Search tips
Search criteria

Results 1-18 (18)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Randomized Trial of Continuous Subcutaneous Delivery of Exenatide by ITCA 650 Versus Twice-Daily Exenatide Injections in Metformin-Treated Type 2 Diabetes 
Diabetes Care  2013;36(9):2559-2565.
To evaluate ITCA 650, a continuous subcutaneous miniature osmotic pump delivery system of exenatide versus twice-daily exenatide injections (Ex-BID) in subjects with type 2 diabetes.
We conducted a randomized, two-stage, 24-week, open-label, phase 2 study in type 2 diabetes inadequately controlled with metformin. Stage I: 155 subjects were randomized to 20 or 40 μg/day of ITCA 650 or Ex-BID 5→10 μg. Stage II: 131 subjects were rerandomized to 20, 40, 60, or 80 μg/day of ITCA 650. Change from baseline for HbA1c, weight, and fasting plasma glucose were evaluated at weeks 12 and 24.
HbA1c was significantly lower in all groups after 12 and 24 weeks. Stage I: mean change in HbA1c from a mean baseline of 7.9–8.0% was −0.98, −0.95, and −0.72% for the 20 and 40 μg/day ITCA 650 and Ex-BID groups, respectively, with 63, 65, and 50% of subjects achieving HbA1c levels ≤7% (P < 0.05). Stage II: significant (P < 0.05) reductions in HbA1c (∼1.4% from baseline) were achieved with 60 and 80 μg/day ITCA 650, and 86 and 78% of subjects achieved HbA1c ≤7% at 24 weeks; respectively. Weight was reduced by 2.8–3.7 kg (P < 0.05) at 24 weeks in all except the 20→20 μg/day group. ITCA 650 was well tolerated; nausea was lower and transient with 20 μg/day relative to Ex-BID; and 60 μg/day had the best profile of tolerability and HbA1c lowering.
ITCA 650 significantly reduced HbA1c and weight and was well tolerated. The 20→60 μg/day regimen was considered the best dose for further examination in phase 3.
PMCID: PMC3747935  PMID: 23645886
2.  Baseline Adiponectin Levels Do Not Influence the Response to Pioglitazone in ACT NOW 
Diabetes Care  2014;37(6):1706-1711.
Plasma adiponectin levels are reduced in type 2 diabetes mellitus (T2DM) and other insulin-resistant states. We examined whether plasma adiponectin levels at baseline and after pioglitazone treatment in impaired glucose tolerance (IGT) subjects were associated with improved insulin sensitivity (SI) and glucose tolerance status.
A total of 602 high-risk IGT subjects in ACT NOW were randomized to receive pioglitazone or placebo with a median follow-up of 2.4 years.
Pioglitazone reduced IGT conversion to diabetes by 72% in association with improved β-cell function by 64% (insulin secretion/insulin resistance index) and increased tissue sensitivity by 88% (Matsuda index). In pioglitazone-treated subjects, plasma adiponectin concentration increased threefold from 13 ± 0.5 to 38 ± 2.5 μg/mL (P < 0.001) and was strongly correlated with the improvement in SI (r = 0.436, P < 0.001) and modestly correlated with glucose area under the curve during oral glucose tolerance test (r = 0.238, P < 0.005) and insulin secretion/insulin resistance index (r = 0.306, P < 0.005). The increase in adiponectin was a strong predictor of reversion to normal glucose tolerance and prevention of T2DM. In the placebo group, plasma adiponectin did not change and was not correlated with changes in glucose levels. There was an inverse association between baseline plasma adiponectin concentration and progression to diabetes in the placebo group but not in the pioglitazone group.
Baseline adiponectin does not predict the response to pioglitazone. The increase in plasma adiponectin concentration after pioglitazone therapy in IGT subjects is strongly related to improved glucose tolerance status and enhanced tissue sensitivity to insulin.
