins in the salivary glands of this tick. This annotated data set can assist the discovery of new targets for anti-tick vaccines as well as help to identify pharmacologically active proteins.
doi:10.1016/j.jprot.2011.07.015
PMCID: PMC3215792  PMID: 21851864
Tick; hematophagy; salivary glands; sialome
16.  Plasma Uric Acid Levels Correlate with Inflammation and Disease Severity in Malian Children with Plasmodium falciparum Malaria 
PLoS ONE  2012;7(10):e46424.
Background
Plasmodium falciparum elicits host inflammatory responses that cause the symptoms and severe manifestations of malaria. One proposed mechanism involves formation of immunostimulatory uric acid (UA) precipitates, which are released from sequestered schizonts into microvessels. Another involves hypoxanthine and xanthine, which accumulate in parasitized red blood cells (RBCs) and may be converted by plasma xanthine oxidase to UA at schizont rupture. These two forms of ‘parasite-derived’ UA stimulate immune cells to produce inflammatory cytokines in vitro.
Methods and Findings
We measured plasma levels of soluble UA and inflammatory cytokines and chemokines (IL-6, IL-10, sTNFRII, MCP-1, IL-8, TNFα, IP-10, IFNγ, GM-CSF, IL-1β) in 470 Malian children presenting with uncomplicated malaria (UM), non-cerebral severe malaria (NCSM) or cerebral malaria (CM). UA levels were elevated in children with NCSM (median 5.74 mg/dl, 1.21-fold increase, 95% CI 1.09–1.35, n = 23, p = 0.0007) and CM (median 5.69 mg/dl, 1.19-fold increase, 95% CI 0.97–1.41, n = 9, p = 0.0890) compared to those with UM (median 4.60 mg/dl, n = 438). In children with UM, parasite density and plasma creatinine levels correlated with UA levels. These UA levels correlated with the levels of seven cytokines [IL-6 (r = 0.259, p<0.00001), IL-10 (r = 0.242, p<0.00001), sTNFRII (r = 0.221, p<0.00001), MCP-1 (r = 0.220, p<0.00001), IL-8 (r = 0.147, p = 0.002), TNFα (r = 0.132, p = 0.006) and IP-10 (r = 0.120, p = 0.012)]. In 39 children, UA levels were 1.49-fold (95% CI 1.34–1.65; p<0.0001) higher during their malaria episode [geometric mean titer (GMT) 4.67 mg/dl] than when they were previously healthy and aparasitemic (GMT 3.14 mg/dl).
Conclusions
Elevated UA levels may contribute to the pathogenesis of P. falciparum malaria by activating immune cells to produce inflammatory cytokines. While this study cannot identify the cause of elevated UA levels, their association with parasite density and creatinine levels suggest that parasite-derived UA and renal function may be involved. Defining pathogenic roles for parasite-derived UA precipitates, which we have not directly studied here, requires further investigation.
Trial Registration
ClinicalTrials.gov NCT00669084
doi:10.1371/journal.pone.0046424
PMCID: PMC3465329  PMID: 23071567
17.  A Linkage Map of the Asian Tiger Mosquito (Aedes albopictus) Based on cDNA Markers 
Journal of Heredity  2010;102(1):102-112.
The Asian tiger mosquito, Aedes (Stegomyia) albopictus (Skuse), is an important vector of a number of arboviruses, and populations exhibit extreme variation in adaptive traits such as egg diapause, cold hardiness, and autogeny (ability to mature a batch of eggs without blood feeding). The genetic basis of some of these traits has been established, but lack of a high-resolution linkage map has prevented in-depth genetic analyses of the genes underlying these complex traits. We report here on the breeding of 4 F1 intercross mapping families and the use of these to locate 35 cDNA markers to the A. albopictus linkage map. The present study increases the number of markers on the A. albopictus cDNA linkage map from 38 to 73 and the density of markers from 1 marker/5.7 cM to 1 marker/2.9 cM and adds 9, 16, and 10 markers to the 3 linkage groups, respectively. The overall lengths of the 3 linkage groups are 64.5, 76.5, and 71.6 cM, respectively, for a combined length of 212.6 cM. Despite conservation in the order of most genes among the 4 families and a previous mapping family, we found substantial heterogeneity in the amount of recombination among markers. This was most marked in linkage group I, which varied between 16.7 and 69.3 cM. A map integrating the results from these 4 families with an earlier cDNA linkage map is presented.
