Search tips
Search criteria

Results 1-11 (11)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Interval between Intra-Arterial Infusion Chemotherapy and Surgery for Locally Advanced Oral Squamous Cell Carcinoma: Impacts on Effectiveness of Chemotherapy and on Overall Survival 
The Scientific World Journal  2014;2014:568145.
Background. The interval between intra-arterial infusion chemotherapy (IAIC) and surgery was investigated in terms of its effects on survival in patients with locally advanced oral squamous cell carcinoma (OSCC). Methods. This retrospective study analyzed 126 patients who had completed treatment modalities for stage IV OSCC. All patients were followed up for 3 years. Kaplan-Meier and Cox regression methods were used to determine how survival was affected by general factors, primary tumor volume, TNM stage, and duration of neoadjuvant chemotherapy. Results. In 126 patients treated for locally advanced OSCC by preoperative induction IAIC using methotrexate, multivariate analysis of relevant prognostic factors showed that an IAIC duration longer than 90 days was significantly associated with poor prognosis (hazard ratio, 1.77; P = 0.0259). Conclusions. Duration of IAIC is a critical factor in the effectiveness of multimodal treatment for locally advanced OSCC. Limiting the induction course to 90 days improves overall survival.
PMCID: PMC4052512  PMID: 24963509
2.  Cytochrome P450 Metabolism of Betel Quid-Derived Compounds: Implications for the Development of Prevention Strategies for Oral and Pharyngeal Cancers 
The Scientific World Journal  2013;2013:618032.
Betel quid (BQ) products, with or without tobacco, have been classified by the International Agency for Research on Cancer (IARC) as group I human carcinogens that are associated with an elevated risk of oral potentially malignant disorders (OPMDs) and cancers of the oral cavity and pharynx. There are estimated 600 million BQ users worldwide. In Taiwan alone there are 2 million habitual users (approximately 10% of the population). Oral and pharyngeal cancers result from interactions between genes and environmental factors (BQ exposure). Cytochrome p450 (CYP) families are implicated in the metabolic activation of BQ- and areca nut-specific nitrosamines. In this review, we summarize the current knowledge base regarding CYP genetic variants and related oral disorders. In clinical applications, we focus on cancers of the oral cavity and pharynx and OPMDs associated with CYP gene polymorphisms, including CYP1A1, CYP2A6, CYP2E1, and CYP26B1. Our discussion of CYP polymorphisms provides insight into the importance of screening tests in OPMDs patients for the prevention of oral and pharyngeal cancers. Future studies will establish a strong foundation for the development of chemoprevention strategies, polymorphism-based clinical diagnostic tools (e.g., specific single-nucleotide polymorphism (SNP) “barcodes”), and effective treatments for BQ-related oral disorders.
PMCID: PMC3747400  PMID: 23983642
3.  Identifying the Association Rules between Clinicopathologic Factors and Higher Survival Performance in Operation-Centric Oral Cancer Patients Using the Apriori Algorithm 
BioMed Research International  2013;2013:359634.
This study computationally determines the contribution of clinicopathologic factors correlated with 5-year survival in oral squamous cell carcinoma (OSCC) patients primarily treated by surgical operation (OP) followed by other treatments. From 2004 to 2010, the program enrolled 493 OSCC patients at the Kaohsiung Medical Hospital University. The clinicopathologic records were retrospectively reviewed and compared for survival analysis. The Apriori algorithm was applied to mine the association rules between these factors and improved survival. Univariate analysis of demographic data showed that grade/differentiation, clinical tumor size, pathology tumor size, and OP grouping were associated with survival longer than 36 months. Using the Apriori algorithm, multivariate correlation analysis identified the factors that coexistently provide good survival rates with higher lift values, such as grade/differentiation = 2, clinical stage group = early, primary site = tongue, and group = OP. Without the OP, the lift values are lower. In conclusion, this hospital-based analysis suggests that early OP and other treatments starting from OP are the key to improving the survival of OSCC patients, especially for early stage tongue cancer with moderate differentiation, having a better survival (>36 months) with varied OP approaches.
PMCID: PMC3741931  PMID: 23984353
4.  Long Noncoding RNAs-Related Diseases, Cancers, and Drugs 
The Scientific World Journal  2013;2013:943539.
Long noncoding RNA (lncRNA) function is described in terms of related gene expressions, diseases, and cancers as well as their polymorphisms. Potential modulators of lncRNA function, including clinical drugs, natural products, and derivatives, are discussed, and bioinformatic resources are summarized. The improving knowledge of the lncRNA regulatory network has implications not only in gene expression, diseases, and cancers, but also in the development of lncRNA-based pharmacology.
