Search tips
Search criteria

Results 1-25 (42)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
Document Types
1.  A comprehensive analysis of recruitment and transactivation potential of K-Rta and K-bZIP during reactivation of Kaposi's sarcoma-associated herpesvirus 
Virology  2009;387(1):76-88.
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma. K-Rta and K-bZIP are two major viral transcription factors that control reactivation of this virus. Here we report a genome-wide analysis of transcriptional capacity by evaluation of a comprehensive library of 83 putative KSHV promoters. In reporter assays, 34 viral promoters were activated by K-Rta, whereas K-bZIP activated 21 promoters. When K-Rta and K-bZIP were combined, 3 K-Rta responsive promoters were repressed by K-bZIP. The occupancy of K-Rta and K-bZIP across KSHV promoters was analyzed by chromatin immunoprecipitation with a viral promoter-chip in BCBL-1 cells. In addition, acetylation of local histones was examined to determine accessibility of promoters during latency and reactivation. Finally, 10 promoters were selected to study the dynamics of transcription factor recruitment. This study provides a comprehensive overview of the responsiveness of KSHV promoters to K-Rta and K-bZIP, and describes key chromatin changes during viral reactivation.
PMCID: PMC4327937  PMID: 19269659
Kaposi's sarcoma; KSHV; HHV-8; Transcription; Chromatin immunoprecipitation; Gene expression; K-Rta/ORF50; K-bZIP/K8; Microarray; Chromatin
2.  Data Mining Strategies to Improve Multiplex Microbead Immunoassay Tolerance in a Mouse Model of Infectious Diseases 
PLoS ONE  2015;10(1):e0116262.
Multiplex methodologies, especially those with high-throughput capabilities generate large volumes of data. Accumulation of such data (e.g., genomics, proteomics, metabolomics etc.) is fast becoming more common and thus requires the development and implementation of effective data mining strategies designed for biological and clinical applications. Multiplex microbead immunoassay (MMIA), on xMAP or MagPix platform (Luminex), which is amenable to automation, offers a major advantage over conventional methods such as Western blot or ELISA, for increasing the efficiencies in serodiagnosis of infectious diseases. MMIA allows detection of antibodies and/or antigens efficiently for a wide range of infectious agents simultaneously in host blood samples, in one reaction vessel. In the process, MMIA generates large volumes of data. In this report we demonstrate the application of data mining tools on how the inherent large volume data can improve the assay tolerance (measured in terms of sensitivity and specificity) by analysis of experimental data accumulated over a span of two years. The combination of prior knowledge with machine learning tools provides an efficient approach to improve the diagnostic power of the assay in a continuous basis. Furthermore, this study provides an in-depth knowledge base to study pathological trends of infectious agents in mouse colonies on a multivariate scale. Data mining techniques using serodetection of infections in mice, developed in this study, can be used as a general model for more complex applications in epidemiology and clinical translational research.
PMCID: PMC4304816  PMID: 25614982
3.  Enhanced Antiretroviral Therapy in Rhesus Macaques Improves RT-SHIV Viral Decay Kinetics 
Using an established nonhuman primate model, rhesus macaques were infected intravenously with a chimeric simian immunodeficiency virus (SIV) consisting of SIVmac239 with the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase from clone HXBc2 (RT-SHIV). The impacts of two enhanced (four- and five-drug) highly active antiretroviral therapies (HAART) on early viral decay and rebound were determined. The four-drug combination consisted of an integrase inhibitor, L-870-812 (L-812), together with a three-drug regimen comprising emtricitabine [(−)-FTC], tenofovir (TFV), and efavirenz (EFV). The five-drug combination consisted of one analog for each of the four DNA precursors {using TFV, (−)-FTC, (−)-β-d-(2R,4R)-1,3-dioxolane-2,6-diaminopurine (amdoxovir [DAPD]), and zidovudine (AZT)}, together with EFV. A cohort treated with a three-drug combination of (−)-FTC, TFV, and EFV served as treated controls. Daily administration of a three-, four-, or five-drug combination of antiretroviral agents was initiated at week 6 or 8 after inoculation and continued up to week 50, followed by a rebound period. Plasma samples were collected routinely, and drug levels were monitored using liquid chromatography-tandem mass spectrometry (LC–MS-MS). Viral loads were monitored with a standard TaqMan quantitative reverse transcriptase PCR (qRT-PCR) assay. Comprehensive analyses of replication dynamics were performed. RT-SHIV infection in rhesus macaques produced typical viral infection kinetics, with untreated controls establishing persistent viral loads of >104 copies of RNA/ml. RT-SHIV loads at the start of treatment (V0) were similar in all treated cohorts (P > 0.5). All antiretroviral drug levels were measureable in plasma. The four-drug and five-drug combination regimens (enhanced HAART) improved suppression of the viral load (within 1 week; P < 0.01) and had overall greater potency (P < 0.02) than the three-drug regimen (HAART). Moreover, rebound viremia occurred rapidly following cessation of any treatment. The enhanced HAART (four- or five-drug combination) showed significant improvement in viral suppression compared to the three-drug combination, but no combination was sufficient to eliminate viral reservoirs.