doi:10.1093/jhered/esq105
PMCID: PMC3001962  PMID: 21148282
Aedes albopictus; cDNA markers; linkage map; SSCP analysis
18.  Seasonality and Prevalence of Leishmania major Infection in Phlebotomus duboscqi Neveu-Lemaire from Two Neighboring Villages in Central Mali 
Phlebotomus duboscqi is the principle vector of Leishmania major, the causative agent of cutaneous leishmaniasis (CL), in West Africa and is the suspected vector in Mali. Although found throughout the country the seasonality and infection prevalence of P. duboscqi has not been established in Mali. We conducted a three year study in two neighboring villages, Kemena and Sougoula, in Central Mali, an area with a leishmanin skin test positivity of up to 45%. During the first year, we evaluated the overall diversity of sand flies. Of 18,595 flies collected, 12,952 (69%) belonged to 12 species of Sergentomyia and 5,643 (31%) to two species of the genus Phlebotomus, P. duboscqi and P. rodhaini. Of those, P. duboscqi was the most abundant, representing 99% of the collected Phlebotomus species. P. duboscqi was the primary sand fly collected inside dwellings, mostly by resting site collection. The seasonality and infection prevalence of P. duboscqi was monitored over two consecutive years. P. dubsocqi were collected throughout the year. Using a quasi-Poisson model we observed a significant annual (year 1 to year 2), seasonal (monthly) and village effect (Kemena versus Sougoula) on the number of collected P. duboscqi. The significant seasonal effect of the quasi-Poisson model reflects two seasonal collection peaks in May-July and October-November. The infection status of pooled P. duboscqi females was determined by PCR. The infection prevalence of pooled females, estimated using the maximum likelihood estimate of prevalence, was 2.7% in Kemena and Sougoula. Based on the PCR product size, L. major was identified as the only species found in flies from the two villages. This was confirmed by sequence alignment of a subset of PCR products from infected flies to known Leishmania species, incriminating P. duboscqi as the vector of CL in Mali.
Author Summary
Female sand flies transmit a parasite called Leishmania that causes a disease called cutaneous leishmaniasis (CL). Several species of sand flies are found in West Africa, but only one species, Phlebotomus duboscqi, has been proven to transmit the parasite. Cutaneous Leishmaniasis has also been reported from Mali, Central West Africa, but the sand fly transmitting the parasite and its annual abundance has not been established, until now. Sand flies were collected during three consecutive years from two neighboring villages in Central Mali, Kemena and Sougoula, where CL is present. P. duboscqi was collected year-round and was the dominant sand fly inside of and surrounding human dwellings. Other sand fly species, known not to be vectors of CL, were primarily found outside the village. Additionally, P. duboscqi females were found infected with L. major, the same Leishmania species identified from human CL cases in Mali. The estimated infection prevalence of P. duboscqi females was 2.7%. Interestingly, the sand fly abundance and infection prevalence was similar in the two villages despite a previous report indicating a disparate L. major exposure rate in humans. This study greatly enhances our knowledge of CL transmission in Mali, poorly studied in this country to date.
doi:10.1371/journal.pntd.0001139
PMCID: PMC3091838  PMID: 21572984
19.  A further insight into the sialome of the tropical bont tick, Amblyomma variegatum 
BMC Genomics  2011;12:136.
Background
Ticks--vectors of medical and veterinary importance--are themselves also significant pests. Tick salivary proteins are the result of adaptation to blood feeding and contain inhibitors of blood clotting, platelet aggregation, and angiogenesis, as well as vasodilators and immunomodulators. A previous analysis of the sialotranscriptome (from the Greek sialo, saliva) of Amblyomma variegatum is revisited in light of recent advances in tick sialomes and provides a database to perform a proteomic study.
Results
The clusterized data set has been expertly curated in light of recent reviews on tick salivary proteins, identifying many new families of tick-exclusive proteins. A proteome study using salivary gland homogenates identified 19 putative secreted proteins within a total of 211 matches.