PMCID: PMC4179517  PMID: 24705615
3.  Effects of (−)-epicatechin on molecular modulators of skeletal muscle growth and differentiation 
The Journal of nutritional biochemistry  2013;25(1):10.1016/j.jnutbio.2013.09.007.
Sarcopenia is a notable and debilitating age-associated condition. Flavonoids are known for their healthy effects and limited toxicity. The flavanol (−)-epicatechin (Epi) enhances exercise capacity in mice and Epi-rich cocoa improves skeletal muscle structure in heart failure patients. (−)-Epicatechin may thus, hold promise as treatment for sarcopenia.
We examined changes in protein levels of molecular modulators of growth and differentiation in young vs. old, human and mouse skeletal muscle. We report the effects of Epi in mice and the results of an initial proof-of-concept trial in humans, where muscle strength and levels of modulators of muscle growth were measured. In mice, myostatin and senescence-associated β-galactosidase levels increase with aging, while those of follistatin and Myf5 decrease. (−)-Epicatechin decreases myostatin and β-galactosidase and increases levels of markers of muscle growth. In humans, myostatin and β-galactosidase increase with aging while follistatin, MyoD and myogenin decrease. Treatment for 7 days with (−)-epicatechin increases hand grip strength and the ratio of plasma follistatin/myostatin.
In conclusion, aging has deleterious effects on modulators of muscle growth/differentiation, the consumption of modest amounts of the flavanol (−)-epicatechin can partially reverse these changes. This flavanol warrants its comprehensive evaluation for the treatment of sarcopenia
PMCID: PMC3857584  PMID: 24314870
Epicatechin; sarcopenia; flavanoids
4.  Reductions in systolic blood pressure with liraglutide in patients with type 2 diabetes: Insights from a patient-level pooled analysis of six randomized clinical trials☆ 
To quantify the effect of liraglutide on systolic blood pressure (SBP) and pulse in patients with type 2 diabetes (T2D), and assess the influence of covariates on observed SBP reductions.
A patient-level pooled analysis of six phase 3, randomized trials was conducted.
The analysis included 2792 randomized patients. In the intention-to-treat population (n = 2783), mean [±SE] SBP reductions from baseline with liraglutide 1.2 mg (2.7 [0.8] mmHg) and 1.8 mg (2.9 [0.7] mmHg) once daily were significantly greater than with placebo (0.5 [0.9] mmHg; P = 0.0029 and P = 0.0004, respectively) after 26 weeks, and were evident after 2 weeks. Liraglutide was also associated with significantly greater SBP reductions than glimepiride and, at a dose of 1.8 mg, insulin glargine and rosiglitazone. SBP reductions with liraglutide weakly correlated with weight loss (Pearson’s correlation coefficient: 0.08–0.12; P ≤ 0.0148). No dependence of these reductions on concomitant antihypertensive medications was detected (P = 0.1304). Liraglutide 1.2 and 1.8 mg were associated with mean increases in pulse of 3 beats per minute (bpm), versus a 1 bpm increase with placebo (P < 0.0001 for each dose versus placebo).
Liraglutide reduces SBP in patients with T2D, including those receiving concomitant antihypertensive medication.
PMCID: PMC4231710  PMID: 24561125
Type 2 diabetes; Hypertension; Blood pressure; Liraglutide
5.  Prediction of Diabetes Based on Baseline Metabolic Characteristics in Individuals at High Risk 
Diabetes Care  2013;36(11):3607-3612.
Individuals with impaired glucose tolerance (IGT) are at high risk for developing type 2 diabetes mellitus (T2DM). We examined which characteristics at baseline predicted the development of T2DM versus maintenance of IGT or conversion to normal glucose tolerance.
We studied 228 subjects at high risk with IGT who received treatment with placebo in ACT NOW and who underwent baseline anthropometric measures and oral glucose tolerance test (OGTT) at baseline and after a mean follow-up of 2.4 years.
