PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Formation mechanisms for the dominant kinks with different angles in InP nanowires 
Nanoscale Research Letters  2014;9(1):211.
The morphologies and microstructures of kinked InP nanowires (NWs) prepared by solid-source chemical vapor deposition method were examined using scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). Statistical analysis and structural characterization reveal that four different kinds of kinks are dominant in the grown InP NWs with a bending angle of approximately 70°, 90°, 110°, and 170°, respectively. The formation mechanisms of these kinks are discussed. Specifically, the existence of kinks with bending angles of approximately 70° and 110° are mainly attributed to the occurrence of stacking faults and nanotwins in the NWs, which could easily form by the glide of {111} planes, while approximately 90° kinks result from the local amorphorization of InP NWs. Also, approximately 170° kinks are mainly caused by small-angle boundaries, where the insertion of extra atomic planes could make the NWs slightly bent. In addition, multiple kinks with various angles are also observed. Importantly, all these results are beneficial to understand the formation mechanisms of kinks in compound semiconductor NWs, which could guide the design of nanostructured materials, morphologies, microstructures, and/or enhanced mechanical properties.
doi:10.1186/1556-276X-9-211
PMCID: PMC4029968  PMID: 24910572
InP nanowires; Kinks; Microstructures; Formation mechanism; HRTEM; 81.07.-b; 81.05.Ea; 81.07.Gf
2.  The role of interactions between bacterial chaperone, aspartate aminotransferase, and viral protein during virus infection in high temperature environment: the interactions between bacterium and virus proteins 
BMC Microbiology  2013;13:48.
Background
The life cycle of a bacteriophage has tightly programmed steps to help virus infect its host through the interactions between the bacteriophage and its host proteins. However, bacteriophage–host protein interactions in high temperature environment remain poorly understood. To address this issue, the protein interaction between the thermophilic bacteriophage GVE2 and its host thermophilic Geobacillus sp. E263 from a deep-sea hydrothermal vent was characterized.
Results
This investigation showed that the host’s aspartate aminotransferase (AST), chaperone GroEL, and viral capsid protein VP371 formed a linearly interacted complex. The results indicated that the VP371-GroEL-AST complex were up-regulated and co-localized in the GVE2 infection of Geobacillus sp. E263.
Conclusions
As reported, the VP371 is a capsid protein of GVE2 and the host AST is essential for the GVE2 infection. Therefore, our study revealed that the phage could use the anti-stress system of its host to protect the virus reproduction in a high-temperature environment for the first time.
doi:10.1186/1471-2180-13-48
PMCID: PMC3622585  PMID: 23442450
Protein interaction; Thermophile; Bacteriophage
3.  Prevalence and factors associated with nonalcoholic fatty liver disease in shanghai work-units 
BMC Gastroenterology  2012;12:123.
Backgrounds
Nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in Asians. However, data on prevalence and factors associated with NAFLD in Asians are lacking. The aim of this study is to investigate the prevalence of NAFLD in Shanghai employees to assess the relationship between NAFLD and age, gender, metabolic risk factors in this studied population.
Methods
We selected 7152 employees of Shanghai work-units. Each of them underwent detailed medical history-taking, physical examination, laboratory assessments and abdominal ultrasonography. The diagnosis of NAFLD was done according to established criteria. Receiver operating characteristics (ROC) curves were applied to detect areas under the ROC curves for each index. Nominal logistic regression analysis was used to estimate the odds ratio for risk factors of NAFLD.
Results
About 38.17% employees had NAFLD, more in men than in women. The prevalence of NAFLD increased with increasing age. In both genders, the prevalence of metabolic factors was higher in the NAFLD group. Body max index, waist circumference, weight-to-height ratio, blood pressure, blood glucose, total cholesterol, triglyceride, low density lipoprotein, high density lipoprotein and uric acid were found to have a diagnostic value for NAFLD. Body max index is a better index for diagnosing NAFLD. Uric acid is a new diagnosing index not inferior to lipid metabolic factors. Metabolic factors can increase the risk of NAFLD up to 1.5 ~ 3.8 times.
Conclusions
Older age, male gender, metabolic factors such as obesity, abdominal obesity, dyslipidemia, hypertension or type 2 diabetes are risk factors for NAFLD. Prevalence of NAFLD in Shanghai employees is high. Prevention is extremely important. Those achieve the critical point should have early intervention.
doi:10.1186/1471-230X-12-123
PMCID: PMC3499402  PMID: 22978800
Prevalence; Risk factors; Nonalcoholic fatty liver
4.  Genome Analysis of Deep-Sea Thermophilic Phage D6E▿  
Applied and Environmental Microbiology  2010;76(23):7861-7866.
