PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Can the chronic administration of the combination of buprenorphine and naloxone block dopaminergic activity causing anti-reward and relapse potential? 
Molecular neurobiology  2011;44(3):250-268.
Opiate addiction is associated with many adverse health and social harms, fatal overdose, infectious disease transmission, elevated health care costs, public disorder, and crime. Although community-based addiction treatment programs continue to reduce the harms of opiate addiction with narcotic substitution therapy such as methadone maintenance, there remains a need to find a substance that not only blocks opiate-type receptors (mu, delta, etc.) but also provides agonistic activity; hence the impetus arose for the development of a combination of narcotic antagonism and mu receptor agonist therapy. After three decades of extensive research the federal Drug Abuse Treatment Act 2000 (DATA) opened a window of opportunity for patients with addiction disorders by providing increased access to options for treatment. DATA allows physicians who complete a brief specialty-training course to become certified to prescribe buprenorphine and buprenorphine/naloxone (Subutex, Suboxone) for treatment of patients with opioid dependence. Clinical studies indicate buprenorphine maintenance is as effective as methadone maintenance in retaining patients in substance abuse treatment and in reducing illicit opioid use. With that stated, we must consider the long-term benefits or potential toxicity attributed to Subutex or Suboxone. We describe a mechanism whereby chronic blockade of opiate receptors, in spite of only partial opiate agonist action, may ultimately block dopaminergic activity causing anti-reward and relapse potential. While the direct comparison is not as yet available, toxicity to buprenorphine can be found in the scientific literature. In considering our cautionary note in this commentary, we are cognizant that to date this is what we have available, and until such a time when the real magic bullet is discovered, we will have to endure. However, more than anything else this commentary should at least encourage the development of thoughtful new strategies to target the specific brain regions responsible for relapse prevention.
doi:10.1007/s12035-011-8206-0
PMCID: PMC3682495  PMID: 21948099
2.  Neuropsychopharmacology and Neurogenetic Aspects of Executive Functioning: Should Reward Gene Polymorphisms Constitute a Diagnostic Tool to Identify Individuals at Risk for Impaired Judgment? 
Molecular neurobiology  2012;45(2):298-313.
Executive functions are processes that act in harmony to control behaviors necessary for maintaining focus and achieving outcomes. Executive dysfunction in neuropsychiatric disorders is attributed to structural or functional pathology of brain networks involving prefrontal cortex (PFC) and its connections with other brain regions. The PFC receives innervations from different neurons associated with a number of neurotransmitters, especially dopamine (DA). Here we review findings on the contribution of PFC DA to higher-order cognitive and emotional behaviors. We suggest examination of multifactorial interactions of an individual’s genetic history, along with environmental risk factors, can assist in the characterization of executive functioning for that individual. Based upon the results of genetic studies we also propose genetic mapping as a probable diagnostic tool serving as a therapeutic adjunct for augmenting executive functioning capabilities. We conclude that preservation of the neurological underpinnings of executive functions requires the integrity of complex neural systems including the influence of specific genes and associated polymorphisms to provide adequate neurotransmission.
doi:10.1007/s12035-012-8247-z
PMCID: PMC3681950  PMID: 22371275
Executive functions; dopamine; prefrontal cortex; genetics; Reward Deficiency Syndrome (RDS)
3.  Healing enhancement of chronic venous stasis ulcers utilizing H-WAVE® device therapy: a case series 
Cases Journal  2010;3:54.
Introduction
Approximately 15% (more than 2 million individuals, based on these estimates) of all people with diabetes will develop a lower-extremity ulcer during the course of the disease. Ultimately, between 14% and 20% of patients with lower-extremity diabetic ulcers will require amputation of the affected limb. Analysis of the 1995 Medicare claims revealed that lower-extremity ulcer care accounted for $1.45 billion in Medicare costs. Therapies that promote rapid and complete healing and reduce the need for expensive surgical procedures would impact these costs substantially. One such example is the electrotherapeutic modality utilizing the H-Wave® device therapy and program.
It has been recently shown in acute animal experiments that the H-Wave® device stimulation induces a nitric oxide-dependent increase in microcirculation of the rat Cremaster skeletal muscle. Moreover, chronic H-wave® device stimulation of rat hind limbs not only increases blood flow but induces measured angiogenesis. Coupling these findings strongly suggests that H-Wave® device stimulation promotes rapid and complete healing without need of expensive surgical procedures.
