PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Multicenter Study of Creatinine- and/or Cystatin C-Based Equations for Estimation of Glomerular Filtration Rates in Chinese Patients with Chronic Kidney Disease 
PLoS ONE  2013;8(3):e57240.
Objective
To establish equations for the estimation of glomerular filtration rates (eGFRs) based on serum creatinine (SCr) and/or serum cystatin C (SCysC) in Chinese patients with chronic kidney disease (CKD), and to compare the new equations with both the reference GFR (rGFR) and the literature equations to evaluate their applicability.
Methods
The 788 Chinese CKD patients were randomly divided into two groups, the training group and the testing group, to establish new eGFR-formulas based on serum CysC and to validate the established formulas, respectively. 99mTc-DTPA clearance (as the rGFR), serum Cr, and serum CysC were determined for all patients, and GFR was calculated using the Cockcroft-Gault equation (eGFR1), the MDRD formula (eGFR2), the CKD-EPI formulas (eGFR3, eGFR4), and the Chinese eGFR Investigation Collaboration formulas (eGFR5, eGFR6). The accuracy of each eGFR was compared with the rGFR.
Results
The training and testing groups' mean GFRs were 50.84±31.36 mL/min/1.73 m2 and 54.16±29.45 mL/min/1.73 m2, respectively. The two newly developed eGFR formulas were fitted using iterative computation: and . Significant correlation was observed between each eGFR and the rGFR. However, proportional errors and constant errors were observed between rGFR and eGFR1, eGFR2, eGFR4, eGFR5 or eGFR6, and constant errors were observed between eGFR3 and rGFR, as revealed by the Passing & Bablok plot analysis. The Bland-Altman analysis illustrated that the 95% limits of agreement of all equations exceeded the previously accepted limits of <60 mL/min •1.73 m2, except the equations of eGFR7 and eGFR8.
Conclusion
The newly developed formulas, eGFR7 and eGFR8, provide precise and accurate GFR estimation using serum CysC detection alone or in combination with serum Cr detection. Differences in detection methods should be carefully considered when choosing literature eGFR equations to avoid misdiagnosis and mistreatment.
doi:10.1371/journal.pone.0057240
PMCID: PMC3602457  PMID: 23526939
2.  Inhibition by curcumin of multiple sites of the transforming growth factor-beta1 signalling pathway ameliorates the progression of liver fibrosis induced by carbon tetrachloride in rats 
Background
At present there is no effective and accepted therapy for hepatic fibrosis. Transforming growth factor (TGF)-β1 signaling pathway contributes greatly to hepatic fibrosis. Reducing TGF-β synthesis or inhibiting components of its complex signaling pathway represent important therapeutic targets. The aim of the study was to investigate the effect of curcumin on liver fibrosis and whether curcumin attenuates the TGF-β1 signaling pathway.
Methods
Sprague–Dawley rat was induced liver fibrosis by carbon tetrachloride (CCl4) for six weeks together with or without curcumin, and hepatic histopathology and collagen content were employed to quantify liver necro-inflammation and fibrosis. Moreover, the mRNA and protein expression levels of TGF-β1, Smad2, phosphorylated Smad2, Smad3, Smad7 and connective tissue growth factor (CTGF) were determined by quantitative real time-PCR, Western blot, or immunohistochemistry.
Results
Rats treated with curcumin improved liver necro-inflammation, and reduced liver fibrosis in association with decreased α-smooth muscle actin expression, and decreased collagen deposition. Furthermore, curcumin significantly attenuated expressions of TGFβ1, Smad2, phosphorylated Smad2, Smad3, and CTGF and induced expression of the Smad7.
Conclusions
Curcumin significantly attenuated the severity of CCl4-induced liver inflammation and fibrosis through inhibition of TGF-β1/Smad signalling pathway and CTGF expression. These data suggest that curcumin might be an effective antifibrotic drug in the prevention of liver disease progression.
doi:10.1186/1472-6882-12-156
PMCID: PMC3495222  PMID: 22978413
Curcumin; Hepatic stellate cells; Liver fibrosis; Transforming growth factor-beta; Smads; Connective tissue growth factor
3.  Dextran Sodium Sulfate (DSS) Induces Colitis in Mice by Forming Nano-Lipocomplexes with Medium-Chain-Length Fatty Acids in the Colon 
PLoS ONE  2012;7(3):e32084.
Inflammatory bowel diseases (IBDs), primarily ulcerative colitis and Crohn's disease, are inflammatory disorders caused by multiple factors. Research on IBD has often used the dextran sodium sulfate (DSS)-induced colitis mouse model. DSS induces in vivo but not in vitro intestinal inflammation. In addition, no DSS-associated molecule (free glucose, sodium sulfate solution, free dextran) induces in vitro or in vivo intestinal inflammation. We find that DSS but not dextran associated molecules established linkages with medium-chain-length fatty acids (MCFAs), such as dodecanoate, that are present in the colonic lumen. DSS complexed to MCFAs forms nanometer-sized vesicles ∼200 nm in diameter that can fuse with colonocyte membranes. The arrival of nanometer-sized DSS/MCFA vesicles in the cytoplasm may activate intestinal inflammatory signaling pathways. We also show that the inflammatory activity of DSS is mediated by the dextran moieties. The deleterious effect of DSS is localized principally in the distal colon, therefore it will be important to chemically modify DSS to develop materials beneficial to the colon without affecting colon-targeting specificity.
doi:10.1371/journal.pone.0032084
PMCID: PMC3302894  PMID: 22427817

Results 1-3 (3)