In a univariate analysis, 45 of 228 (19.7%) IGT individuals developed diabetes. After adjusting for age, sex, and center, increased fasting plasma glucose, 2-h plasma glucose, ∆G0–120 during OGTT, HbA1c, adipocyte insulin resistance index, ln fasting plasma insulin, and ln ∆I0–120, as well as family history of diabetes and presence of metabolic syndrome, were associated with increased risk of diabetes. At baseline, higher insulin secretion (ln [∆I0–120/∆G0–120]) during the OGTT was associated with decreased risk of diabetes. Higher β-cell function (insulin secretion/insulin resistance or disposition index; ln [∆I0–120/∆G0–120 × Matsuda index of insulin sensitivity]; odds ratio 0.11; P < 0.0001) was the variable most closely associated with reduced risk of diabetes.
In a stepwise multiple-variable analysis, only HbA1c and β-cell function (ln insulin secretion/insulin resistance index) predicted the development of diabetes (r = 0.49; P < 0.0001).
PMCID: PMC3816921  PMID: 24062330
6.  Prevention of Diabetes With Pioglitazone in ACT NOW 
Diabetes  2013;62(11):3920-3926.
We examined the metabolic characteristics that attend the development of type 2 diabetes (T2DM) in 441 impaired glucose tolerance (IGT) subjects who participated in the ACT NOW Study and had complete end-of-study metabolic measurements. Subjects were randomized to receive pioglitazone (PGZ; 45 mg/day) or placebo and were observed for a median of 2.4 years. Indices of insulin sensitivity (Matsuda index [MI]), insulin secretion (IS)/insulin resistance (IR; ΔI0–120/ΔG0–120, ΔIS rate [ISR]0–120/ΔG0–120), and β-cell function (ΔI/ΔG × MI and ΔISR/ΔG × MI) were calculated from plasma glucose, insulin, and C-peptide concentrations during oral glucose tolerance tests at baseline and study end. Diabetes developed in 45 placebo-treated vs. 15 PGZ-treated subjects (odds ratio [OR] 0.28 [95% CI 0.15–0.49]; P < 0.0001); 48% of PGZ-treated subjects reverted to normal glucose tolerance (NGT) versus 28% of placebo-treated subjects (P < 0.005). Higher final glucose tolerance status (NGT > IGT > T2DM) was associated with improvements in insulin sensitivity (OR 0.61 [95% CI 0.54–0.80]), IS (OR 0.61 [95% CI 0.50–0.75]), and β-cell function (ln IS/IR index and ln ISR/IR index) (OR 0.26 [95% CI 0.19–0.37]; all P < 0.0001). Of the factors measured, improved β-cell function was most closely associated with final glucose tolerance status.
PMCID: PMC3806596  PMID: 23863810
7.  (−)-Epicatechin rich cocoa mediated modulation of oxidative stress regulators in skeletal muscle of heart failure and type 2 diabetes patients 
International journal of cardiology  2013;168(4):3982-3990.
Type 2 diabetes (T2D) and heart failure (HF) are associated with high levels of skeletal muscle (SkM) oxidative stress (OS). Health benefits attributed to flavonoids have been ascribed to antioxidation. However, for flavonoids with similar antioxidant potential, end-biological effects vary widely suggesting other mechanistic venues for reducing OS. Decreases in OS may follow the modulation of key regulatory pathways including antioxidant levels (e.g. glutathione) and enzymes such as mitochondrial superoxide dismutase (SOD2) and catalase.
We examined OS-related alterations in SkM in T2D/HF patients (as compared vs. healthy controls) and evaluated the effects of three-month treatment with (−)-epicatechin (Epi) rich cocoa (ERC). To evidence Epi as the mediator of the improved OS profile we examined the effects of pure Epi (vs. water) on SkM OS regulatory systems in a mouse model of insulin resistance and contrasted results vs. normal mice.