PMCID: PMC4068512  PMID: 24777106
4.  Microbial Profiling of Combat Wound Infection through Detection Microarray and Next-Generation Sequencing 
Journal of Clinical Microbiology  2014;52(7):2583-2594.
Combat wound healing and resolution are highly affected by the resident microbial flora. We therefore sought to achieve comprehensive detection of microbial populations in wounds using novel genomic technologies and bioinformatics analyses. We employed a microarray capable of detecting all sequenced pathogens for interrogation of 124 wound samples from extremity injuries in combat-injured U.S. service members. A subset of samples was also processed via next-generation sequencing and metagenomic analysis. Array analysis detected microbial targets in 51% of all wound samples, with Acinetobacter baumannii being the most frequently detected species. Multiple Pseudomonas species were also detected in tissue biopsy specimens. Detection of the Acinetobacter plasmid pRAY correlated significantly with wound failure, while detection of enteric-associated bacteria was associated significantly with successful healing. Whole-genome sequencing revealed broad microbial biodiversity between samples. The total wound bioburden did not associate significantly with wound outcome, although temporal shifts were observed over the course of treatment. Given that standard microbiological methods do not detect the full range of microbes in each wound, these data emphasize the importance of supplementation with molecular techniques for thorough characterization of wound-associated microbes. Future application of genomic protocols for assessing microbial content could allow application of specialized care through early and rapid identification and management of critical patterns in wound bioburden.
PMCID: PMC4097755  PMID: 24829242
5.  PPARγ-mediated increase in glucose availability sustains chronic Brucella abortus infection in alternatively activated macrophages 
Cell host & microbe  2013;14(2):159-170.
Eradication of persistent intracellular bacterial pathogens with antibiotic therapy is often slow or incomplete. However, strategies to augment antibiotics are hampered by our poor understanding of the nutritional environment that sustains chronic infection. Here we show that the intracellular pathogen Brucella abortus survives and replicates preferentially in alternatively activated macrophages (AAM), which are more abundant during chronic infection. A metabolic shift induced by peroxisome proliferator activated receptor γ (PPARγ), which increases intracellular glucose availability, is identified as a causal mechanism promoting enhanced bacterial survival in AAM. Glucose uptake was crucial for increased replication of B. abortus in AAM, and chronic infection, as inactivation of the bacterial glucose transporter gluP reduced both intracellular survival in AAM and persistence in mice. Thus, a shift in intracellular nutrient availability induced by PPARγ promotes chronic persistence of B. abortus within AAM and targeting this pathway may aid in eradicating chronic infection.
PMCID: PMC3777723  PMID: 23954155
6.  Proteomic sample preparation for blast wound characterization 
Proteome Science  2014;12:10.
Blast wounds often involve diverse tissue types and require substantial time and treatment for appropriate healing. Some of these subsequent wounds become colonized with bacteria requiring a better understanding of how the host responds to these bacteria and what proteomic factors contribute wound healing outcome. In addition, using reliable and effective proteomic sample preparation procedures can lead to novel biomarkers for improved diagnosis and therapy.
To address this need, suitable sample preparation for 2-D DIGE proteomic characterization of wound effluent and serum samples from combat-wounded patients was investigated. Initial evaluation of crude effluent and serum proved the necessity of high abundant protein depletion. Subsequently, both samples were successfully depleted using Agilent Multiple Affinity Removal system and showed greatly improved 2-D spot maps, comprising 1,800 and 1,200 protein spots, respectively.
High abundant protein removal was necessary for both wound effluent and serum. This is the first study to show a successful method for high abundant protein depletion from wound effluent which is compatible with downstream 2-D DIGE analysis. This development allows for improved biomarker discovery in wound effluent and serum samples.
PMCID: PMC3943455  PMID: 24529238
Blast wound; Proteomics; 2-D DIGE; Wound effluent; Biomarker discovery; Serum; High abundant protein removal
7.  Analysis of Multiply Spliced Transcripts in Lymphoid Tissue Reservoirs of Rhesus Macaques Infected with RT-SHIV during HAART 
PLoS ONE  2014;9(2):e87914.
Highly active antiretroviral therapy (HAART) can reduce levels of human immunodeficiency virus type 1 (HIV-1) to undetectable levels in infected individuals, but the virus is not eradicated. The mechanisms of viral persistence during HAART are poorly defined, but some reservoirs have been identified, such as latently infected resting memory CD4+ T cells. During latency, in addition to blocks at the initiation and elongation steps of viral transcription, there is a block in the export of viral RNA (vRNA), leading to the accumulation of multiply-spliced transcripts in the nucleus. Two of the genes encoded by the multiply-spliced transcripts are Tat and Rev, which are essential early in the viral replication cycle and might indicate the state of infection in a given population of cells. Here, the levels of multiply-spliced transcripts were compared to the levels of gag-containing RNA in tissue samples from RT-SHIV-infected rhesus macaques treated with HAART. Splice site sequence variation was identified during development of a TaqMan PCR assay. Multiply-spliced transcripts were detected in gastrointestinal and lymphatic tissues, but not the thymus. Levels of multiply-spliced transcripts were lower than levels of gag RNA, and both correlated with plasma virus loads. The ratio of multiply-spliced to gag RNA was greatest in the gastrointestinal samples from macaques with plasma virus loads <50 vRNA copies per mL at necropsy. Levels of gag RNA and multiply-spliced mRNA in tissues from RT-SHIV-infected macaques correlate with plasma virus load.
