PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Psoriasis prediction from genome-wide SNP profiles 
BMC Dermatology  2011;11:1.
Background
With the availability of large-scale genome-wide association study (GWAS) data, choosing an optimal set of SNPs for disease susceptibility prediction is a challenging task. This study aimed to use single nucleotide polymorphisms (SNPs) to predict psoriasis from searching GWAS data.
Methods
Totally we had 2,798 samples and 451,724 SNPs. Process for searching a set of SNPs to predict susceptibility for psoriasis consisted of two steps. The first one was to search top 1,000 SNPs with high accuracy for prediction of psoriasis from GWAS dataset. The second one was to search for an optimal SNP subset for predicting psoriasis. The sequential information bottleneck (sIB) method was compared with classical linear discriminant analysis(LDA) for classification performance.
Results
The best test harmonic mean of sensitivity and specificity for predicting psoriasis by sIB was 0.674(95% CI: 0.650-0.698), while only 0.520(95% CI: 0.472-0.524) was reported for predicting disease by LDA. Our results indicate that the new classifier sIB performs better than LDA in the study.
Conclusions
The fact that a small set of SNPs can predict disease status with average accuracy of 68% makes it possible to use SNP data for psoriasis prediction.
doi:10.1186/1471-5945-11-1
PMCID: PMC3022824  PMID: 21214922
2.  Investigation gene and microRNA expression in glioblastoma 
BMC Genomics  2010;11(Suppl 3):S16.
Background
Glioblastoma is the most common primary brain tumor in adults. Though a lot of research has been focused on this disease, the causes and pathogenesis of glioblastoma have not been indentified clearly.
Results
We indentified 1,236 significantly differentially expressed genes, and 30 pathways enriched in the set of differentially expressed genes among 243 tumor and 11 normal samples. We also indentified 97 differentially expressed microRNAs among 240 tumor and 10 normal samples. 22 of which have been reported to affect glioblastoma and 50 of which were implicated in other cancers and brain diseases. We regressed gene expression on microRNA expression in 237 tumor tissues and 10 normal tissues comprehensively. We found two experimentally validated microRNA targets and 1,094 miRNA-target gene pairs in our datasets which were predicted by miRanda algorithm, 8 of the target genes were tumor suppressor genes and 3 were oncogenes. Further function analysis of target genes suggested that microRNAs most frequently targeted genes associated with Cell Signalling and Nervous System.
Conclusion
We investigated gene and microRNA Expression in Glioblastoma and gave a comprehensive function study of differential expressed gene and microRNA in glioblastoma patients. These findings gave important clues to study of the carcinogenic process in glioblastomas.
doi:10.1186/1471-2164-11-S3-S16
PMCID: PMC2999346  PMID: 21143783

Results 1-2 (2)