PMCID: PMC3690748  PMID: 23843741
5.  Alternative Splicing for Diseases, Cancers, Drugs, and Databases 
The Scientific World Journal  2013;2013:703568.
Alternative splicing is a major diversification mechanism in the human transcriptome and proteome. Several diseases, including cancers, have been associated with dysregulation of alternative splicing. Thus, correcting alternative splicing may restore normal cell physiology in patients with these diseases. This paper summarizes several alternative splicing-related diseases, including cancers and their target genes. Since new cancer drugs often target spliceosomes, several clinical drugs and natural products or their synthesized derivatives were analyzed to determine their effects on alternative splicing. Other agents known to have modulating effects on alternative splicing during therapeutic treatment of cancer are also discussed. Several commonly used bioinformatics resources are also summarized.
PMCID: PMC3674688  PMID: 23766705
6.  Reactive Oxygen Species and Autophagy Modulation in Non-Marine Drugs and Marine Drugs 
Marine Drugs  2014;12(11):5408-5424.
It is becoming more understandable that an existing challenge for translational research is the development of pharmaceuticals that appropriately target reactive oxygen species (ROS)-mediated molecular networks in cancer cells. In line with this approach, there is an overwhelmingly increasing list of many non-marine drugs and marine drugs reported to be involved in inhibiting and suppressing cancer progression through ROS-mediated cell death. In this review, we describe the strategy of oxidative stress-based therapy and connect the ROS modulating effect to the regulation of apoptosis and autophagy. Finally, we focus on exploring the function and mechanism of cancer therapy by the autophagy modulators including inhibitors and inducers from non-marine drugs and marine drugs.
PMCID: PMC4245538  PMID: 25402829
reactive oxygen species; autophagy; marine drugs; autophagy inhibitors; autophagy inducers
7.  Antiproliferative Effects of Methanolic Extracts of Cryptocarya concinna Hance Roots on Oral Cancer Ca9-22 and CAL 27 Cell Lines Involving Apoptosis, ROS Induction, and Mitochondrial Depolarization 
The Scientific World Journal  2014;2014:180462.
Cryptocarya-derived natural products were reported to have several biological effects such as the antiproliferation of some cancers. The possible antioral cancer effect of Cryptocarya-derived substances was little addressed as yet. In this study, we firstly used the methanolic extracts of C. concinna Hance roots (MECCrt) to evaluate its potential function in antioral cancer bioactivity. We found that MECCrt significantly reduced cell viability of two oral cancer Ca9-22 and CAL 27 cell lines in dose-responsive manners (P < 0.01). The percentages of sub-G1 phase and annexin V-positive of MECCrt-treated Ca9-22 and CAL 27 cell lines significantly accumulated (P < 0.01) in a dose-responsive manner as evidenced by flow cytometry. These apoptotic effects were associated with the findings that intracellular ROS generation was induced in MECCrt-treated Ca9-22 and CAL 27 cell lines in dose-responsive and time-dependent manners (P < 0.01). In a dose-responsive manner, MECCrt also significantly reduced the mitochondrial membrane potential in these two cell lines (P < 0.01–0.05). In conclusion, we demonstrated that MECCrt may have antiproliferative potential against oral cancer cells involving apoptosis, ROS generation, and mitochondria membrane depolarization.
PMCID: PMC4213999  PMID: 25379520
8.  Modulating Roles of Amiloride in Irradiation-Induced Antiproliferative Effects in Glioblastoma Multiforme Cells Involving Akt Phosphorylation and the Alternative Splicing of Apoptotic Genes 
DNA and Cell Biology  2013;32(9):504-510.