PMCID: PMC3914874  PMID: 24505331
8.  Exploratory Study on Plasma Immunomodulator and Antibody Profiles in Tuberculosis Patients 
Host immune responses to Mycobacterium tuberculosis are generally able to contain infection and maintain a delicate balance between protection and immunopathology. A shift in this balance appears to underlie active disease observed in about 10% of infected individuals. Effects of local inflammation, combined with anti-M. tuberculosis systemic immune responses, are directly detectable in peripheral circulation, without ex vivo stimulation of blood cells or biopsy of the affected organs. We studied plasma immunomodulator and antibody biomarkers in patients with active pulmonary tuberculosis (TB) by a combination of multiplex microbead immunoassays and computational tools for data analysis. Plasma profiles of 10 immunomodulators and antibodies against eight M. tuberculosis antigens (previously reported by us) were examined in active pulmonary TB patients in a country where TB is endemic, Pakistan. Multiplex analyses were performed on samples from apparently healthy individuals without active TB from the same community as the TB patients to establish the assay baselines for all analytes. Over 3,000 data points were collected from patients (n = 135) and controls (n = 37). The data were analyzed by multivariate and computer-assisted cluster analyses to reveal patterns of plasma immunomodulators and antibodies. This study shows plasma profiles that in most patients represented either strong antibody or strong immunomodulator biomarkers. Profiling of a combination of both immunomodulators and antibodies described here may be valuable for the analysis of host immune responses in active TB in countries where the disease is endemic.
PMCID: PMC3754529  PMID: 23761664
9.  Pharmacologic reactivation of latent feline immunodeficiency virus ex vivo in peripheral CD4+ T-lymphocytes 
Virus research  2012;170(1-2):174-179.
FIV establishes a latent infection in peripheral CD4+ T-cells, and the latent FIV promoter is associated with deacetylated, methylated histones, consistent with a restrictive chromatin structure. Here we explored the use of 5 histone-modifying agents - 4 histone deacetylase inhibitors (HDACi) and 1 histone methyltransferase inhibitor (HMTi) - to reactivate latent FIV ex vivo. All compounds tested were able to alter histone lysine residue modifications in feline cells, both globally and at the FIV promoter locally. When latently FIV-infected peripheral CD4+ T-cells were cultured ex vivo in the presence of these inhibitors, viral transcription was significantly activated relative to no treatment controls. Transcriptional reactivation of virus mediated by the HDACi suberoylanilide hydroxamic acid (SAHA) was dose-dependent, detected after as little as 1 hour of exposure, and resulted in virion formation as evidenced by supernatant reverse transcriptase activity. A synergistic effect was not found when SAHA was combined with HMTi under the conditions tested. At low therapeutically relevant concentrations in primary feline PBMC, SAHA was found to be minimally cytotoxic and non-immune activating. HDACi and HMTi can reactivate latent FIV ex vivo, and SAHA, also known as the anticancer drug Vorinostat, in particular is a promising candidate for in vivo use because of its efficacy, potency, and relative safety. Use of the FIV/cat model of lentiviral latency to explore in vivo treatment with SAHA and other anti-latency therapeutics will allow investigations that are either ethically or logistically not addressable in patients persistently infected with human immunodeficiency virus (HIV-1).
PMCID: PMC3513637  PMID: 23073179
FIV; latency; CD4 T-cells; histone deacetylase; SAHA; DZNep; epigenetic
10.  Wound outcome in combat injuries is associated with a unique set of protein biomarkers 
The ability to forecast whether a wound will heal after closure without further debridement(s), would provide substantial benefits to patients with severe extremity trauma.
Wound effluent is a readily available material which can be collected without disturbing healthy tissue. For analysis of potential host response biomarkers, forty four serial combat wound effluent samples from 19 patients with either healing or failing traumatic- and other combat-related wounds were examined by 2-D DIGE. Spot map patterns were correlated to eventual wound outcome (healed or wound failure) and analyzed using DeCyder 7.0 and differential proteins identified via LC-MS/MS.
This approach identified 52 protein spots that were differentially expressed and thus represent candidate biomarkers for this clinical application. Many of these proteins are intimately involved in inflammatory and immune responses. Furthermore, discriminate analysis further refined the 52 differential protein spots to a smaller subset of which successfully differentiate between wounds that will heal and those that will fail and require further surgical intervention with greater than 83% accuracy.
These results suggest candidates for a panel of protein biomarkers that may aid traumatic wound care prognosis and treatment. We recommend that this strategy be refined, and then externally validated, in future studies of traumatic wounds.