Conclusions
The annotated sialome of A. variegatum allows its comparison to other tick sialomes, helping to consolidate an emerging pattern in the salivary composition of metastriate ticks; novel protein families were also identified. Because most of these proteins have no known function, the task of functional analysis of these proteins and the discovery of novel pharmacologically active compounds becomes possible.
doi:10.1186/1471-2164-12-136
PMCID: PMC3060141  PMID: 21362191
20.  Rhipicephalus (Boophilus) microplus: Clotting time in tick-infested skin varies according to local inflammation and gene expression patterns in tick salivary glands 
Experimental parasitology  2010;124(4):428-435.
Ticks deposit saliva at the site of their attachment to a host in order to inhibit haemostasis, inflammation and innate and adaptive immune responses. The anti-haemostatic properties of tick saliva have been described by many studies, but few show that tick infestations or its anti-haemostatic components exert systemic effects in vivo. In the present study, we extended these observations and show that, compared with normal skin, bovine hosts that are genetically susceptible to tick infestations present an increase in the clotting time of blood collected from the immediate vicinity of haemorrhagic feeding pools in skin infested with different developmental stages of Rhipicepahlus microplus; conversely, we determined that clotting time of tick-infested skin from genetically resistant bovines was shorter than that of normal skin. Coagulation and inflammation have many components in common and we determined that in resistant bovines, eosinophils and basophils, which are known to contain tissue factor, are recruited in greater numbers to the inflammatory site of tick bites than in susceptible hosts. Finally, we correlated the observed differences in clotting times with the expression profiles of transcripts for putative anti-haemostatic proteins in different developmental stages of R. microplus fed on genetically susceptible and resistant hosts: we determined that transcripts coding for proteins similar to these molecules are overrepresented in salivary glands from nymphs and males fed on susceptible bovines. Our data indicate that ticks are able to modulate their host’s local haemostatic reactions. In the resistant phenotype, larger amounts of inflammatory cells are recruited and expression of anti-coagulant molecules is decreased tick salivary glands, features that can hamper the tick’s blood meal.
doi:10.1016/j.exppara.2009.12.013
PMCID: PMC2935684  PMID: 20045690
Rhipicephalus (Boophilus) microplus; Haemostasis; Clotting time; Ticks; Bos taurus taurus; Bos taurus indicus; Saliva; Haematophagy; Transcriptome
21.  An insight into the sialotranscriptome of the brown dog tick, Rhipicephalus sanguineus 
BMC Genomics  2010;11:450.
Background
Rhipicephalus sanguineus, known as the brown dog tick, is a common ectoparasite of domestic dogs and can be found worldwide. R.sanguineus is recognized as the primary vector of the etiological agent of canine monocytic ehrlichiosis and canine babesiosis. Here we present the first description of a R. sanguineus salivary gland transcriptome by the production and analysis of 2,034 expressed sequence tags (EST) from two cDNA libraries, one consctructed using mRNA from dissected salivary glands from female ticks fed for 3-5 days (early to mid library, RsSGL1) and the another from ticks fed for 5 days (mid library, RsSGL2), identifying 1,024 clusters of related sequences.
Results
Based on sequence similarities to nine different databases, we identified transcripts of genes that were further categorized according to function. The category of putative housekeeping genes contained ~56% of the sequences and had on average 2.49 ESTs per cluster, the secreted protein category contained 26.6% of the ESTs and had 2.47 EST's/clusters, while 15.3% of the ESTs, mostly singletons, were not classifiable, and were annotated as "unknown function". The secreted category included genes that coded for lipocalins, proteases inhibitors, disintegrins, metalloproteases, immunomodulatory and antiinflammatory proteins, as Evasins and Da-p36, as well as basic-tail and 18.3 kDa proteins, cement proteins, mucins, defensins and antimicrobial peptides. Comparison of the abundance of ESTs from similar contigs of the two salivary gland cDNA libraries allowed the identification of differentially expressed genes, such as genes coding for Evasins and a thrombin inhibitor, which were over expressed in the RsSGL1 (early to mid library) versus RsSGL2 (mid library), indicating their role in inhibition of inflammation at the tick feeding site from the very beginning of the blood meal. Conversely, sequences related to cement (64P), which function has been correlated with tick attachment, was largely expressed in the mid library.
