Search tips
Search criteria

Results 1-11 (11)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
author:("Liu, xinyuan")
1.  T-cell acute lymphoid leukemia resembling Burkitt leukemia cell morphology: A case report 
Oncology Letters  2014;9(3):1236-1238.
Biphenotypic acute leukemia (BAL) is an uncommon type of cancer, which accounts for <5% of all adult ALs. Based upon a previously described scoring system, the European Group for the Immunological Classification of Leukemias (EGIL) proposed a set of diagnostic criteria for BAL. This scoring system is based upon the number and degree of specificity of several markers for myeloid or T/B-lymphoid blasts. The present study describes a case of T-cell acute lymphoblastic leukemia (T-ALL) with Burkitt-like cytology, which according to the French-American-British classification, corresponded to a diagnosis of Burkitt type L3 ALL. Flow cytometry analysis demonstrated that the blasts were positive for T-lymphoid markers, cytoplasmic cluster of differentiation (CD)3, CD7 and CD56, and myeloid markers, CD13, CD33 and CD15. At first, a diagnosis of BAL was suggested by the EGIL score, however, according to the 2008 World Health Organization criteria, a case of T-ALL with aberrant myeloid markers was established. The study also reviewed the literature and discussed the limitations of the EGIL scoring system in clinical decision making, to aid in the selection of an appropriate therapeutic regimen.
PMCID: PMC4314994  PMID: 25663889
biphenotypic acute leukemia; acute lymphoblastic leukemia; Burkitt leukemia
2.  Cassava genome from a wild ancestor to cultivated varieties 
Nature Communications  2014;5:5110.
Cassava is a major tropical food crop in the Euphorbiaceae family that has high carbohydrate production potential and adaptability to diverse environments. Here we present the draft genome sequences of a wild ancestor and a domesticated variety of cassava and comparative analyses with a partial inbred line. We identify 1,584 and 1,678 gene models specific to the wild and domesticated varieties, respectively, and discover high heterozygosity and millions of single-nucleotide variations. Our analyses reveal that genes involved in photosynthesis, starch accumulation and abiotic stresses have been positively selected, whereas those involved in cell wall biosynthesis and secondary metabolism, including cyanogenic glucoside formation, have been negatively selected in the cultivated varieties, reflecting the result of natural selection and domestication. Differences in microRNA genes and retrotransposon regulation could partly explain an increased carbon flux towards starch accumulation and reduced cyanogenic glucoside accumulation in domesticated cassava. These results may contribute to genetic improvement of cassava through better understanding of its biology.
Cassava is a major source of food in tropical and subtropical regions. Here the authors sequence the genomes of wild and domesticated cassava varieties and identify genes that have been selected for and against during the evolution and domestication of this economically important crop.
PMCID: PMC4214410  PMID: 25300236
3.  Single molecule sequencing and genome assembly of a clinical specimen of Loa loa, the causative agent of loiasis 
BMC Genomics  2014;15(1):788.
More than 20% of the world’s population is at risk for infection by filarial nematodes and >180 million people worldwide are already infected. Along with infection comes significant morbidity that has a socioeconomic impact. The eight filarial nematodes that infect humans are Wuchereria bancrofti, Brugia malayi, Brugia timori, Onchocerca volvulus, Loa loa, Mansonella perstans, Mansonella streptocerca, and Mansonella ozzardi, of which three have published draft genome sequences. Since all have humans as the definitive host, standard avenues of research that rely on culturing and genetics have often not been possible. Therefore, genome sequencing provides an important window into understanding the biology of these parasites. The need for large amounts of high quality genomic DNA from homozygous, inbred lines; the availability of only short sequence reads from next-generation sequencing platforms at a reasonable expense; and the lack of random large insert libraries has limited our ability to generate high quality genome sequences for these parasites. However, the Pacific Biosciences single molecule, real-time sequencing platform holds great promise in reducing input amounts and generating sufficiently long sequences that bypass the need for large insert paired libraries.