PMCID: PMC3827499  PMID: 24192341
Traumatic wound; Proteomics; 2-D DIGE; Wound effluent; Biomarker discovery; Wound dehiscence
11.  A Recombinant Attenuated Mycobacterium tuberculosis Vaccine Strain Is Safe in Immunosuppressed Simian Immunodeficiency Virus-Infected Infant Macaques 
Many resource-poor countries are faced with concurrent epidemics of AIDS and tuberculosis (TB) caused by human immunodeficiency virus (HIV) and Mycobacterium tuberculosis, respectively. Dual infections with HIV and M. tuberculosis are especially severe in infants. There is, however, no effective HIV vaccine, and the only licensed TB vaccine, the Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine, can cause disseminated mycobacterial disease in HIV-infected children. Thus, a pediatric vaccine to prevent HIV and M. tuberculosis infections is urgently needed. We hypothesized that a highly attenuated M. tuberculosis strain containing HIV antigens could be safely administered at birth and induce mucosal and systemic immune responses to protect against HIV and TB infections, and we rationalized that vaccine safety could be most rigorously assessed in immunocompromised hosts. Of three vaccine candidates tested, the recombinant attenuated M. tuberculosis strain mc26435 carrying a simian immunodeficiency virus (SIV) Gag expression plasmid and harboring attenuations of genes critical for replication (panCD and leuCD) and immune evasion (secA2), was found to be safe for oral or intradermal administration to non-SIV-infected and SIV-infected infant macaques. Safety was defined as the absence of clinical symptoms, a lack of histopathological changes indicative of M. tuberculosis infection, and a lack of mycobacterial dissemination. These data represent an important step in the development of novel TB vaccines and suggest that a combination recombinant attenuated M. tuberculosis-HIV vaccine could be a safe alternative to BCG for the pediatric population as a whole and, more importantly, for the extreme at-risk group of HIV-infected infants.
PMCID: PMC3416096  PMID: 22695156
12.  Randomized pilot trial of a synbiotic dietary supplement in chronic HIV-1 infection 
Infection with HIV-1 results in marked immunologic insults and structural damage to the intestinal mucosa, including compromised barrier function. While the development of highly active antiretroviral therapy (HAART) has been a major advancement in the treatment of HIV-1 infection, the need for novel complementary interventions to help restore intestinal structural and functional integrity remains unmet. Known properties of pre-, pro-, and synbiotics suggest that they may be useful tools in achieving this goal.
This was a 4-week parallel, placebo-controlled, randomized pilot trial in HIV-infected women on antiretroviral therapy. A synbiotic formulation (Synbiotic 2000®) containing 4 strains of probiotic bacteria (1010 each) plus 4 nondigestible, fermentable dietary fibers (2.5 g each) was provided each day, versus a fiber-only placebo formulation. The primary outcome was bacterial translocation. Secondary outcomes included the levels of supplemented bacteria in stool, the activation phenotype of peripheral T-cells and monocytes, and plasma levels of C-reactive protein and soluble CD14.
Microbial translocation, as measured by plasma bacterial 16S ribosomal DNA concentration, was not altered by synbiotic treatment. In contrast, the synbiotic formulation resulted in significantly elevated levels of supplemented probiotic bacterial strains in stool, including L. plantarum and P. pentosaceus, with the colonization of these two species being positively correlated with each other. T-cell activation phenotype of peripheral blood lymphocytes showed modest changes in response to synbiotic exposure, with HLA-DR expression slightly elevated on a minor population of CD4+ T-cells which lack expression of HLA-DR or PD-1. In addition, CD38 expression on CD8+ T-cells was slightly lower in the fiber-only group. Plasma levels of soluble CD14 and C-reactive protein were unaffected by synbiotic treatment in this study.
Synbiotic treatment for 4 weeks can successfully augment the levels of probiotic species in the gut during chronic HIV-1 infection. Associated changes in microbial translocation appear to be absent, and markers of systemic immune activation appear largely unchanged. These findings may help inform future studies aimed at testing pre- and probiotic approaches to improve gut function and mucosal immunity in chronic HIV-1 infection.
Trial registration
Clinical NCT00688311
PMCID: PMC3414771  PMID: 22747752
Human immunodeficiency virus-1 (HIV-1); synbiotics; probiotics; prebiotics; microbial translocation; immune activation; highly active antiretroviral therapy (HAART); combined antiretroviral therapy (CART); complementary therapy.
13.  Plasma Antibody Profiles as Diagnostic Biomarkers for Tuberculosis▿ 
Clinical and Vaccine Immunology : CVI  2011;18(12):2148-2153.
