PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Intrahepatic Lipid Content and Insulin Resistance Are More Strongly Associated with Impaired NEFA Suppression after Oral Glucose Loading Than with Fasting NEFA Levels in Healthy Older Individuals 
Introduction. The mechanisms underlying the association between insulin resistance and intrahepatic lipid (IHL) accumulation are not completely understood. We sought to determine whether this association was explained by differences in fasting non-esterified fatty acid (NEFA) levels and/or NEFA suppression after oral glucose loading. Materials and Methods. We performed a cross-sectional analysis of 70 healthy participants in the Hertfordshire Physical Activity Trial (39 males, age 71.3 ± 2.4 years) who underwent oral glucose tolerance testing with glucose, insulin, and NEFA levels measured over two hours. IHL was quantified with magnetic resonance spectroscopy. Insulin sensitivity was measured with the oral glucose insulin sensitivity (OGIS) model, the leptin: adiponectin ratio (LAR), and the homeostasis model assessment (HOMA). Results. Measures of insulin sensitivity were not associated with fasting NEFA levels, but OGIS was strongly associated with NEFA suppression at 30 minutes and strongly inversely associated with IHL. Moreover, LAR was strongly inversely associated with NEFA suppression and strongly associated with IHL. This latter association (beta = 1.11 [1.01, 1.21], P = 0.026) was explained by reduced NEFA suppression (P = 0.24 after adjustment). Conclusions. Impaired postprandial NEFA suppression, but not fasting NEFA, contributes to the strong and well-established association between whole body insulin resistance and liver fat accumulation.
doi:10.1155/2013/870487
PMCID: PMC3659510  PMID: 23737780
2.  Liver fat accumulation is associated with reduced hepatic insulin extraction and beta cell dysfunction in healthy older individuals 
Background
There is a well-established association between type 2 diabetes and non-alcoholic fatty liver disease (NAFLD) secondary to excess accumulation of intrahepatic lipid (IHL), but the mechanistic basis for this association is unclear. Emerging evidence suggests that in addition to being associated with insulin resistance, NAFLD may be associated with relative beta-cell dysfunction. We sought to determine the influence of liver fat on hepatic insulin extraction and indices of beta-cell function in a cohort of apparently healthy older white adults.
Methods
We performed a cross-sectional analysis of 70 healthy participants in the Hertfordshire Physical Activity Trial (39 males, age 71.3 ± 2.4 years) who underwent oral glucose tolerance testing with glucose, insulin and C-Peptide levels measured every 30 minutes over two hours. The areas under the concentration curve for glucose, insulin and C-Peptide were used to quantify hepatic insulin extraction (HIE), the insulinogenic index (IGI), the C-Peptide increment (CGI), the Disposition Index (DI) and Adaptation Index (AI). Visceral fat was quantified with magnetic resonance (MR) imaging and IHL with MR spectroscopy. Insulin sensitivity was measured with the Oral Glucose Insulin Sensitivity (OGIS) model.
Results
29 of 70 participants (41%) exceeded our arbitrary threshold for NAFLD, i.e. IHL >5.5%. Compared to those with normal IHL, those with NAFLD had higher weight, BMI, waist and MR visceral fat, with lower insulin sensitivity and hepatic insulin extraction. Alcohol consumption, age, HbA1c and alanine aminotransferase (ALT) levels were similar in both groups. Insulin and C-Peptide excursions after oral glucose loading were higher in the NAFLD group, but the CGI and AI were significantly lower, indicating a relative defect in beta-cell function that is only apparent when C-Peptide is measured and when dynamic changes in glucose levels and also insulin sensitivity are taken into account. There was no difference in IGI or DI between the groups.
Conclusions
Although increased IHL was associated with greater insulin secretion, modelled parameters suggested relative beta-cell dysfunction with NAFLD in apparently healthy older adults, which may be obscured by reduced hepatic insulin extraction. Further studies quantifying pancreatic fat content directly and its influence on beta cell function are warranted.
Trial registration
ISRCTN60986572
doi:10.1186/1758-5996-6-43
PMCID: PMC3974597  PMID: 24669786
Adaptation index; Beta cell dysfunction; C-peptide-genic index; Disposition index; Hepatic insulin extraction; Insulinogenic index; Intrahepatic lipid; Non-alcoholic fatty liver disease
4.  Genetic Defects in Human Pericentrin Are Associated With Severe Insulin Resistance and Diabetes 
Diabetes  2011;60(3):925-935.
OBJECTIVE
Genetic defects in human pericentrin (PCNT), encoding the centrosomal protein pericentrin, cause a form of osteodysplastic primordial dwarfism that is sometimes reported to be associated with diabetes. We thus set out to determine the prevalence of diabetes and insulin resistance among patients with PCNT defects and examined the effects of pericentrin depletion on insulin action using 3T3-L1 adipocytes as a model system.