Case presentation
We decided to do a preliminary evaluation of the H-Wave® device therapy and program in three seriously afflicted diabetic patients. Patient 1 had chronic venous stasis for 6 years. Patient 2 had chronic recurrent leg ulcerations. Patient 3 had a chronic venous stasis ulcer for 2 years. All were dispensed a home H-Wave® unit. Patient 1 had no other treatment, patient 2 had H-Wave® therapy along with traditional compressive therapy, and patient 3 had no other therapy.
For patient 1, following treatment the ulcer completely healed with the H-Wave® device and program after 3 months. For patient 2, by one month complete ulcer closure occurred. Patient 3 had a completely healed ulcer after 9 months.
Conclusions
While most diabetic ulcers can be treated successfully on an outpatient basis, a significant proportion will persist and become infected. Based on this preliminary case series investigation we found that three patients prescribed H-Wave® home treatment demonstrate accelerated healing with excellent results. While these results are encouraging, additional large scale investigation is warranted before any interpretation is given to these interesting outcomes.
doi:10.1186/1757-1626-3-54
PMCID: PMC2831833  PMID: 20181141
4.  Repetitive H-Wave® device stimulation and program induces significant increases in the range of motion of post operative rotator cuff reconstruction in a double-blinded randomized placebo controlled human study 
Background
Albeit other prospective randomized controlled clinical trials on H-Wave Device Stimulation (HWDS), this is the first randomized double-blind Placebo controlled prospective study that assessed the effects of HWDS on range of motion and strength testing in patients who underwent rotator cuff reconstruction.
Methods
Twenty-two patients were randomly assigned into one of two groups: 1) H-Wave device stimulation (HWDS); 2) Sham-Placebo Device (PLACEBO). All groups received the same postoperative dressing and the same device treatment instructions. Group I was given HWDS which they were to utilize for one hour twice a day for 90 days postoperatively. Group II was given the same instructions with a Placebo device (PLACEBO). Range of motion was assessed by using one-way ANOVA with a Duncan Multiple Range Test for differences between the groups preoperatively, 45 days postoperatively, and 90 days postoperatively by using an active/passive scale for five basic ranges of motions: Forward Elevation, External Rotation (arm at side), External Rotation (arm at 90 degrees abduction), Internal Rotation (arm at side), and Internal Rotation (arm at 90 degrees abduction). The study also evaluated postoperative changes in strength by using the Medical Research Council (MRC) grade assessed strength testing.
Results
Patients who received HWDS compared to PLACEBO demonstrated, on average, significantly improved range of motion. Results confirm a significant difference for external rotation at 45 and 90 days postoperatively; active range at 45 days postoperatively (p = 0.007), active at 90 days postoperatively (p = 0.007). Internal rotation also demonstrated significant improvement compared to PLACEBO at 45 and 90 days postoperatively; active range at 45 days postoperatively (p = 0.007), and active range at 90 days postoperatively (p = 0.006). There was no significant difference between the two groups for strength testing.
Conclusion
HWDS compared to PLACEBO induces a significant increase in range of motion in positive management of rotator cuff reconstruction, supporting other previous research on HWDS and improvement in function. Interpretation of this preliminary investigation while suggestive of significant increases in Range of Motion of Post -Operative Rotator Cuff Reconstruction, warrants further confirmation in a larger double-blinded sham controlled randomized study.
doi:10.1186/1471-2474-10-132
PMCID: PMC2777146  PMID: 19874593
5.  Age-related increases in parathyroid hormone may be antecedent to both osteoporosis and dementia 
Background
Numerous studies have reported that age-induced increased parathyroid hormone plasma levels are associated with cognitive decline and dementia. Little is known about the correlation that may exist between neurological processing speed, cognition and bone density in cases of hyperparathyroidism. Thus, we decided to determine if parathyroid hormone levels correlate to processing speed and/or bone density.
Methods
The recruited subjects that met the inclusion criteria (n = 92, age-matched, age 18-90 years, mean = 58.85, SD = 15.47) were evaluated for plasma parathyroid hormone levels and these levels were statistically correlated with event-related P300 potentials. Groups were compared for age, bone density and P300 latency. One-tailed tests were used to ascertain the statistical significance of the correlations. The study groups were categorized and analyzed for differences of parathyroid hormone levels: parathyroid hormone levels <30 (n = 30, mean = 22.7 ± 5.6 SD) and PTH levels >30 (n = 62, mean = 62.4 ± 28.3 SD, p ≤ 02).