Apoptosis is a key mechanism for enhanced cellular radiosensitivity in radiation therapy. Studies suggest that Akt signaling may play a role in apoptosis and radioresistance. This study evaluates the possible modulating role of amiloride, an antihypertensive agent with a modulating effect to alternative splicing for regulating apoptosis, in the antiproliferative effects induced by ionizing radiation (IR) in glioblastoma multiforme (GBM) 8401 cells. Analysis of cell viability showed that amiloride treatment significantly inhibited cell proliferation in irradiated GBM8401 cells (p<0.05) in a time-dependent manner, especially in cells treated with amiloride with IR post-treatment. In comparison with GBM8401 cells treated with amiloride alone, with GBM8401 cells treated with IR alone, and with human embryonic lung fibroblast control cells (HEL 299), GBM8401 cells treated with IR combined with amiloride showed increased overexpression of phosphorylated Akt, regardless of whether IR treatment was performed before or after amiloride administration. The alternative splicing pattern of apoptotic protease-activating factor-1 (APAF1) in cells treated with amiloride alone, IR alone, and combined amiloride-IR treatments showed more consistent cell proliferation compared to that in other apoptosis-related genes such as baculoviral IAP repeat containing 5 (BIRC5), Bcl-X, and homeodomain interacting protein kinase-3 (HIPK3). In GBM8401 cells treated with amiloride with IR post-treatment, the ratio of prosurvival (-XL,-LC) to proapoptotic (-LN,-S) splice variants of APAF1 was lower than that seen in cells treated with amiloride with IR pretreatment, suggesting that proapoptotic splice variants of APAF1 (APAF1-LN,-S) were higher in the glioblastoma cells treated with amiloride with IR post-treatment, as compared to glioblastoma cells and fibroblast control cells that had received other treatments. Together, these results suggest that amiloride modulates cell radiosensitivity involving the Akt phosphorylation and the alternative splicing of APAF1, especially for the cells treated with amiloride with IR post-treatment. Therefore, amiloride may improve the effectiveness of radiation therapy for GBMs.
Treatment of irradiated GBM tumors with amiloride inhibited cell proliferation in a time-dependent manner. Drug treatment alone showed increased expression of pAkt.
PMCID: PMC3752517  PMID: 23822711
9.  Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties 
For their various bioactivities, biomaterials derived from marine algae are important ingredients in many products, such as cosmetics and drugs for treating cancer and other diseases. This mini-review comprehensively compares the bioactivities and biological functions of biomaterials from red, green, brown, and blue-green algae. The anti-oxidative effects and bioactivities of several different crude extracts of algae have been evaluated both in vitro and in vivo. Natural products derived from marine algae protect cells by modulating the effects of oxidative stress. Because oxidative stress plays important roles in inflammatory reactions and in carcinogenesis, marine algal natural products have potential for use in anti-cancer and anti-inflammatory drugs.
PMCID: PMC3674937  PMID: 23724847
Algae; ROS; Antioxidant; Inflammation; Antinociceptive; Anti-cancer
10.  RNA Editing and Drug Discovery for Cancer Therapy 
The Scientific World Journal  2013;2013:804505.
RNA editing is vital to provide the RNA and protein complexity to regulate the gene expression. Correct RNA editing maintains the cell function and organism development. Imbalance of the RNA editing machinery may lead to diseases and cancers. Recently, RNA editing has been recognized as a target for drug discovery although few studies targeting RNA editing for disease and cancer therapy were reported in the field of natural products. Therefore, RNA editing may be a potential target for therapeutic natural products. In this review, we provide a literature overview of the biological functions of RNA editing on gene expression, diseases, cancers, and drugs. The bioinformatics resources of RNA editing were also summarized.
PMCID: PMC3655661  PMID: 23737728
11.  Anti-proliferative effect of methanolic extract of Gracilaria tenuistipitata on oral cancer cells involves apoptosis, DNA damage, and oxidative stress 
Methanolic extracts of Gracilaria tenuistipitata (MEGT) were obtained from the edible red algae. Previously, we found that water extract of G. tenuistipitata was able to modulate oxidative stress-induced DNA damage and its related cellular responses.
In this study, the methanol extraction product MEGT was used to evaluate the cell growth inhibition in oral cancer cells and its possible mechanism was investigated.
The cell viability of MEGT treated Ca9-22 oral cancer cell line was significantly decreased in a dose–response manner (p < 0.05). The sub-G1 population and annexin V intensity of MEGT-treated Ca9-22 cancer cells were significantly increased in a dose–response manner (p < 0.0005 and p < 0.001, respectively). The γH2AX intensities of MEGT-treated Ca9-22 cancer cells were significantly increased in a dose–response manner (p < 0.05). The reactive oxygen species (ROS) and glutathione (GSH)-positive intensities of MEGT-treated Ca9-22 oral cancer cells were significantly increased and decreased, respectively, in a dose–response manner (p < 0.05). The DiOC2(3) intensity for mitochondrial membrane potential (MMP) of MEGT-treated Ca9-22 cancer cells was significantly decreased in a dose–response manner (p < 0.05).
These results indicated that MEGT had apoptosis-based cytotoxicity against oral cancer cells through the DNA damage, ROS induction, and mitochondrial depolarization. Therefore, MEGT derived from the edible algae may have potential therapeutic effects against oral squamous cell carcinoma (OSCC).
PMCID: PMC3495219  PMID: 22937998
Red algae; Oral cancer; Apoptosis; γ-H2AX; ROS; Mitochondrial membrane potential; Glutathione

Results 1-11 (11)