Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Stratification of Antibody-Positive Subjects by Antibody Level Reveals an Impact of Immunogenicity on Pharmacokinetics 
The AAPS Journal  2012;15(1):30-40.
The availability of highly sensitive immunoassays enables the detection of antidrug antibody (ADA) responses of various concentrations and affinities. The analysis of the impact of antibody status on drug pharmacokinetics (PK) is confounded by the presence of low-affinity or low-concentration antibody responses within the dataset. In a phase 2 clinical trial, a large proportion of subjects (45%) developed ADA following weekly dosing with AMG 317, a fully human monoclonal antibody therapeutic. The antibody responses displayed a wide range of relative concentrations (30 ng/mL to >13 μg/mL) and peaked at various times during the study. To evaluate the impact of immunogenicity on PK, AMG 317 concentration data were analyzed following stratification by dose group, time point, antibody status (positive or negative), and antibody level (relative concentration). With dose group as a stratifying variable, a moderate reduction in AMG 317 levels (<50%) was observed in antibody-positive subjects when compared to antibody-negative subjects, but the difference was not statistically significant in all dose groups. The most significant reduction in AMG 317 levels was revealed when antibody data was stratified by both time point and antibody level. In general, high ADA concentrations (>500 ng/mL) and later time points (week 12) were associated with significantly (up to 97%) lower trough AMG 317 concentrations. The use of quasi-quantitative antibody data and appropriate statistical methods was critical for the most comprehensive evaluation of the impact of immunogenicity on PK.
PMCID: PMC3535100  PMID: 23054969
antidrug antibodies; immunogenicity; pharmacokinetics
2.  Immunogenicity of panitumumab in combination chemotherapy clinical trials 
Panitumumab is a fully human antibody against the epidermal growth factor receptor that is indicated for the treatment of metastatic colorectal cancer (mCRC) after disease progression on standard chemotherapy. The purpose of this analysis was to examine the immunogenicity of panitumumab and to evaluate the effect of anti-panitumumab antibodies on pharmacokinetic and safety profiles in patients with mCRC receiving panitumumab in combination with oxaliplatin- or irinotecan-based chemotherapies.
Three validated assays (two screening immunoassays and a neutralizing antibody bioassay) were used to detect the presence of anti-panitumumab antibodies in serum samples collected from patients enrolled in four panitumumab combination chemotherapy clinical trials. The impact of anti-panitumumab antibodies on pharmacokinetic and safety profiles was analyzed using population pharmacokinetic analysis and descriptive statistics, respectively.
Of 1124 patients treated with panitumumab in combination with oxaliplatin- or irinotecan-based chemotherapy with postbaseline samples available for testing, 20 (1.8%) patients developed binding antibodies and 2 (0.2%) developed neutralizing antibodies. The incidence of anti-panitumumab antibodies was similar in patients with tumors expressing wild-type or mutant KRAS and in patients receiving oxaliplatin- or irinotecan-based chemotherapies. No evidence of an altered pharmacokinetic or safety profile was found in patients who tested positive for anti-panitumumab antibodies.
The immunogenicity of panitumumab in the combination chemotherapy setting was infrequent and similar to the immunogenicity observed in the monotherapy setting. Panitumumab immunogenicity did not appear to alter pharmacokinetic or safety profiles. This low rate of immunogenicity may be attributed to the fully human nature of panitumumab.
Trial registration NCT00339183 (study 20050181), NCT00411450 (study 20060277), NCT00332163 (study 20050184), and NCT00364013 (study 20050203).
PMCID: PMC3231982  PMID: 22070868
3.  Genetic modifiers of abnormal organelle biogenesis in a Drosophila model of BLOC-1 deficiency 
Human Molecular Genetics  2009;19(5):861-878.
Biogenesis of lysosome-related organelles complex 1 (BLOC-1) is a protein complex formed by the products of eight distinct genes. Loss-of-function mutations in two of these genes, DTNBP1 and BLOC1S3, cause Hermansky–Pudlak syndrome, a human disorder characterized by defective biogenesis of lysosome-related organelles. In addition, haplotype variants within the same two genes have been postulated to increase the risk of developing schizophrenia. However, the molecular function of BLOC-1 remains unknown. Here, we have generated a fly model of BLOC-1 deficiency. Mutant flies lacking the conserved Blos1 subunit displayed eye pigmentation defects due to abnormal pigment granules, which are lysosome-related organelles, as well as abnormal glutamatergic transmission and behavior. Epistatic analyses revealed that BLOC-1 function in pigment granule biogenesis requires the activities of BLOC-2 and a putative Rab guanine-nucleotide-exchange factor named Claret. The eye pigmentation phenotype was modified by misexpression of proteins involved in intracellular protein trafficking; in particular, the phenotype was partially ameliorated by Rab11 and strongly enhanced by the clathrin-disassembly factor, Auxilin. These observations validate Drosophila melanogaster as a powerful model for the study of BLOC-1 function and its interactions with modifier genes.
PMCID: PMC2816613  PMID: 20015953
4.  Hermansky-Pudlak syndrome type 7 (HPS-7) results from mutant dysbindin, a member of the biogenesis of lysosome-related organelles complex 1 (BLOC-1) 
Nature genetics  2003;35(1):84-89.