In deep-sea hydrothermsal vent communities, viruses play very important roles. However vent thermophilic bacteriophages remain largely unexplored. In this investigation, a novel vent Geobacillus bacteriophage, D6E, was characterized. Based on comparative genomics and proteomics analyses, the results showed an extensive mosaicism of D6E genome with other mesophilc or thermophilic phages.
doi:10.1128/AEM.01270-10
PMCID: PMC2988599  PMID: 20889772
5.  Synthesis and Growth Mechanism of Ni Nanotubes and Nanowires 
Nanoscale Research Letters  2009;4(9):1015-1020.
Highly ordered Ni nanotube and nanowire arrays were fabricated via electrodeposition. The Ni microstructures and the process of the formation were investigated using conventional and high-resolution transmission electron microscope. Herein, we demonstrated the systematic fabrication of Ni nanotube and nanowire arrays and proposed an original growth mechanism. With the different deposition time, nanotubes or nanowires can be obtained. Tubular nanostructures can be obtained at short time, while nanowires take longer time to form. This formation mechanism is applicable to design and synthesize other metal nanostructures and even compound nanostuctures via template-based electrodeposition.
doi:10.1007/s11671-009-9348-0
PMCID: PMC2893774  PMID: 20596512
Nanotubes; Nanowires; Growth mechanism; Electrodeposition
6.  Synthesis and Growth Mechanism of Ni Nanotubes and Nanowires 
Nanoscale Research Letters  2009;4(9):1015-1020.
Highly ordered Ni nanotube and nanowire arrays were fabricated via electrodeposition. The Ni microstructures and the process of the formation were investigated using conventional and high-resolution transmission electron microscope. Herein, we demonstrated the systematic fabrication of Ni nanotube and nanowire arrays and proposed an original growth mechanism. With the different deposition time, nanotubes or nanowires can be obtained. Tubular nanostructures can be obtained at short time, while nanowires take longer time to form. This formation mechanism is applicable to design and synthesize other metal nanostructures and even compound nanostuctures via template-based electrodeposition.
doi:10.1007/s11671-009-9348-0
PMCID: PMC2893774  PMID: 20596512
Nanotubes; Nanowires; Growth mechanism; Electrodeposition
7.  Boc5, a Non-Peptidic Glucagon-Like Peptide-1 Receptor Agonist, Invokes Sustained Glycemic Control and Weight Loss in Diabetic Mice 
PLoS ONE  2008;3(8):e2892.
Background
Our recent discovery of the substituted cyclobutane Boc5, one of the first non-peptidic agonists at glucagon-like peptide-1 receptors, offers the potential of combining oral availability with full agonism capable of eliciting antidiabetic and antiobesity effects. The present study was aimed at determining the in vivo pharmacologic properties of Boc5 in both normal and diabetic mice following chronic administration, with emphasis on glycemic control and weight loss.
Methodology/Principal Findings
C57BL/6J and db/db mice were treated daily with Boc5 for 4 weeks and a range of pharmacologic parameters, including hemoglobin A1c, intraperitoneal glucose tolerance, insulin tolerance, fasting insulin and leptin levels, food intake, body weight and fat mass, were assessed before and after the treatment. Effects on food intake, gastric emptying, and insulinogenic index were also investigated in animals acutely administered with Boc5. Boc5 (3 mg) was able to induce a durable restoration of glycemic control (normalization of both hemoglobin A1c and intraperitoneal glucose tolerance) in db/db mice, following 4 weeks of daily administration. As with peptidic glucagon-like peptide-1 receptor agonists, its glycemic benefit and weight (fat) loss were associated with dose-dependent effects that included reduction in food intake, slowing of gastric emptying (both of which reduce nutrient-drive at β-cells), stimulation of insulin secretion (which was glucose-dependent), and elevation in insulin sensitivity. There was little effect on normal mice treated in the same manner.
Conclusions/Significance
Our findings suggest that Boc5 is the only non-peptidic molecule reported thus far to simultaneously activate this spectrum of antidiabetic effects.
doi:10.1371/journal.pone.0002892
PMCID: PMC2483413  PMID: 18682834

Results 1-7 (7)