Conclusions
Our survey provided an insight into the R. sanguineus sialotranscriptome, which can assist the discovery of new targets for anti-tick vaccines, as well as help to identify pharmacologically active proteins.
doi:10.1186/1471-2164-11-450
PMCID: PMC3091647  PMID: 20650005
22.  The expression of genes coding for distinct types of glycine-rich proteins varies according to the biology of three metastriate ticks, Rhipicephalus (Boophilus) microplus, Rhipicephalus sanguineus and Amblyomma cajennense 
BMC Genomics  2010;11:363.
Background
Ticks secrete a cement cone composed of many salivary proteins, some of which are rich in the amino acid glycine in order to attach to their hosts' skin. Glycine-rich proteins (GRPs) are a large family of heterogeneous proteins that have different functions and features; noteworthy are their adhesive and tensile characteristics. These properties may be essential for successful attachment of the metastriate ticks to the host and the prolonged feeding necessary for engorgement. In this work, we analyzed Expressed Sequence Tags (ESTs) similar to GRPs from cDNA libraries constructed from salivary glands of adult female ticks representing three hard, metastriate species in order to verify if their expression correlated with biological differences such as the numbers of hosts ticks feed on during their parasitic life cycle, whether one (monoxenous parasite) or two or more (heteroxenous parasite), and the anatomy of their mouthparts, whether short (Brevirostrata) or long (Longirostrata). These ticks were the monoxenous Brevirostrata tick, Rhipicephalus (Boophilus) microplus, a heteroxenous Brevirostrata tick, Rhipicephalus sanguineus, and a heteroxenous Longirostrata tick, Amblyomma cajennense. To further investigate this relationship, we conducted phylogenetic analyses using sequences of GRPs from these ticks as well as from other species of Brevirostrata and Longirostrata ticks.
Results
cDNA libraries from salivary glands of the monoxenous tick, R. microplus, contained more contigs of glycine-rich proteins than the two representatives of heteroxenous ticks, R. sanguineus and A. cajennense (33 versus, respectively, 16 and 11). Transcripts of ESTs encoding GRPs were significantly more numerous in the salivary glands of the two Brevirostrata species when compared to the number of transcripts in the Longirostrata tick. The salivary gland libraries from Brevirostrata ticks contained numerous contigs significantly similar to silks of true spiders (17 and 8 in, respectively, R. microplus and R. sanguineus), whereas the Longirostrata tick contained only 4 contigs. The phylogenetic analyses of GRPs from various species of ticks showed that distinct clades encoding proteins with different biochemical properties are represented among species according to their biology.
Conclusions
We found that different species of ticks rely on different types and amounts of GRPs in order to attach and feed on their hosts. Metastriate ticks with short mouthparts express more transcripts of GRPs than a tick with long mouthparts and the tick that feeds on a single host during its life cycle contain a greater variety of these proteins than ticks that feed on several hosts.
doi:10.1186/1471-2164-11-363
PMCID: PMC2901319  PMID: 20529354
23.  dCAS: a desktop application for cDNA sequence annotation 
Bioinformatics  2009;25(9):1195-1196.
Motivation: Understanding gene regulation and expression is the key to the advancement of biology. EST sequence assembly and analysis provide unique benefits in this regard. We have developed a standalone application, dCAS (Desktop cDNA Annotation System), which performs automated EST cleaning, clustering, assembly and annotation on a desktop computer. Compared with other available tools, dCAS provides a more convenient and user-friendly solution to biologists for extracting biological meaning from sequence data.