Hermansky-Pudlak syndrome (HPS; MIM 203300) is a genetically heterogeneous disorder characterized by oculocutaneous albinism, prolonged bleeding and pulmonary fibrosis due to abnormal vesicle trafficking to lysosomes and related organelles, such as melanosomes and platelet dense granules1–3. In mice, at least 16 loci are associated with HPS4–6, including sandy (sdy; ref. 7). Here we show that the sdy mutant mouse expresses no dysbindin protein owing to a deletion in the gene Dtnbp1 (encoding dysbindin) and that mutation of the human ortholog DTNBP1 causes a novel form of HPS called HPS-7. Dysbindin is a ubiquitously expressed protein that binds to α- and β-dystrobrevins, components of the dystrophin-associated protein complex (DPC) in both muscle and nonmuscle cells8. We also show that dysbindin is a component of the biogenesis of lysosome-related organelles complex 1 (BLOC-1; refs. 9–11), which regulates trafficking to lysosome-related organelles and includes the proteins pallidin, muted and cappuccino, which are associated with HPS in mice. These findings show that BLOC-1 is important in producing the HPS phenotype in humans, indicate that dysbindin has a role in the biogenesis of lysosome-related organelles and identify unexpected interactions between components of DPC and BLOC-1.
PMCID: PMC2860733  PMID: 12923531
5.  An immunoblotting assay to facilitate the molecular diagnosis of Hermansky-Pudlak syndrome 
Molecular genetics and metabolism  2007;93(2):134-144.
Hermansky-Pudlak syndrome (HPS) comprises a constellation of human autosomal recessive disorders characterized by albinism and platelet storage pool deficiency. At least eight types of HPS have been defined based on the identity of the mutated gene. These genes encode components of four ubiquitously expressed protein complexes, named Adaptor Protein (AP)-3 and Biogenesis of Lysosome-related Organelles Complex (BLOC)-1 through -3. In patients of Puerto Rican origin, the molecular diagnosis can be based on analysis of two founder mutations. On the other hand, identification of the HPS type in other patients relies on the sequencing of all candidate genes. In this work, we have developed a biochemical assay to minimize the number of candidate genes to be sequenced per patient. The assay consists of immunoblotting analysis of extracts prepared from skin fibroblasts, using antibodies to one subunit per protein complex. The assay allowed us to determine which complex was defective in each of a group of HPS patients with unknown genetic lesions, thus subsequent sequencing was limited to genes encoding the corresponding subunits. Because no mutations within the two genes encoding BLOC-3 subunits could be found in two patients displaying reduced BLOC-3 levels, the possible existence of additional subunits was considered. Through size-exclusion chromatography and sedimentation velocity analysis, the native molecular mass of BLOC-3 was estimated to be 140 ± 30 kDa, a value most consistent with the idea that BLOC-3 is a HPS1•HPS4 heterodimer (∼156 kDa) albeit not inconsistent with the putative existence of a relatively small third subunit.
PMCID: PMC2242292  PMID: 17933573
AP-3; BLOC-1; BLOC-2; BLOC-3; Hermansky-Pudlak syndrome; Immunoblotting; Molecular Diagnosis
6.  BLOC-1 Is Required for Cargo-specific Sorting from Vacuolar Early Endosomes toward Lysosome-related Organelles 
Molecular Biology of the Cell  2007;18(3):768-780.
Hermansky-Pudlak syndrome (HPS) is a genetic disorder characterized by defects in the formation and function of lysosome-related organelles such as melanosomes. HPS in humans or mice is caused by mutations in any of 15 genes, five of which encode subunits of biogenesis of lysosome-related organelles complex (BLOC)-1, a protein complex with no known function. Here, we show that BLOC-1 functions in selective cargo exit from early endosomes toward melanosomes. BLOC-1–deficient melanocytes accumulate the melanosomal protein tyrosinase-related protein-1 (Tyrp1), but not other melanosomal proteins, in endosomal vacuoles and the cell surface due to failed biosynthetic transit from early endosomes to melanosomes and consequent increased endocytic flux. The defects are corrected by restoration of the missing BLOC-1 subunit. Melanocytes from HPS model mice lacking a different protein complex, BLOC-2, accumulate Tyrp1 in distinct downstream endosomal intermediates, suggesting that BLOC-1 and BLOC-2 act sequentially in the same pathway. By contrast, intracellular Tyrp1 is correctly targeted to melanosomes in melanocytes lacking another HPS-associated protein complex, adaptor protein (AP)-3. The results indicate that melanosome maturation requires at least two cargo transport pathways directly from early endosomes to melanosomes, one pathway mediated by AP-3 and one pathway mediated by BLOC-1 and BLOC-2, that are deficient in several forms of HPS.
PMCID: PMC1805088  PMID: 17182842
7.  Phytoestrogen signaling and symbiotic gene activation are disrupted by endocrine-disrupting chemicals. 
Environmental Health Perspectives  2004;112(6):672-677.
Some organochlorine pesticides and other synthetic chemicals mimic hormones in representatives of each vertebrate class, including mammals, reptiles, amphibians, birds, and fish. These compounds are called endocrine-disrupting chemicals (EDCs). Similarly, hormonelike signaling has also been observed when vertebrates are exposed to plant chemicals called phytoestrogens. Previous research has shown the mechanism of action for EDCs and phytoestrogens is as unintended ligands for the estrogen receptor (ER). Although pesticides have been synthesized to deter insects and weeds, plants produce phytoestrogens to deter herbivores, as attractant cues for insects, and as recruitment signals for symbiotic soil bacteria. Our data present the first evidence that some of the same organochlorine pesticides and EDCs known to disrupt endocrine signaling through ERs in exposed wildlife and humans also disrupt the phytoestrogen signaling that leguminous plants use to recruit Sinorhizobium meliloti soil bacteria for symbiotic nitrogen fixation. Here we report that a variety of EDCs and pesticides commonly found in agricultural soils interfere with the symbiotic signaling necessary for nitrogen fixation, suggesting that the principles underlying endocrine disruption may have more widespread biological and ecological importance than had once been thought.
PMCID: PMC1241960  PMID: 15121509

Results 1-7 (7)