Results
Patients with parathyroid hormone levels <30 showed statistically significantly less P300 latency (P300 = 332.7 ± 4.8 SE) relative to those with parathyroid hormone levels >30, which demonstrated greater P300 latency (P300 = 345.7 ± 3.6 SE, p = .02). Participants with parathyroid hormone values <30 (n = 26) were found to have statistically significantly higher bone density (M = -1.25 ± .31 SE) than those with parathyroid hormone values >30 (n = 48, M = -1.85 ± .19 SE, p = .04).
Conclusion
Our findings of a statistically lower bone density and prolonged P300 in patients with high parathyroid hormone levels may suggest that increased parathyroid hormone levels coupled with prolonged P300 latency may become putative biological markers of both dementia and osteoporosis and warrant intensive investigation.
doi:10.1186/1472-6823-9-21
PMCID: PMC2768728  PMID: 19825157
6.  Preliminary investigation of plasma levels of sex hormones and human growth factor(s), and P300 latency as correlates to cognitive decline as a function of gender 
BMC Research Notes  2009;2:126.
Background
Aging is marked by declines in levels of many sex hormones and growth factors, as well as in cognitive function. The P300 event-related potential has been established as a predictor of cognitive decline. We decided to determine if this measure, as well as 2 standard tests of memory and attention, may be correlated with serum levels of sex hormones and growth factors, and if there are any generalizations that could be made based on these parameters and the aging process.
Findings
In this large clinically based preliminary study several sex-stratified associations between hormone levels and cognition were observed, including (1) for males aged 30 to 49, both IGF-1 and IGFBP-3 significantly associated negatively with prolonged P300 latency; (2) for males aged 30 to 49, the spearman correlation between prolonged P300 latency and low free testosterone was significant; (3) for males aged 60 to 69, there was a significant negative correlation between P300 latency and DHEA levels; (4) for females aged 50 to 59 IGFBP-3 significantly associated negatively with prolonged P300 latency; (5) for females at all age periods, estrogen and progesterone were uncorrelated with P300 latency; and (6) for females aged 40 to 69, there was significant negative correlation between DHEA levels and P300 latency. Moreover there were no statistically significant correlations between any hormone and Wechsler Memory Scale-III (WMS-111). However, in females, there was a significant positive correlation between estrogen levels and the number of Attention Deficit Disorder (ADD) complaints.
Conclusion
Given certain caveats including confounding factors involving psychiatric and other chronic diseases as well as medications, the results may still have important value. If these results could be confirmed in a more rigorously controlled investigation, it may have important value in the diagnosis, prevention and treatment of cognitive impairments and decline.
doi:10.1186/1756-0500-2-126
PMCID: PMC2717101  PMID: 19583872
7.  Attention-deficit-hyperactivity disorder and reward deficiency syndrome 
Molecular genetic studies have identified several genes that may mediate susceptibility to attention deficit hyperactivity disorder (ADHD). A consensus of the literature suggests that when there is a dysfunction in the “brain reward cascade,” especially in the dopamine system, causing a low or hypo-dopaminergic trait, the brain may require dopamine for individuals to avoid unpleasant feelings. This high-risk genetic trait leads to multiple drug-seeking behaviors, because the drugs activate release of dopamine, which can diminish abnormal cravings. Moreover, this genetic trait is due in part to a form of a gene (DRD2 A1 allele) that prevents the expression of the normal laying down of dopamine receptors in brain reward sites. This gene, and others involved in neurophysiological processing of specific neurotransmitters, have been associated with deficient functions and predispose individuals to have a high risk for addictive, impulsive, and compulsive behavioral propensities. It has been proposed that genetic variants of dopaminergic genes and other “reward genes” are important common determinants of reward deficiency syndrome (RDS), which we hypothesize includes ADHD as a behavioral subtype. We further hypothesize that early diagnosis through genetic polymorphic identification in combination with DNA-based customized nutraceutical administration to young children may attenuate behavioral symptoms associated with ADHD. Moreover, it is concluded that dopamine and serotonin releasers might be useful therapeutic adjuncts for the treatment of other RDS behavioral subtypes, including addictions.