There were severe alterations in OS regulatory systems in T2D/HF SkM as compared with healthy controls. Treatment with ERC induced recovery in glutathione levels and decreases in the nitrotyrosilation and carbonylation of proteins. With treatment, key transcriptional factors translocate into the nucleus leading to increases in SOD2 and catalase protein expression and activity levels. In insulin resistant mice, there were alterations in muscle OS and pure Epi replicated the beneficial effects of ERC found in humans.
Major perturbations in SkM OS can be reversed with ERC in T2D/HF patients. Epi likely mediates such effects and may provide an effective means to treat conditions associated with tissue OS.
PMCID: PMC3805662  PMID: 23870648
epicatechin; cocoa; flavanols
8.  New options for the treatment of obesity and type 2 diabetes mellitus (narrative review) ☆, ☆ ☆, ★ 
Moderate weight loss (>5%), which has been associated with improvements in glycemic parameters in patients with dysglycemia, also reduces the presence of other comorbidities, including dyslipidemia and hypertension, culminating in a reduced risk of cardiovascular disease. Lifestyle changes are the recommended preliminary approach to weight loss, with an initial weight-loss goal of 10% of body weight achieved over 6 months at a rate of 1–2 pounds per week selected as an appropriate target to decrease the severity of obesity-related risk factors. Implementing and maintaining the lifestyle changes associated with weight loss can, however, be challenging for many patients. Therefore, additional interventions sometimes may be necessary. Bariatric surgery can also be a highly effective option for weight loss and comorbidity reduction, but surgery carries considerable risks and is still applicable only to selected patients with type 2 diabetes. Thus, attention is turning to the use of weight-loss medications, including 2 recently approved compounds: twice-daily lorcaserin and a once-daily combination of phentermine and topiramate extended-release, both shown to be safe and effective therapies in the management of obesity in patients with type 2 diabetes.
PMCID: PMC4139280  PMID: 23726071
Phentermine; Topiramate extended-release; Obesity; Type 2 diabetes; Cardiovascular
9.  Canagliflozin Lowers Postprandial Glucose and Insulin by Delaying Intestinal Glucose Absorption in Addition to Increasing Urinary Glucose Excretion 
Diabetes Care  2013;36(8):2154-2161.
Canagliflozin, a sodium glucose cotransporter (SGLT) 2 inhibitor, is also a low-potency SGLT1 inhibitor. This study tested the hypothesis that intestinal canagliflozin levels postdose are sufficiently high to transiently inhibit intestinal SGLT1, thereby delaying intestinal glucose absorption.
This two-period, crossover study evaluated effects of canagliflozin on intestinal glucose absorption in 20 healthy subjects using a dual-tracer method. Placebo or canagliflozin 300 mg was given 20 min before a 600-kcal mixed-meal tolerance test. Plasma glucose, 3H-glucose, 14C-glucose, and insulin were measured frequently for 6 h to calculate rates of appearance of oral glucose (RaO) in plasma, endogenous glucose production, and glucose disposal.
Compared with placebo, canagliflozin treatment reduced postprandial plasma glucose and insulin excursions (incremental 0- to 2-h area under the curve [AUC0–2h] reductions of 35% and 43%, respectively; P < 0.001 for both), increased 0- to 6-h urinary glucose excretion (UGE0–6h, 18.2 ± 5.6 vs. <0.2 g; P < 0.001), and delayed RaO. Canagliflozin reduced AUC RaO by 31% over 0 to 1 h (geometric means, 264 vs. 381 mg/kg; P < 0.001) and by 20% over 0 to 2 h (576 vs. 723 mg/kg; P = 0.002). Over 2 to 6 h, canagliflozin increased RaO such that total AUC RaO over 0 to 6 h was <6% lower versus placebo (960 vs. 1,018 mg/kg; P = 0.003). A modest (∼10%) reduction in acetaminophen absorption was observed over the first 2 h, but this difference was not sufficient to explain the reduction in RaO. Total glucose disposal over 0 to 6 h was similar across groups.
