Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Suramin: A Potential Therapy for Diabetic Nephropathy 
PLoS ONE  2013;8(9):e73655.
To determine whether delayed administration of a single dose of suramin, a drug that has been used extensively in humans to treat trypanosomiasis, attenuates renal injury in a leptin receptor deficient C57BLKS/J db/db type 2 diabetic nephropathy (T2DN) mouse model.
Research Design and Methods
Groups of female non-diabetic (control) db/m and diabetic db/db mice of 8 and 16 weeks of age, respectively, were treated with suramin (10 mg/kg) or saline i.v. All animals were euthanized one week later. Measurements in mice 1 week following treatment included the following: body weight; blood glucose; urinary protein excretion; pathological lesions in glomeruli and proximal tubules; changes in protein expression of pro-inflammatory transcription factor nuclear factor κB (NF-κB) and intracellular adhesion molecule-1 (ICAM-1), profibrotic transforming growth factor-β1 (TGF-β1), phospho-SMAD-3 and alpha-smooth muscle actin (α-SMA); and immunohistochemical analysis of leukocyte infiltration and collagen 1A2 (COL1A2) deposition.
Immunoblot analysis revealed increased NF-κB, ICAM-1, TGF-β1, phospho-SMAD-3, and α-SMA proteins in both 9 and 17 week db/db mice as compared to db/m control mice. Immunohistochemical analysis revealed moderate leukocyte infiltration and collagen 1A2 (COL1A2) deposition in 9 week db/db mice that was increased in the 17 week db/db mice. Importantly, suramin significantly decreased expression of all these markers in 9 week db/db mice and partially decreased in 17 week db/db mice without altering body weight, blood glucose or urinary protein excretion. There was no difference in creatinine clearance between 9 week db/m and db/db mice ± suramin. Importantly, in the 17 week db/db mice suramin intervention reversed the impaired creatinine clearance and overt histological damage.
Delayed administration of a single dose of suramin in a model of T2DN attenuated inflammation and fibrosis as well as improved renal function, supporting the use of suramin in T2DN.
PMCID: PMC3767615  PMID: 24040012
2.  Alteration of renal respiratory Complex-III during experimental type-1 diabetes 
Diabetes has become the single most common cause for end-stage renal disease in the United States. It has been established that mitochondrial damage occurs during diabetes; however, little is known about what initiates mitochondrial injury and oxidant production during the early stages of diabetes. Inactivation of mitochondrial respiratory complexes or alteration of their critical subunits can lead to generation of mitochondrial oxidants, mitochondrial damage, and organ injury. Thus, one goal of this study was to determine the status of mitochondrial respiratory complexes in the rat kidney during the early stages of diabetes (5-weeks post streptozotocin injection).
Mitochondrial complex activity assays, blue native gel electrophoresis (BN-PAGE), Complex III immunoprecipitation, and an ATP assay were performed to examine the effects of diabetes on the status of respiratory complexes and energy levels in renal mitochondria. Creatinine clearance and urine albumin excretion were measured to assess the status of renal function in our model.
Interestingly, of all four respiratory complexes only cytochrome c reductase (Complex-III) activity was significantly decreased, whereas two Complex III subunits, Core 2 protein and Rieske protein, were up regulated in the diabetic renal mitochondria. The BN-PAGE data suggested that Complex III failed to assemble correctly, which could also explain the compensatory upregulation of specific Complex III subunits. In addition, the renal F0F1-ATPase activity and ATP levels were increased during diabetes.
In summary, these findings show for the first time that early (and selective) inactivation of Complex-III may contribute to the mitochondrial oxidant production which occurs in the early stages of diabetes.
PMCID: PMC2636815  PMID: 19166612

Results 1-2 (2)