Here, we report on efforts to generate a more complete genome assembly for L. loa using genetically heterogeneous DNA isolated from a single clinical sample and sequenced on the Pacific Biosciences platform. To obtain the best assembly, numerous assemblers and sequencing datasets were analyzed, combined, and compared. Quiver-informed trimming of an assembly of only Pacific Biosciences reads by HGAP2 was selected as the final assembly of 96.4 Mbp in 2,250 contigs. This results in ~9% more of the genome in ~85% fewer contigs from ~80% less starting material at a fraction of the cost of previous Roche 454-based sequencing efforts.
The result is the most complete filarial nematode assembly produced thus far and demonstrates the utility of single molecule sequencing on the Pacific Biosciences platform for genetically heterogeneous metazoan genomes.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-788) contains supplementary material, which is available to authorized users.
PMCID: PMC4175631  PMID: 25217238
4.  Genome sequencing and comparative genomics of honey bee microsporidia, Nosema apis reveal novel insights into host-parasite interactions 
BMC Genomics  2013;14:451.
The microsporidia parasite Nosema contributes to the steep global decline of honey bees that are critical pollinators of food crops. There are two species of Nosema that have been found to infect honey bees, Nosema apis and N. ceranae. Genome sequencing of N. apis and comparative genome analysis with N. ceranae, a fully sequenced microsporidia species, reveal novel insights into host-parasite interactions underlying the parasite infections.
We applied the whole-genome shotgun sequencing approach to sequence and assemble the genome of N. apis which has an estimated size of 8.5 Mbp. We predicted 2,771 protein- coding genes and predicted the function of each putative protein using the Gene Ontology. The comparative genomic analysis led to identification of 1,356 orthologs that are conserved between the two Nosema species and genes that are unique characteristics of the individual species, thereby providing a list of virulence factors and new genetic tools for studying host-parasite interactions. We also identified a highly abundant motif in the upstream promoter regions of N. apis genes. This motif is also conserved in N. ceranae and other microsporidia species and likely plays a role in gene regulation across the microsporidia.
The availability of the N. apis genome sequence is a significant addition to the rapidly expanding body of microsprodian genomic data which has been improving our understanding of eukaryotic genome diversity and evolution in a broad sense. The predicted virulent genes and transcriptional regulatory elements are potential targets for innovative therapeutics to break down the life cycle of the parasite.
PMCID: PMC3726280  PMID: 23829473
Microsporidia; Nosema; Honey bees; Genome; Comparative genomics
5.  Serum Antibody Repertoire Profiling Using In Silico Antigen Screen 
PLoS ONE  2013;8(6):e67181.
Serum antibodies are valuable source of information on the health state of an organism. The profiles of serum antibody reactivity can be generated by using a high throughput sequencing of peptide-coding DNA from combinatorial random peptide phage display libraries selected for binding to serum antibodies. Here we demonstrate that the targets of immune response, which are recognized by serum antibodies directed against sequential epitopes, can be identified using the serum antibody repertoire profiles generated by high throughput sequencing. We developed an algorithm to filter the results of the protein database BLAST search for selected peptides to distinguish real antigens recognized by serum antibodies from irrelevant proteins retrieved randomly. When we used this algorithm to analyze serum antibodies from mice immunized with human protein, we were able to identify the protein used for immunizations among the top candidate antigens. When we analyzed human serum sample from the metastatic melanoma patient, the recombinant protein, corresponding to the top candidate from the list generated using the algorithm, was recognized by antibodies from metastatic melanoma serum on the western blot, thus confirming that the method can identify autoantigens recognized by serum antibodies. We demonstrated also that our unbiased method of looking at the repertoire of serum antibodies reveals quantitative information on the epitope composition of the targets of immune response. A method for deciphering information contained in the serum antibody repertoire profiles may help to identify autoantibodies that can be used for diagnosing and monitoring autoimmune diseases or malignancies.
PMCID: PMC3695087  PMID: 23826227
6.  Phenotypic, genomic, and transcriptional characterization of Streptococcus pneumoniae interacting with human pharyngeal cells 
BMC Genomics  2013;14:383.
Streptococcus pneumoniae is a leading cause of childhood morbidity and mortality worldwide, despite the availability of effective pneumococcal vaccines. Understanding the molecular interactions between the bacterium and the host will contribute to the control and prevention of pneumococcal disease.