PMCID: PMC2626918  PMID: 19183781
attention deficit hyperactivity disorder (ADHD); genes; reward dependence; reward deficiency syndrome; treatment; neuropsychological deficits
8.  Activation instead of blocking mesolimbic dopaminergic reward circuitry is a preferred modality in the long term treatment of reward deficiency syndrome (RDS): a commentary 
Background and hypothesis
Based on neurochemical and genetic evidence, we suggest that both prevention and treatment of multiple addictions, such as dependence to alcohol, nicotine and glucose, should involve a biphasic approach. Thus, acute treatment should consist of preferential blocking of postsynaptic Nucleus Accumbens (NAc) dopamine receptors (D1-D5), whereas long term activation of the mesolimbic dopaminergic system should involve activation and/or release of Dopamine (DA) at the NAc site. Failure to do so will result in abnormal mood, behavior and potential suicide ideation. Individuals possessing a paucity of serotonergic and/or dopaminergic receptors, and an increased rate of synaptic DA catabolism due to high catabolic genotype of the COMT gene, are predisposed to self-medicating any substance or behavior that will activate DA release, including alcohol, opiates, psychostimulants, nicotine, gambling, sex, and even excessive internet gaming. Acute utilization of these substances and/or stimulatory behaviors induces a feeling of well being. Unfortunately, sustained and prolonged abuse leads to a toxic" pseudo feeling" of well being resulting in tolerance and disease or discomfort. Thus, a reduced number of DA receptors, due to carrying the DRD2 A1 allelic genotype, results in excessive craving behavior; whereas a normal or sufficient amount of DA receptors results in low craving behavior. In terms of preventing substance abuse, one goal would be to induce a proliferation of DA D2 receptors in genetically prone individuals. While in vivo experiments using a typical D2 receptor agonist induce down regulation, experiments in vitro have shown that constant stimulation of the DA receptor system via a known D2 agonist results in significant proliferation of D2 receptors in spite of genetic antecedents. In essence, D2 receptor stimulation signals negative feedback mechanisms in the mesolimbic system to induce mRNA expression causing proliferation of D2 receptors.
Proposal and conclusion
The authors propose that D2 receptor stimulation can be accomplished via the use of Synapatmine™, a natural but therapeutic nutraceutical formulation that potentially induces DA release, causing the same induction of D2-directed mRNA and thus proliferation of D2 receptors in the human. This proliferation of D2 receptors in turn will induce the attenuation of craving behavior. In fact as mentioned earlier, this model has been proven in research showing DNA-directed compensatory overexpression (a form of gene therapy) of the DRD2 receptors, resulting in a significant reduction in alcohol craving behavior in alcohol preferring rodents. Utilizing natural dopaminergic repletion therapy to promote long term dopaminergic activation will ultimately lead to a common, safe and effective modality to treat Reward Deficiency Syndrome (RDS) behaviors including Substance Use Disorders (SUD), Attention Deficit Hyperactivity Disorder (ADHD), Obesity and other reward deficient aberrant behaviors. This concept is further supported by the more comprehensive understanding of the role of dopamine in the NAc as a "wanting" messenger in the meso-limbic DA system.
doi:10.1186/1742-4682-5-24
PMCID: PMC2615745  PMID: 19014506
9.  Neurogenetic interactions and aberrant behavioral co-morbidity of attention deficit hyperactivity disorder (ADHD): dispelling myths 
Background
Attention Deficit Hyperactivity Disorder, commonly referred to as ADHD, is a common, complex, predominately genetic but highly treatable disorder, which in its more severe form has such a profound effect on brain function that every aspect of the life of an affected individual may be permanently compromised. Despite the broad base of scientific investigation over the past 50 years supporting this statement, there are still many misconceptions about ADHD. These include believing the disorder does not exist, that all children have symptoms of ADHD, that if it does exist it is grossly over-diagnosed and over-treated, and that the treatment is dangerous and leads to a propensity to drug addiction. Since most misconceptions contain elements of truth, where does the reality lie?
Results
We have reviewed the literature to evaluate some of the claims and counter-claims. The evidence suggests that ADHD is primarily a polygenic disorder involving at least 50 genes, including those encoding enzymes of neurotransmitter metabolism, neurotransmitter transporters and receptors. Because of its polygenic nature, ADHD is often accompanied by other behavioral abnormalities. It is present in adults as well as children, but in itself it does not necessarily impair function in adult life; associated disorders, however, may do so. A range of treatment options is reviewed and the mechanisms responsible for the efficacy of standard drug treatments are considered.
Conclusion
The genes so far implicated in ADHD account for only part of the total picture. Identification of the remaining genes and characterization of their interactions is likely to establish ADHD firmly as a biological disorder and to lead to better methods of diagnosis and treatment.
doi:10.1186/1742-4682-2-50
PMCID: PMC1352384  PMID: 16375770
ADHD; attention; hyperactivity; inattention; genetics; aberrant behavioral co-morbidity; treatment; genomics

Results 1-9 (9)