Canagliflozin reduces postprandial plasma glucose and insulin by increasing UGE (via renal SGLT2 inhibition) and delaying RaO, likely due to intestinal SGLT1 inhibition.
PMCID: PMC3714520  PMID: 23412078
11.  Signals and Noise in Drug Safety Analyses 
Diabetes Care  2013;36(7):1804-1806.
PMCID: PMC3687287  PMID: 23695816
12.  Pioglitazone slows progression of atherosclerosis in prediabetes independent of changes in cardiovascular risk factors 
To determine whether changes in standard and novel risk factors during the ACT NOW trial explained the slower rate of CIMT progression with pioglitazone treatment in persons with prediabetes.
Methods and Results
CIMT was measured in 382 participants at the beginning and up to three additional times during follow-up of the ACT NOW trial. During an average follow-up of 2.3 years, the mean unadjusted annual rate of CIMT progression was significantly (P=0.01) lower with pioglitazone treatment (4.76 × 10−3 mm/year, 95% CI, 2.39 × 10−3 – 7.14 × 10−3 mm/year) compared with placebo (9.69 × 10−3 mm/year, 95% CI, 7.24 × 10−3 – 12.15 × 10−3 mm/year). High-density lipoprotein cholesterol, fasting and 2-hour glucose, HbA1c, fasting insulin, Matsuda insulin sensitivity index, adiponectin and plasminogen activator inhibitor-1 levels improved significantly with pioglitazone treatment compared with placebo (P < 0.001). However, the effect of pioglitazone on CIMT progression was not attenuated by multiple methods of adjustment for traditional, metabolic and inflammatory risk factors and concomitant medications, and was independent of changes in risk factors during pioglitazone treatment.
Pioglitazone slowed progression of CIMT, independent of improvement in hyperglycemia, insulin resistance, dyslipidemia and systemic inflammation in prediabetes. These results suggest a possible direct vascular benefit of pioglitazone.
PMCID: PMC3908828  PMID: 23175674
Carotid atherosclerosis progression; Impaired glucose tolerance; Insulin resistance; Inflammation; Pioglitazone
13.  Remogliflozin Etabonate, a Selective Inhibitor of the Sodium-Glucose Transporter 2, Improves Serum Glucose Profiles in Type 1 Diabetes 
Diabetes Care  2012;35(11):2198-2200.
Remogliflozin etabonate (RE), an inhibitor of the sodium-glucose transporter 2, improves glucose profiles in type 2 diabetes. This study assessed safety, tolerability, pharmacokinetics, and pharmacodynamics of RE in subjects with type 1 diabetes.
Ten subjects managed with continuous subcutaneous insulin infusion were enrolled. In addition to basal insulin, subjects received five randomized treatments: placebo, prandial insulin, 50 mg RE, 150 mg RE, and mg RE 500.
Adverse events and incidence of hypoglycemia with RE did not differ from placebo and prandial insulin groups. RE significantly increased urine glucose excretion and reduced the rise in plasma glucose concentration after oral glucose. RE reduced incremental adjusted weighted mean glucose (0–4 h) values by 42–49 mg/dL and mean glucose (0–10 h) by 52–69 mg/dL.
RE can be safely administered with insulin in type 1 diabetes and reduces plasma glucose concentrations compared with placebo.
PMCID: PMC3476920  PMID: 23011728
14.  Adipose tissue depot and cell size dependency of adiponectin synthesis and secretion in human obesity 
Adipocyte  2013;2(4):217-226.