RESEARCH DESIGN AND METHODS
A cross-sectional metabolic assessment of 21 patients with PCNT mutations was undertaken. Pericentrin expression in human tissues was profiled using quantitative real-time PCR. The effect of pericentrin knockdown on insulin action and adipogenesis in 3T3-L1 adipocytes was determined using Oil red O staining, gene-expression analysis, immunoblotting, and glucose uptake assays. Pericentrin expression and localization also was determined in skeletal muscle.
RESULTS
Of 21 patients with genetic defects in PCNT, 18 had insulin resistance, which was severe in the majority of subjects. Ten subjects had confirmed diabetes (mean age of onset 15 years [range 5–28]), and 13 had metabolic dyslipidemia. All patients without insulin resistance were younger than 4 years old. Knockdown of pericentrin in adipocytes had no effect on proximal insulin signaling but produced a twofold impairment in insulin-stimulated glucose uptake, approximately commensurate with an associated defect in cell proliferation and adipogenesis. Pericentrin was highly expressed in human skeletal muscle, where it showed a perinuclear distribution.
CONCLUSIONS
Severe insulin resistance and premature diabetes are common features of PCNT deficiency but are not congenital. Partial failure of adipocyte differentiation may contribute to this, but pericentrin deficiency does not impair proximal insulin action in adipocytes.
doi:10.2337/db10-1334
PMCID: PMC3046854  PMID: 21270239
5.  Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile 
Kilpeläinen, Tuomas O | Zillikens, M Carola | Stančáková, Alena | Finucane, Francis M | Ried, Janina S | Langenberg, Claudia | Zhang, Weihua | Beckmann, Jacques S | Luan, Jian’an | Vandenput, Liesbeth | Styrkarsdottir, Unnur | Zhou, Yanhua | Smith, Albert Vernon | Zhao, Jing-Hua | Amin, Najaf | Vedantam, Sailaja | Shin, So Youn | Haritunians, Talin | Fu, Mao | Feitosa, Mary F | Kumari, Meena | Halldorsson, Bjarni V | Tikkanen, Emmi | Mangino, Massimo | Hayward, Caroline | Song, Ci | Arnold, Alice M | Aulchenko, Yurii S | Oostra, Ben A | Campbell, Harry | Cupples, L Adrienne | Davis, Kathryn E | Döring, Angela | Eiriksdottir, Gudny | Estrada, Karol | Fernández-Real, José Manuel | Garcia, Melissa | Gieger, Christian | Glazer, Nicole L | Guiducci, Candace | Hofman, Albert | Humphries, Steve E | Isomaa, Bo | Jacobs, Leonie C | Jula, Antti | Karasik, David | Karlsson, Magnus K | Khaw, Kay-Tee | Kim, Lauren J | Kivimäki, Mika | Klopp, Norman | Kühnel, Brigitte | Kuusisto, Johanna | Liu, Yongmei | Ljunggren, Östen | Lorentzon, Mattias | Luben, Robert N | McKnight, Barbara | Mellström, Dan | Mitchell, Braxton D | Mooser, Vincent | Moreno, José Maria | Männistö, Satu | O’Connell, Jeffery R | Pascoe, Laura | Peltonen, Leena | Peral, Belén | Perola, Markus | Psaty, Bruce M | Salomaa, Veikko | Savage, David B | Semple, Robert K | Skaric-Juric, Tatjana | Sigurdsson, Gunnar | Song, Kijoung S | Spector, Timothy D | Syvänen, Ann-Christine | Talmud, Philippa J | Thorleifsson, Gudmar | Thorsteinsdottir, Unnur | Uitterlinden, André G | van Duijn, Cornelia M | Vidal-Puig, Antonio | Wild, Sarah H | Wright, Alan F | Clegg, Deborah J | Schadt, Eric | Wilson, James F | Rudan, Igor | Ripatti, Samuli | Borecki, Ingrid B | Shuldiner, Alan R | Ingelsson, Erik | Jansson, John-Olov | Kaplan, Robert C | Gudnason, Vilmundur | Harris, Tamara B | Groop, Leif | Kiel, Douglas P | Rivadeneira, Fernando | Walker, Mark | Barroso, Inês | Vollenweider, Peter | Waeber, Gérard | Chambers, John C | Kooner, Jaspal S | Soranzo, Nicole | Hirschhorn, Joel N | Stefansson, Kari | Wichmann, H-Erich | Ohlsson, Claes | O’Rahilly, Stephen | Wareham, Nicholas J | Speliotes, Elizabeth K | Fox, Caroline S | Laakso, Markku | Loos, Ruth J F
Nature Genetics  2011;43(8):753-760.
