PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  HMGB1 enhances smooth muscle cell proliferation and migration in pulmonary artery remodeling 
HMGB1 is a necessary and critical mediator of acute lung injury and can act as a chemoattractant and anti-apoptosis factor in injury or repair in diseases. In this study we sought to determine whether HMGB1 is involved in the remodeling of pulmonary artery and investigate the mechanism. A rat model of pulmonary artery remodeling was successful induced with LPS infusion and the increasing of pulmonary arteries media was obviously inhibited in rats treated with thrice inject of HMGB1 neutralizing antibody. The percent of areas of tunica media to total artery wall was (0.53±0.15), (0.81±0.10) and (0.59±0.11) in control, LPS and antibody group respectively (p<0.05). Meanwhile, treatment with HMGB1 neutralizing antibody not only decreased the level of HMGB1 mRNA and protein significantly, but inhibited the expression of PCAN and Bcl-2 as well. On the contrary, Bax, a gen which represented the apoptosis, revealed an absolutely reversed trend to Bcl-2 in pulmonary arteries. Experiments in vitro showed that HMGB1 could stimulate the proliferation of hPASMC in MTT test and increase the number of migrated cells in a concentration-dependent manner in chemotaxis assay using modified Boyden chambers. In conclusion, data from this study support the concept that HMGB1 is involved in the remodeling of pulmonary artery by enhancing proliferation and migration of smooth muscle cell. Inhibiting HMGB1 may be a new target to deal with the remodeling of pulmonary artery.
PMCID: PMC4128995  PMID: 25120760
HMGB1; pulmonary artery remodeling; proliferation; migration; apoptosis
2.  A comparative study of 22-channel water-perfusion system and solid-state system with 36-sensors in esophageal manometery 
BMC Gastroenterology  2012;12:157.
Background
To compare the characteristics between 22-channel water-perfusion manometry (WPM) and solid-state manometry (SSM) with 36 sensors of the pressure measurements, as well as patients’ discomfort indices in nose and pharynx, the preparation and operation time of the manometry.
Methods
12 volunteers were included in the study. Each of the volunteers underwent esophageal manometry by both 22-channel water-perfusion catheter (WPC) and solid-state catheter (SSC) with 36 sensors in random order, and separated by 30 min. The subjects gave a VAS score soon after each test. Non-parametric tests were used to analyze the differences and Bland-Altman plots were used to assess the consistency of the two systems.
Results
During the wet swallows, there were significant differences between the two systems in three measurements of location of lower esophageal sphincter (LES) upper margin (Z = -2.11, P = 0.035), LES relax ratio (Z = -2.20, P = 0.028) and IRP4s (Z = -2.05, P = 0.041). During the jelly pocket swallows, LES relax ratio measurements of the two systems showed significant differences (Z = -2.805, P = 0.005). Further Bland–Altman plots analysis presented good agreement between the two systems measurements of location of LES upper margin, LES relax ratio and IRP4s. The discomfort indices of subjects’ nasal sensation were higher when inserting the solid-state catheter [5(3.75-5)] than water-perfusion one (2.5(2-4)) (Z = -2.471, P = 0.013), as well as the discomfort indices of pharyngeal sensation (7.5(4.75-9) vs. 4.5(3.75-6.5)), (Z = -2.354, P = 0.019). The preparation time for WPC was 40(39-41) minutes, which was much longer than that for SSC 32.5(31.75-33) minutes, (Z = -3.087, P = 0.002). And the nurses reported it’s much easier to insert WPC (Z = -3.126, P = 0.002).
Conclusions
In conclusion, most pressure measurements were consistent between WPM and SSM. Patients tolerated better with WPC, while for operators, the SSC presented more convenient.
doi:10.1186/1471-230X-12-157
PMCID: PMC3503791  PMID: 23134719
22-channel water-perfusion manometry; Solid-state manometry (SSM) with 36 sensors; Pressure measurements; Patients’ tolerance; Operators’ convenience; Comparative study

Results 1-2 (2)