Adiponectin is an insulin sensitizing fat cell (FC) hormone whose levels are related to adipose tissue (AT) mass and depot distribution. We hypothesized that the nature of AT expansion (hypertrophy vs. hyperplasia) contributes to obesity-related reductions in serum adiponectin and that this effect is influenced by the regional distribution of AT to subcutaneous (S) and visceral (V) depots. Thirteen obese subjects provided paired AT biopsies. Serum total and high molecular weight (HMW) adiponectin levels were determined by ELISA. Secretion was quantified following 24-h explant culture. FC size, number, % large, and % small FC were determined by microscopic analysis. Secretion of total adiponectin was highest by SAT (P = 0.008) and correlated more strongly with serum adiponectin (total: P = 0.015, r = 0.77; HMW: P = 0.005, r = 0.83) than did secretion by VAT (P = 0.05, r = 0.66 for both). FC size was greatest in SAT and correlated negatively with both serum (total: P = 0.01, r = −0.74; HMW: P = 0.03, r = −0.69) and secreted (total: P = 0.05, r = −0.72; HMW: P = 0.02, r = −0.87) adiponectin. The % small FC in SAT correlated positively with both serum (total: P = 0.006, r = 0.87; HMW: P = 0.009, r = 0.79) and secreted (total: P = 0.03, r = 0.75; HMW: P = 0.01, r = 0.92) adiponectin. VAT FC size correlated negatively with serum HMW adiponectin (P = 0.01, r = −0.76) but not with any measure of secretion. VAT had the greatest % small FC, which related positively to serum HMW (P = 0.004, r = 0.81) and to secreted total adiponectin (P = 0.02, r = 0.78). These studies indicate that differences in fat cell size and depot distribution of AT expansion are important influences on adiponectin in obesity.
PMCID: PMC3774697  PMID: 24052897
adipocyte; fat cell size; adiponectin; high molecular weight; insulin resistance; adipose tissue depots; subcutaneous adipose tissue; visceral adipose tissue
15.  A PPARγ-FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis 
Nature  2012;485(7398):391-394.
PMCID: PMC3358516  PMID: 22522926
FGF1; PPARγ; Thiazolidinedione; adipose remodelling; insulin resistance
16.  Increased SRF transcriptional activity in human and mouse skeletal muscle is a signature of insulin resistance 
Insulin resistance in skeletal muscle is a key phenotype associated with type 2 diabetes (T2D) for which the molecular mediators remain unclear. We therefore conducted an expression analysis of human muscle biopsies from patients with T2D; normoglycemic but insulin-resistant subjects with a parental family history (FH+) of T2D; and family history-negative control individuals (FH–). Actin cytoskeleton genes regulated by serum response factor (SRF) and its coactivator megakaryoblastic leukemia 1 (MKL1) had increased expression in T2D and FH+ groups. Furthermore, striated muscle activator of Rho signaling (STARS), an activator of SRF, was upregulated in T2D and FH+ and was inversely correlated with insulin sensitivity. Skeletal muscle from insulin-resistant mice recapitulated this gene expression pattern and showed reduced G-actin and increased nuclear localization of MKL1, each of which regulates SRF activity. Overexpression of MKL1 or reduction in G-actin decreased insulin-stimulated Akt phosphorylation, whereas reduction of STARS expression increased insulin signaling and glucose uptake. Pharmacological SRF inhibition by CCG-1423 reduced nuclear MKL1 and improved glucose uptake and tolerance in insulin-resistant mice in vivo. Thus, SRF pathway alterations are linked to insulin resistance, may contribute to T2D pathogenesis, and could represent therapeutic targets.
PMCID: PMC3049368  PMID: 21393865
17.  Actos Now for the prevention of diabetes (ACT NOW) study 
Impaired glucose tolerance (IGT) is a prediabetic state. If IGT can be prevented from progressing to overt diabetes, hyperglycemia-related complications can be avoided. The purpose of the present study was to examine whether pioglitazone (ACTOS®) can prevent progression of IGT to type 2 diabetes mellitus (T2DM) in a prospective randomized, double blind, placebo controlled trial.