Two billion people are infected with Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), worldwide. Ten million to 20 million of the infected individuals develop disease per year. TB is a treatable disease, provided that it is diagnosed in a timely manner. The current TB diagnostic methods are subjective, inefficient, or not cost-effective. Antibody-based blood tests can be used efficiently and cost-effectively for TB diagnosis. A major challenge is that different TB patients generate antibodies against different antigens. Therefore, a multiplex immunoassay approach is needed. We have developed a multiplex panel of 28 M. tuberculosis antigen-coated microbeads. Plasma samples were obtained from over 300 pulmonary TB patients and healthy controls in a country where TB is endemic, Pakistan. Multiplex data were analyzed using computational tools by multivariate statistics, classification algorithms, and cluster analysis. The results of antibody profile-based detection, using 16 selected antigens, closely correlated with those of the sputum-based diagnostic methods (smear microscopy and culture) practiced in countries where TB is endemic. Multiplex microbead immunoassay had a sensitivity and specificity of approximately 90% and 80%, respectively. These antibody profiles could potentially be useful for the diagnosis of nonpulmonary TB, which accounts for approximately 20% of cases of disease. Since an automated, high-throughput version of this multiplex microbead immunoassay could analyze thousands of samples per day, it may be useful for the diagnosis of TB in millions of patients worldwide.
PMCID: PMC3232686  PMID: 21976221
14.  Cluster analysis of host cytokine responses to biodefense pathogens in a whole blood ex vivo exposure model (WEEM) 
BMC Microbiology  2012;12:79.
Rapid detection and therapeutic intervention for infectious and emerging diseases is a major scientific goal in biodefense and public health. Toward this end, cytokine profiles in human blood were investigated using a human whole blood ex vivo exposure model, called WEEM.
Samples of whole blood from healthy volunteers were incubated with seven pathogens including Yersinia pseudotuberculosis, Yersinia enterocolitica, Bacillus anthracis, and multiple strains of Yersinia pestis, and multiplexed protein expression profiling was conducted on supernatants of these cultures with an antibody array to detect 30 cytokines simultaneously. Levels of 8 cytokines, IL-1α, IL-1β, IL-6, IL-8, IL-10, IP-10, MCP-1 and TNFα, were significantly up-regulated in plasma after bacterial exposures of 4 hours. Statistical clustering was applied to group the pathogens based on the host response protein expression profiles. The nearest phylogenetic neighbors clustered more closely than the more distant pathogens, and all seven pathogens were clearly differentiated from the unexposed control. In addition, the Y. pestis and Yersinia near neighbors were differentiated from the B. anthracis strains.
Cluster analysis, based on host response cytokine profiles, indicates that distinct patterns of immunomodulatory proteins are induced by the different pathogen exposures and these patterns may enable further development into biomarkers for diagnosing pathogen exposure.
PMCID: PMC3430575  PMID: 22607329
15.  Transcriptional Regulation of Latent Feline Immunodeficiency Virus in Peripheral CD4+ T-lymphocytes  
Viruses  2012;4(5):878-888.
Feline immunodeficiency virus (FIV), the lentivirus of domestic cats responsible for feline AIDS, establishes a latent infection in peripheral blood CD4+ T-cells approximately eight months after experimental inoculation. In this study, cats experimentally infected with the FIV-C strain in the asymptomatic phase demonstrated an estimated viral load of 1 infected cell per approximately 103 CD4+ T-cells, with about 1 copy of viral DNA per cell. Approximately 1 in 10 proviral copies was capable of transcription in the asymptomatic phase. The latent FIV proviral promoter was associated with deacetylated, methylated histones, which is consistent with a condensed chromatin structure. In contrast, the transcriptionally active FIV promoter was associated with histone acetylation and demethylation. In addition, RNA polymerase II appeared to be paused on the latent viral promoter, and short promoter-proximal transcripts were detected. Our findings for the FIV promoter in infected cats are similar to results obtained in studies of human immunodeficiency virus (HIV)-1 latent proviruses in cell culture in vitro studies. Thus, the FIV/cat model may offer insights into in vivo mechanisms of HIV latency and provides a unique opportunity to test novel therapeutic interventions aimed at eradicating latent virus.
PMCID: PMC3386631  PMID: 22754653
FIV; latency; lentivirus; chromatin; transcription; CD4 T-cells
16.  FIV establishes a latent infection in feline peripheral blood CD4+ T lymphocytes in vivo during the asymptomatic phase of infection 
Retrovirology  2012;9:12.
Feline immunodeficiency virus (FIV) is a lentivirus of cats that establishes a lifelong persistent infection with immunologic impairment.
In an approximately 2 year-long experimental infection study, cats infected with a biological isolate of FIV clade C demonstrated undetectable plasma viral loads from 10 months post-infection onward. Viral DNA was detected in CD4+CD25+ and CD4+CD25- T cells isolated from infected cats whereas viral RNA was not detected at multiple time points during the early chronic phase of infection. Viral transcription could be reactivated in latently infected CD4+ T cells ex vivo as demonstrated by detectable FIV gag RNA and 2-long terminal repeat (LTR) circle junctions. Viral LTR and gag sequences amplified from peripheral blood mononuclear cells during early and chronic stages of infection demonstrated minimal to no viral sequence variation.
Collectively, these findings are consistent with FIV latency in peripheral blood CD4+ T cells isolated from chronically infected cats. The ability to isolate latently FIV-infected CD4+ T lymphocytes from FIV-infected cats provides a platform for the study of in vivo mechanisms of lentiviral latency.