We used a combination of adherence assays, mutagenesis and functional genomics to identify novel factors involved in adherence. By contrasting these processes in two pneumococcal strains, TIGR4 and G54, we showed that adherence and invasion capacities vary markedly by strain. Electron microscopy showed more adherent bacteria in association with membranous pseudopodia in the TIGR4 strain. Operons for cell wall phosphorylcholine incorporation (lic), manganese transport (psa) and phosphate utilization (phn) were up-regulated in both strains on exposure to epithelial cells. Pneumolysin, pili, stress protection genes (adhC-czcD) and genes of the type II fatty acid synthesis pathway were highly expressed in the naturally more invasive strain, TIGR4. Deletion mutagenesis of five gene regions identified as regulated in this study revealed attenuation in adherence. Most strikingly, ∆SP_1922 which was predicted to contain a B-cell epitope and revealed significant attenuation in adherence, appeared to be expressed as a part of an operon that includes the gene encoding the cytoplasmic pore-forming toxin and vaccine candidate, pneumolysin.
This work identifies a list of novel potential pneumococcal adherence determinants.
PMCID: PMC3708772  PMID: 23758733
Streptococcus pneumoniae; Gene expression; Microarray; Adherence; Invasion; Genome; Mutagenesis; SP_1922; Ply operon
7.  GAGE-B: an evaluation of genome assemblers for bacterial organisms 
Bioinformatics  2013;29(14):1718-1725.
Motivation: A large and rapidly growing number of bacterial organisms have been sequenced by the newest sequencing technologies. Cheaper and faster sequencing technologies make it easy to generate very high coverage of bacterial genomes, but these advances mean that DNA preparation costs can exceed the cost of sequencing for small genomes. The need to contain costs often results in the creation of only a single sequencing library, which in turn introduces new challenges for genome assembly methods.
Results: We evaluated the ability of multiple genome assembly programs to assemble bacterial genomes from a single, deep-coverage library. For our comparison, we chose bacterial species spanning a wide range of GC content and measured the contiguity and accuracy of the resulting assemblies. We compared the assemblies produced by this very high-coverage, one-library strategy to the best assemblies created by two-library sequencing, and we found that remarkably good bacterial assemblies are possible with just one library. We also measured the effect of read length and depth of coverage on assembly quality and determined the values that provide the best results with current algorithms.
Supplementary information: Supplementary data are available at Bioinformatics online.
PMCID: PMC3702249  PMID: 23665771
8.  Rare Variants in Ischemic Stroke: An Exome Pilot Study 
PLoS ONE  2012;7(4):e35591.
The genetic architecture of ischemic stroke is complex and is likely to include rare or low frequency variants with high penetrance and large effect sizes. Such variants are likely to provide important insights into disease pathogenesis compared to common variants with small effect sizes. Because a significant portion of human functional variation may derive from the protein-coding portion of genes we undertook a pilot study to identify variation across the human exome (i.e., the coding exons across the entire human genome) in 10 ischemic stroke cases. Our efforts focused on evaluating the feasibility and identifying the difficulties in this type of research as it applies to ischemic stroke. The cases included 8 African-Americans and 2 Caucasians selected on the basis of similar stroke subtypes and by implementing a case selection algorithm that emphasized the genetic contribution of stroke risk. Following construction of paired-end sequencing libraries, all predicted human exons in each sample were captured and sequenced. Sequencing generated an average of 25.5 million read pairs (75 bp×2) and 3.8 Gbp per sample. After passing quality filters, screening the exomes against dbSNP demonstrated an average of 2839 novel SNPs among African-Americans and 1105 among Caucasians. In an aggregate analysis, 48 genes were identified to have at least one rare variant across all stroke cases. One gene, CSN3, identified by screening our prior GWAS results in conjunction with our exome results, was found to contain an interesting coding polymorphism as well as containing excess rare variation as compared with the other genes evaluated. In conclusion, while rare coding variants may predispose to the risk of ischemic stroke, this fact has yet to be definitively proven. Our study demonstrates the complexities of such research and highlights that while exome data can be obtained, the optimal analytical methods have yet to be determined.