602 IGT subjects were identified with OGTT (2-hour plasma glucose = 140–199 mg/dl). In addition, IGT subjects were required to have FPG = 95–125 mg/dl and at least one other high risk characteristic. Prior to randomization all subjects had measurement of ankle-arm blood pressure, systolic/diastolic blood pressure, HbA1C, lipid profile and a subset had frequently sampled intravenous glucose tolerance test (FSIVGTT), DEXA, and ultrasound determination of carotid intima-media thickness (IMT). Following this, subjects were randomized to receive pioglitazone (45 mg/day) or placebo, and returned every 2–3 months for FPG determination and annually for OGTT. Repeat carotid IMT measurement was performed at 18 months and study end. Recruitment took place over 24 months, and subjects were followed for an additional 24 months. At study end (48 months) or at time of diagnosis of diabetes the OGTT, FSIVGTT, DEXA, carotid IMT, and all other measurements were repeated.
Primary endpoint is conversion of IGT to T2DM based upon FPG ≥ 126 or 2-hour PG ≥ 200 mg/dl. Secondary endpoints include whether pioglitazone can: (i) improve glycemic control (ii) enhance insulin sensitivity, (iii) augment beta cell function, (iv) improve risk factors for cardiovascular disease, (v) cause regression/slow progression of carotid IMT, (vi) revert newly diagnosed diabetes to normal glucose tolerance.
ACT NOW is designed to determine if pioglitazone can prevent/delay progression to diabetes in high risk IGT subjects, and to define the mechanisms (improved insulin sensitivity and/or enhanced beta cell function) via which pioglitazone exerts its beneficial effect on glucose metabolism to prevent/delay onset of T2DM.
Trial Registration
clinical identifier: NCT00220961
PMCID: PMC2725044  PMID: 19640291
18.  Normal insulin-dependent activation of Akt/protein kinase B, with diminished activation of phosphoinositide 3-kinase, in muscle in type 2 diabetes 
Journal of Clinical Investigation  1999;104(6):733-741.
To determine whether the serine/threonine kinase Akt (also known as protein kinase B) is activated in vivo by insulin administration in humans, and whether impaired activation of Akt could play a role in insulin resistance, we measured the activity and phosphorylation of Akt isoforms in skeletal muscle from 3 groups of subjects: lean, obese nondiabetic, and obese type 2 diabetic. Vastus lateralis biopsies were taken in the basal (overnight fast) and insulin-stimulated (euglycemic clamp) states. Insulin-stimulated glucose disposal was reduced 31% in obese subjects and 63% in diabetic subjects, compared with lean subjects. Glycogen synthase (GS) activity in the basal state was reduced 28% in obese subjects and 49% in diabetic subjects, compared with lean subjects. Insulin-stimulated GS activity was reduced 30% in diabetic subjects. Insulin treatment activated the insulin receptor substrate-1–associated (IRS-1–associated) phosphoinositide 3-kinase (PI 3-kinase) 6.1-fold in lean, 3.7-fold in obese, and 2.4-fold in diabetic subjects. Insulin also stimulated IRS-2–associated PI 3-kinase activity 2.2-fold in lean subjects, but only 1.4-fold in diabetic subjects. Basal activity of Akt1/Akt2 (Akt1/2) and Akt3 was similar in all groups. Insulin increased Akt1/2 activity 1.7- to 2.0-fold, and tended to activate Akt3, in all groups. Insulin-stimulated phosphorylation of Akt1/2 was normal in obese and diabetic subjects. In lean subjects only, insulin-stimulated Akt1/2 activity correlated with glucose disposal rate. Thus, insulin activation of Akt isoforms is normal in muscle of obese nondiabetic and obese diabetic subjects, despite decreases of approximately 50% and 39% in IRS-1– and IRS-2–associated PI 3-kinase activity, respectively, in obese diabetic subjects. It is therefore unlikely that Akt plays a major role in the resistance to insulin action on glucose disposal or GS activation that is observed in muscle of obese type 2 diabetic subjects.
PMCID: PMC408433  PMID: 10491408

Results 1-18 (18)