PMCID: PMC3292463  PMID: 22314004
Lentivirus; FIV; latency; CD4+CD25+; CD4+CD25-; T cell; monocyte; cat; feline
17.  Comparative Pathogenesis of Epidemic and Enzootic Chikungunya Viruses in a Pregnant Rhesus Macaque Model 
Since 2004, an East African genotype of Chikungunya virus (CHIKV) has emerged, causing significant epidemics of an arthralgic syndrome. In addition, this virus has been associated for the first time with neonatal transmission and neurological complications. In the current study, pregnant Rhesus macaques were inoculated with an enzootic or epidemic strain of CHIKV to compare pathogenesis and transplacental transmission potential. Viremias were similar for both strains and peaked at 2–3 days post-inoculation (dpi). Viral RNA was detected at necropsy at 21 dpi in maternal lymphoid, joint-associated, and spinal cord tissues. The absence of detectable viral RNA and the lack of germinal center development in fetuses indicated that transplacental transmission did not occur. Neutralizing antibodies were detected in all dams and fetuses. Our study establishes a non-human primate model for evaluating vaccines and antiviral therapies and indicates that Rhesus macaques could serve as a competent enzootic reservoir.
PMCID: PMC2990040  PMID: 21118930
18.  Histone Demethylase JMJD2A Regulates Kaposi's Sarcoma-Associated Herpesvirus Replication and Is Targeted by a Viral Transcriptional Factor ▿  
Journal of Virology  2011;85(7):3283-3293.
The switch between the latency and lytic cycles of Kaposi's sarcoma-associated herpesvirus (KSHV) is accompanied by specific alterations of histone codes. Recently, comprehensive analysis of histone modifications of KSHV showed the deposition of H3K27me3 across the KSHV genome with two specific regions occupied by the heterochromatin marker H3K9me3. Here, we show that knockdown of JMJD2A, an H3K9me3 demethylase, attenuates viral titers, whereas its overexpression increases KSHV reactivation. JMJD2A is localized in regions of latent viral chromosomes that are deficient in the H3K9me3 mark, indicating that JMJD2A may be responsible for the low level of this mark on viral chromatin. The presence of JMJD2A on the latent genome maintains H3K9 in unmethylated form and signals the readiness of specific sets of viral genes to be reactivated. The demethylase activity of JMJD2A is important for KSHV reactivation, because a demethylase-deficient mutant cannot restore the JMJD2A knockdown phenotype. Interestingly, we found that the KSHV encoded K-bZIP associated with JMJD2A, resulting in the inhibition of demethylase activity of JMJD2A both in vivo and in vitro. Inhibition of JMJD2A by K-bZIP is likely due to a physical interaction which blocks substrate accessibility. A consequence of such an inhibition is increasing global levels of H3K9me3 and gene silencing. Consistently, K-bZIP overexpression resulted in a repression of ∼80% of the ≥2-fold differentially regulated genes compared to results for the uninduced control cells. The consequences of K-bZIP targeting JMJD2A during viral replication will be discussed. To our knowledge, this is the first description of a viral product shown to be a potent inhibitor of a host cellular histone demethylase.
PMCID: PMC3067885  PMID: 21228229
19.  Microbead Arrays for the Analysis of ErbB Receptor Tyrosine Kinase Activation and Dimerization in Breast Cancer Cells 
Receptor tyrosine kinases (RTKs) in the ErbB family (EGFR, ErbB2, ErbB3, and ErbB4) are implicated in a variety of human malignancies. Accordingly, determination of both expression and activation (dimerization/heterodimerization and phosphorylation) of ErbB proteins is critical in defining their functional role in cancer. Efficient and comprehensive methods to study molecular functions of ErbB family of RTKs are needed not only for improvements in diagnostics but also for early screening of targeted drugs (eg, small molecule inhibitors and therapeutic antibodies). We report development of 3 multiplex microbead immunoassays for simultaneous detection of expression, protein–protein interactions, and phosphorylation of these RTKs. These novel multiplex immunoassays were used to study ErbB RTKs under different cell activation conditions in 2 breast cancer cell lines (MDA-MB-453 and MDA-MB-468) and an epidermoid cancer cell line (A431). The results were confirmed by immunoprecipitation/western blot. Importantly, the multiplex immunoassay facilitated time-course studies in these cell lines after cell activation with EGF and neuregulin, revealing the kinetics of phosphorylation of the ErbB family RTKs. This study demonstrates the utility of the Luminex® multiplex system as an efficient and comprehensive approach to study different aspects of molecular roles of these RTKs. Importantly, the study provides proof-of-concept for the utility of the multiplex microbead immunoassay approach for potential use in efficient, robust, and rapid screening of drugs, particularly those targeting functional aspects of these potent signaling molecules. In addition, the assays described here may be useful for cancer diagnostics and monitoring efficacy of therapy targeting the ErbB family of RTKs.
PMCID: PMC3196214  PMID: 20035613
20.  Interactions between SIVNef, SIVGagPol and Alix correlate with viral replication and progression to AIDS in rhesus macaques 
Virology  2009;394(1):47-56.