Availability: The dCAS package is distributed freely. A cross-platform installer and associated sequence databases can be downloaded at: http://exon.niaid.nih.gov/applications.html
Contact: guoyo@mail.nih.gov
doi:10.1093/bioinformatics/btp129
PMCID: PMC2732306  PMID: 19318425
24.  Antibody responses of domestic animals to salivary antigens of Triatoma infestans as biomarkers for low-level infestation of triatomines 
Hematophagous arthropods such as Triatoma infestans, the vector of Trypanosoma cruzi, elicit host-immune responses during feeding. Characterization of antibody responses to salivary antigens offers the potential to develop immunologically based monitoring techniques for exposure to re-emergent triatomine bug populations in peridomestic animals. IgG-antibody responses to the salivary antigens of T. infestans have been detected in chickens as soon as 2 days after the first exposure to five adult bugs. Chickens and guinea pigs regularly exposed to this number of triatomines showed a significantly lower anti-saliva antibody titre than animals exposed to 25 adults and fifth instars of four different T. infestans strains originating from Bolivia and from Northern Chile. Highly immunogenic salivary antigens of 14 and 21 kDa were recognised by all chicken sera and of 79 kDa by all guinea pig sera. Cross-reactivity studies using saliva or salivary gland extracts from different hematophagous species, e.g. different triatomines, bed bugs, mosquitoes, sand flies and ticks, as well as chicken sera exposed to triatomines and mosquitoes, demonstrated that the 14 and 21 kDa salivary antigens were only found in triatomines. Sera from peridomestic chickens and guinea pigs in sites of known T. infestans challenge in Bolivia also recognised the 14 and 21 kDa antigens. These represent promising epidemiological markers for the detection of small numbers of feeding bugs and hence may be a new tool for vector surveillance in Chagas disease control programs.
doi:10.1016/j.ijpara.2009.01.010
PMCID: PMC2748746  PMID: 19248784
Antibody responses; Chagas disease; Chickens; Guinea pigs; Salivary proteins; Surveillance; Triatoma infestans; Cross-reactivity
25.  Discrepant Prevalence and Incidence of Leishmania Infection between Two Neighboring Villages in Central Mali Based on Leishmanin Skin Test Surveys 
Apart from a single report, the last publication of cutaneous leishmaniasis (CL) in Mali dates back more than 20 years. The absence of information on the current status of CL in Mali led us to conduct a cohort study in Kemena and Sougoula, two villages in Central Mali from which cases of CL have been recently diagnosed by Mali's reference dermatology center in Bamako. In May 2006, we determined the baseline prevalence of Leishmania infection in the two villages using the leishmanin skin test (LST). LST-negative individuals were then re-tested over two consecutive years to estimate the annual incidence of Leishmania infection. The prevalence of Leishmania infection was significantly higher in Kemena than in Sougoula (45.4% vs. 19.9%; OR: 3.36, CI: 2.66–4.18). The annual incidence of Leishmania infection was also significantly higher in Kemena (18.5% and 17% for 2007 and 2008, respectively) than in Sougoula (5.7% for both years). These data demonstrate that the risk of Leishmania infection was stable in both villages and confirm the initial observation of a significantly higher risk of infection in Kemena (OR: 3.78; CI: 2.45–6.18 in 2007; and OR: 3.36; CI: 1.95–5.8 in 2008; P<0.005). The absence of spatial clustering of LST-positive individuals in both villages indicated that transmission may be occurring anywhere within the villages. Although Kemena and Sougoula are only 5 km apart and share epidemiologic characteristics such as stable transmission and random distribution of LST-positive individuals, they differ markedly in the prevalence and annual incidence of Leishmania infection. Here we establish ongoing transmission of Leishmania in Kemena and Sougoula, Central Mali, and are currently investigating the underlying factors that may be responsible for the discrepant infection rates we observed between them.
Trial Registration
ClinicalTrials.gov NCT00344084
Author Summary
Leishmaniasis is a vector-borne disease transmitted to humans by the bite of an infected sand fly. Leishmaniasis is present in more than 88 countries and affects more than 12 million people. Depending on the species of Leishmania, the host can develop cutaneous leishmaniasis (CL), which is characterized by skin ulcers in uncovered parts of the body or a more severe form, visceral leishmaniasis, which affects the liver and spleen and is fatal if not treated. This study aims to establish the past and present infection with Leishmania parasites in two villages where recent cases have been diagnosed by the dermatology center (CNAM) in Bamako. This was achieved using a Leishmania-specific skin test that was administered annually to permanent residents of Kemena and Sougoula villages from 2006 to 2008. The results show that transmission of Leishmania is active and stable in these two villages. Moreover, despite sharing similar cultural and environmental features, the individuals from Kemena presented three times the risk of Leishmania infection compared with those from Sougoula. Our findings raise awareness of the continued presence of CL in Mali.
doi:10.1371/journal.pntd.0000565
PMCID: PMC2788696  PMID: 20016847

Results 1-25 (35)