Genome-wide association studies have identified 32 loci associated with body mass index (BMI), a measure that does not allow distinguishing lean from fat mass. To identify adiposity loci, we meta-analyzed associations between ~2.5 million SNPs and body fat percentage from 36,626 individuals, and followed up the 14 most significant (P<10−6) independent loci in 39,576 individuals. We confirmed the previously established adiposity locus in FTO (P=3×10−26), and identified two new loci associated with body fat percentage, one near IRS1 (P=4×10−11) and one near SPRY2 (P=3×10−8). Both loci harbour genes with a potential link to adipocyte physiology, of which the locus near IRS1 shows an intriguing association pattern. The body-fat-decreasing allele associates with decreased IRS1 expression and with an impaired metabolic profile, including decreased subcutaneous-to-visceral fat ratio, increased insulin resistance, dyslipidemia, risk of diabetes and coronary artery disease, and decreased adiponectin levels. Our findings provide new insights into adiposity and insulin resistance.
doi:10.1038/ng.866
PMCID: PMC3262230  PMID: 21706003
6.  Altered C-Fiber Function as an Indicator of Early Peripheral Neuropathy in Individuals With Impaired Glucose Tolerance 
Diabetes Care  2010;33(1):174-176.
OBJECTIVE
This study explored the importance of glycemic burden compared with features of the metabolic syndrome in the pathogenesis of diabetic neuropathy by comparing C-fiber function in people with type 1 diabetes to that in people with impaired glucose tolerance (IGT).
RESEARCH DESIGN AND METHODS
The axon reflex–elicited flare areas (LDIflares) were measured with a laser Doppler imager (LDI) in age-, height-, and BMI-matched groups with IGT (n = 14) and type 1 diabetes (n = 16) and in healthy control subjects (n = 16).
RESULTS
The flare area was reduced in the IGT group compared with the control (2.78 ± 1.1 vs. 5.23 ± 1.7 cm2, P = 0.0001) and type 1 diabetic (5.16 ± 2.3 cm2, P = 0.002) groups, whereas the flare area was similar in the type 1 diabetic and control groups.
CONCLUSIONS
This technique suggests that small-fiber neuropathy is a feature of IGT. The absence of similar small-fiber neuropathy in those with longstanding type 1 diabetes suggests that glycemia may not be the major determinant of small-fiber neuropathy in IGT.
doi:10.2337/dc09-0101
PMCID: PMC2797968  PMID: 20040675
7.  Validation of the historical adulthood physical activity questionnaire (HAPAQ) against objective measurements of physical activity 
Background
Lifetime physical activity energy expenditure (PAEE) is an important determinant of risk for many chronic diseases but remains challenging to measure. Previously reported historical physical activity (PA) questionnaires appear to be reliable, but their validity is less well established.
Methods
We sought to design and validate an historical adulthood PA questionnaire (HAPAQ) against objective PA measurements from the same individuals. We recruited from a population-based cohort in Cambridgeshire, UK, (Medical Research Council Ely Study) in whom PA measurements, using individually calibrated heart rate monitoring, had been obtained in the past, once between 1994 and 1996 and once between 2000 and 2002. 100 individuals from this cohort attended for interview. Historical PA within the domains of home, work, transport, sport and exercise was recalled using the questionnaire by asking closed questions repeated for several discrete time periods from the age of 20 years old to their current age. The average PAEE from the 2 periods of objective measurements was compared to the self-reported data from the corresponding time periods in the questionnaire.
Results
Significant correlations were observed between HAPAQ-derived and objectively measured total PAEE for both time periods (Spearman r = 0.44; P < 0.001). Similarly, self-reported time spent in vigorous PA was significantly correlated with objective measurements of vigorous PA (Spearman r = 0.40; P < 0.001).
Conclusions
HAPAQ demonstrates convergent validity for total PAEE and vigorous PA. This instrument will be useful for ranking individuals according to their past PA in studies of chronic disease aetiology, where activity may be an important underlying factor contributing to disease pathogenesis.
doi:10.1186/1479-5868-7-54
PMCID: PMC2902409  PMID: 20576086
8.  Randomized controlled trial of the efficacy of aerobic exercise in reducing metabolic risk in healthy older people: The Hertfordshire Physical Activity Trial 
Background
While there are compelling observational data confirming that individuals who exercise are healthier, the efficacy of aerobic exercise interventions to reduce metabolic risk and improve insulin sensitivity in older people has not been fully elucidated. Furthermore, while low birth weight has been shown to predict adverse health outcomes later in life, its influence on the response to aerobic exercise is unknown. Our primary objective is to assess the efficacy of a fully supervised twelve week aerobic exercise intervention in reducing clustered metabolic risk in healthy older adults. A secondary objective is to determine the influence of low birth weight on the response to exercise in this group.
Methods/Design
We aim to recruit 100 participants born between 1931–1939, from the Hertfordshire Cohort Study and randomly assign them to no intervention or to 36 fully supervised one hour sessions on a cycle ergometer, over twelve weeks. Each participant will undergo detailed anthropometric and metabolic assessment pre- and post-intervention, including muscle biopsy, magnetic resonance imaging and spectroscopy, objective measurement of physical activity and sub-maximal fitness testing.
Discussion
Given the extensive phenotypic characterization, this study will provide valuable insights into the mechanisms underlying the beneficial effects of aerobic exercise as well as the efficacy, feasibility and safety of such interventions in this age group.
Trial Registration
Current Controlled Trials: ISRCTN60986572
doi:10.1186/1472-6823-9-15
PMCID: PMC2708167  PMID: 19545359

Results 1-8 (8)