Infection with Simian Immunodeficiency Virus (SIV) leads to high viral loads and progression to Simian AIDS (SAIDS) in rhesus macaques. The viral accessory protein Nef is required for this phenotype in monkeys as well as in HIV-infected humans. Previously, we determined that HIVNef binds HIVGagPol and Alix for optimal viral replication in cells. In this study, we demonstrated that these interactions could correlate with high viral loads leading to SAIDS in the infected host. By infecting rhesus macaques with a mutant SIVmac239, where sequences in the nef gene that are required for these interactions were mutated, we observed robust viral replication and disease in two out of four monkeys, where they reverted to the wild type genotype and phenotype. These two rhesus macaques also died of SAIDS. Two other monkeys did not progress to disease and continued to harbor mutant nef sequences. We conclude that interactions between Nef, GagPol and Alix contribute to optimal viral replication and progression to disease in the infected host.
PMCID: PMC2767429  PMID: 19748111
SIV; HIV; Nef; monkey infection; pathogenesis; disease progression; GagPol; Alix
21.  Viral Sanctuaries during Highly Active Antiretroviral Therapy in a Nonhuman Primate Model for AIDS ▿  
Journal of Virology  2009;84(6):2913-2922.
Highly active antiretroviral therapy (HAART) enables long-term suppression of plasma HIV-1 loads in infected persons, but low-level virus persists and rebounds following cessation of therapy. During HAART, this virus resides in latently infected cells, such as resting CD4+ T cells, and in other cell types that may support residual virus replication. Therapeutic eradication will require elimination of virus from all reservoirs. We report here a comprehensive analysis of these reservoirs in fluids, cells, and tissues in a rhesus macaque model that mimics HAART in HIV-infected humans. This nonhuman primate model uses RT-SHIV, a chimera of simian immunodeficiency virus containing the HIV-1 reverse transcriptase (RT). Methods were developed for extraction, preamplification, and real-time PCR analyses of viral DNA (vDNA) and viral RNA (vRNA) in tissues from RT-SHIV-infected macaques. These methods were used to identify viral reservoirs in RT-SHIV-infected macaques treated with a potent HAART regimen consisting of efavirenz, emtricitabine, and tenofovir. Plasma virus loads at necropsy ranged from 11 to 28 copies of vRNA per ml. Viral RNA and DNA were detected during HAART, in tissues from numerous anatomical locations. Additional analysis provided evidence for full-length viral RNA in tissues of animals with virus suppressed by HAART. The highest levels of vDNA and vRNA in HAART-treated macaques were in lymphoid tissues, particularly the spleen, lymph nodes, and gastrointestinal tract tissues. This study is the first comprehensive analysis of the tissue and organ distribution of a primate AIDS virus during HAART. These data demonstrate widespread persistence of residual virus in tissues during HAART.
PMCID: PMC2826073  PMID: 20032180
22.  Viral Decay Kinetics in the Highly Active Antiretroviral Therapy-Treated Rhesus Macaque Model of AIDS 
PLoS ONE  2010;5(7):e11640.
To prevent progression to AIDS, persons infected with human immunodeficiency virus type 1 (HIV-1) must remain on highly active antiretroviral therapy (HAART) indefinitely since this modality does not eradicate the virus. The mechanisms involved in viral persistence during HAART are poorly understood, but an animal model of HAART could help elucidate these mechanisms and enable studies of HIV-1 eradication strategies. Due to the specificity of non-nucleoside reverse transcriptase (RT) inhibitors (NNRTIs) for HIV-1, we have used RT-SHIV, a chimeric virus of simian immunodeficiency virus with RT from HIV-1. This virus is susceptible to NNRTIs and causes an AIDS-like disease in rhesus macaques. In this study, two groups of HAART-treated, RT-SHIV-infected macaques were analyzed to determine viral decay kinetics. In the first group, viral loads were monitored with a standard TaqMan RT-PCR assay with a limit of detection of 50 viral RNA copies per mL. Upon initiation of HAART, viremia decayed in a bi-phasic manner with half-lives of 1.7 and 8.5 days, respectively. A third phase was observed with little further decay. In the second group, the macaques were followed longitudinally with a more sensitive assay utilizing ultracentrifugation to concentrate virus from plasma. Bi-phasic decay of viral RNA was also observed in these animals with half-lives of 1.8 and 5.8 days. Viral loads in these animals during a third phase ranged from 2–58 RNA copies/mL, with little decay over time. The viral decay kinetics observed in these macaques are similar to those reported for HIV-1 infected humans. These results demonstrate that low-level viremia persists in RT-SHIV-infected macaques despite a HAART regimen commonly used in humans.
PMCID: PMC2909142  PMID: 20668516
23.  KRAB domain-associated protein-1 as a latency regulator for Kaposi's sarcoma-associated herpesvirus and its modulation by the viral protein kinase 
Cancer research  2009;69(14):5681-5689.