PMCID: PMC3334983  PMID: 22536414
9.  The association between drospirenone and hyperkalemia: a comparative-safety study 
Drospirenone/ethinyl-estradiol is an oral contraceptive (OC) that possesses unique antimineralocorticoid activity. It is conjectured that drospirenone, taken alone or concomitantly with spironolactone, may be associated with an increased risk of hyperkalemia.
A retrospective cohort study was conducted evaluating women between 18-46 years of age in the Lifelink™ Health Plan Claims Database. The study was restricted to new users of OCs between 1997-2009. Cox proportional hazards models were used to estimate the time to first occurrence of hyperkalemia diagnosis. The main analysis compared OCs containing drospirenone with OCs containing levonorgestrel, a second generation OC not known to impact potassium homeostasis. Logistic regression evaluated concomitant prescribing of drospirenone and spironolactone
The cohort included 1,148,183 women, averaging 28.8 years of age and 280 days of OC therapy. 2325 cases of hyperkalemia were identified. The adjusted hazard ratio (HR) for hyperkalemia with drospirenone compared to levonorgestrel was 1.10 (95%CI 0.95-1.26). There was an increased risk of hyperkalemia with norethindrone HR 1.15 (95%CI: 1.00-1.33) and norgestimate HR 1.27 (95%CI: 1.11-1.46). Other OCs were unassociated with hyperkalemia. The odds of receiving spironolactone while taking drospirenone were 2.66 (95%CI 2.53-2.80) times higher than the odds of receiving spironolactone and levonorgestrel. Only 6.5% of patients taking drospirenone and spironolactone had a serum potassium assay within 180 days of starting concomitant therapy.
A clinically significant signal for hyperkalemia with drospirenone was not demonstrated in the current study. Despite the bolded warning for hyperkalemia with joint drospirenone and spironolactone administration, physicians are actually using them together preferentially, and are not following the recommended potassium monitoring requirements in the package insert.
PMCID: PMC3265420  PMID: 22208934
10.  Castor Bean Organelle Genome Sequencing and Worldwide Genetic Diversity Analysis 
PLoS ONE  2011;6(7):e21743.
Castor bean is an important oil-producing plant in the Euphorbiaceae family. Its high-quality oil contains up to 90% of the unusual fatty acid ricinoleate, which has many industrial and medical applications. Castor bean seeds also contain ricin, a highly toxic Type 2 ribosome-inactivating protein, which has gained relevance in recent years due to biosafety concerns. In order to gain knowledge on global genetic diversity in castor bean and to ultimately help the development of breeding and forensic tools, we carried out an extensive chloroplast sequence diversity analysis. Taking advantage of the recently published genome sequence of castor bean, we assembled the chloroplast and mitochondrion genomes extracting selected reads from the available whole genome shotgun reads. Using the chloroplast reference genome we used the methylation filtration technique to readily obtain draft genome sequences of 7 geographically and genetically diverse castor bean accessions. These sequence data were used to identify single nucleotide polymorphism markers and phylogenetic analysis resulted in the identification of two major clades that were not apparent in previous population genetic studies using genetic markers derived from nuclear DNA. Two distinct sub-clades could be defined within each major clade and large-scale genotyping of castor bean populations worldwide confirmed previously observed low levels of genetic diversity and showed a broad geographic distribution of each sub-clade.
PMCID: PMC3131294  PMID: 21750729
11.  Full-genome sequence and analysis of a novel human Rhinovirus strain within a divergent HRV-A clade 
Archives of virology  2009;155(1):83-87.
Genome sequences of human Rhinoviruses (HRV) have primarily been from stocks collected in the 1960’s, with genomes and phylogeny of modern HRVs remaining undefined. Here, two modern isolates (hrv-A101 and hrv-A101-v1) collected ~8 years apart were sequenced in their entirety. Incorporation into our full-genome HRV alignment with subsequent phylogenetic network inference indicated that these represent a unique HRV-A, localized within an early diverging clade. They appear to have resulted from recombination of the hrv-65 and hrv-78 lineages. These results support our contention that there are unrecognized distinct HRV-A strains, and that recombination is evident in currently circulating strains.
PMCID: PMC2910715  PMID: 19936613

Results 1-11 (11)