Kaposi's sarcoma-associated herpesvirus (KSHV) has been linked to the development of Kaposi's sarcoma, a major AIDS-associated malignancy, and to hematologic malignancies including primary effusion lymphoma and multicentric Castleman's disease. Like other herpesviruses, KSHV is capable of both latent and lytic replication. Understanding the molecular details associated with this transition from latency to lytic replication is key to controlling virus spread and can impact the development of intervention strategies. Here, we report that KAP-1/TIF1β, a cellular transcriptional repressor that controls chromosomal remodeling, participates in the process of switching viral latency to lytic replication. Knockdown of KAP-1 by siRNA leads to KSHV reactivation mediated by K-Rta, a key transcriptional regulator. In cells harboring latent KSHV, KAP-1 was associated with the majority of viral lytic-gene promoters. K-Rta overexpression induced the viral lytic cycle with concomitant reduction of KAP-1 binding to viral promoters. Association of KAP-1 with heterochromatin was modulated by both sumoylation and phoshorylation. During lytic replication of KSHV, KAP-1 was phosphorylated at Ser824. Several lines of evidence directly linked the viral protein kinase (vPK) to this post-translational modification. Additional studies demonstrated that this phosphorylation of KAP-1 produced a decrease in its sumoylation, consequently decreasing the ability of KAP-1 to condense chromatin on viral promoters. In summary, the cellular transcriptional repressor KAP-1 plays a role in regulating KSHV latency, and vPK modulates the chromatin remodeling function of this repressor.
PMCID: PMC2731626  PMID: 19584288
KAP-1; heterochromatin; sumoylation; phosphorylation; herpesvirus latency; viral protein kinase
24.  NF-κB Serves as a Cellular Sensor of Kaposi's Sarcoma-Associated Herpesvirus Latency and Negatively Regulates K-Rta by Antagonizing the RBP-Jκ Coactivator▿  
Journal of Virology  2009;83(9):4435-4446.
Successful viral replication is dependent on a conducive cellular environment; thus, viruses must be sensitive to the state of their host cells. We examined the idea that an interplay between viral and cellular regulatory factors determines the switch from Kaposi's sarcoma-associated herpesvirus (KSHV) latency to lytic replication. The immediate-early gene product K-Rta is the first viral protein expressed and an essential factor in reactivation; accordingly, this viral protein is in a key position to serve as a viral sensor of cellular physiology. Our approach aimed to define a host transcription factor, i.e., host sensor, which modulates K-Rta activity on viral promoters. To this end, we developed a panel of reporter plasmids containing all 83 putative viral promoters for a comprehensive survey of the response to both K-Rta and cellular transcription factors. Interestingly, members of the NF-κB family were shown to be strong negative regulators of K-Rta transactivation for all but two viral promoters (Ori-RNA and K12). Recruitment of K-Rta to the ORF57 and K-bZIP promoters, but not the K12 promoter, was significantly impaired when NF-κB expression was induced. Many K-Rta-responsive promoters modulated by NF-κB contain the sequence of the RBP-Jκ binding site, a major coactivator which anchors K-Rta to target promoters via consensus motifs which overlap with that of NF-κB. Gel shift assays demonstrated that NF-κB inhibits the binding of RBP-Jκ and forms a complex with RBP-Jκ. Our results support a model in which a balance between K-Rta/RBP-Jκ and NF-κB activities determines KSHV reactivation. An important feature of this model is that the interplay between RBP-Jκ and NF-κB on viral promoters controls viral gene expression mediated by K-Rta.
PMCID: PMC2668470  PMID: 19244329
25.  Vaccination of rhesus macaques with a vif-deleted simian immunodeficiency virus proviral DNA vaccine 
Virology  2008;374(2):261-272.
Studies in non-human primates, with simian immunodeficiency virus (SIV) and simian/human immunodeficiency virus (SHIV) have demonstrated that live-attenuated viral vaccines are highly effective; however these vaccine viruses maintain a low level of pathogenicity. Lentivirus attenuation associated with deletion of the viral vif gene carries a significantly reduced risk for pathogencity, while retaining the potential for virus replication of low magnitude in the host. This report describes a vif-deleted simian immunodeficiency virus (SIV)mac239 provirus that was tested as an attenuated proviral DNA vaccine by inoculation of female rhesus macaques. SIV-specific interferon-γ enzyme-linked immunospot responses of low magnitude were observed after immunization with plasmid containing the vif-deleted SIV provirus. However, vaccinated animals displayed strong sustained virus-specific T cell proliferative responses and increasing antiviral antibody titers. These immune responses suggested either persistent vaccine plasmid expression or low level replication of vif-deleted SIV in the host. Immunized and unvaccinated macaques received a single high dose vaginal challenge with pathogenic SIVmac251. A transient suppression of challenge virus load and a greater median survival time was observed for vaccinated animals. However, virus loads for vaccinated and unvaccinated macaques were comparable by 20 weeks after challenge and overall survival curves for the two groups were not significantly different. Thus, a vif-deleted SIVmac239 proviral DNA vaccine is immunogenic and capable of inducing a transient suppression of pathogenic challenge virus, despite severe attenuation of the vaccine virus.
PMCID: PMC2519864  PMID: 18261756
SIV; DNA vaccine; vif; immunogenicity

Results 1-25 (42)