PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (61)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Rotavirus Surveillance in Kisangani, the Democratic Republic of the Congo, Reveals a High Number of Unusual Genotypes and Gene Segments of Animal Origin in Non-Vaccinated Symptomatic Children 
PLoS ONE  2014;9(6):e100953.
Group A rotavirus (RVA) infections form a major public health problem, especially in low-income countries like the Democratic Republic of the Congo (COD). However, limited data on RVA diversity is available from sub-Saharan Africa in general and the COD in particular. Therefore, the first aim of this study was to determine the genetic diversity of 99 RVAs detected during 2007–2010 in Kisangani, COD. The predominant G-type was G1 (39%) and the most predominant P-type was P[6] (53%). A total of eight different G/P-combinations were found: G1P[8] (28%), G8P[6] (26%), G2P[4] (14%), G12P[6] (13%), G1P[6] (11%), G9P[8] (4%), G4P[6] (2%) and G8P[4] (1%). The second aim of this study was to gain insight into the diversity of P[6] RVA strains in the COD. Therefore, we selected five P[6] RVA strains in combination with the G1, G4, G8 (2x) or G12 genotype for complete genome analysis. Complete genome analysis showed that the genetic background of the G1P[6] and G12P[6] strains was entirely composed of genotype 1 (Wa-like), while the segments of the two G8P[6] strains were identified as genotype 2 (DS-1-like). Interestingly, all four strains possessed a NSP4 gene of animal origin. The analyzed G4P[6] RVA strain was found to possess the unusual G4-P[6]-I1-R1-C1-M1-A1-N1-T7-E1-H1 constellation. Although the majority of its genes (if not all), were presumably of porcine origin, this strain was able to cause gastro-enteritis in humans. The high prevalence of unusual RVA strains in the COD highlights the need for continued surveillance of RVA diversity in the COD. These results also underline the importance of complete genetic characterization of RVA strains and indicate that reassortments and interspecies transmission among human and animal RVAs strains occur regularly. Based on these data, RVA vaccines will be challenged with a wide variety of different RVA strain types in the COD.
doi:10.1371/journal.pone.0100953
PMCID: PMC4072759  PMID: 24968018
2.  Bacterial Sepsis in Patients with Visceral Leishmaniasis in Northwest Ethiopia 
BioMed Research International  2014;2014:361058.
Background and Objectives. Visceral leishmaniasis (VL) is one of the neglected diseases affecting the poorest segment of world populations. Sepsis is one of the predictors for death of patients with VL. This study aimed to assess the prevalence and factors associated with bacterial sepsis, causative agents, and their antimicrobial susceptibility patterns among patients with VL. Methods. A cross-sectional study was conducted among parasitologically confirmed VL patients suspected of sepsis admitted to the University of Gondar Hospital, Northwest Ethiopia, from February 2012 to May 2012. Blood cultures and other clinical samples were collected and cultured following the standard procedures. Results. Among 83 sepsis suspected VL patients 16 (19.3%) had culture confirmed bacterial sepsis. The most frequently isolated organism was Staphylococcus aureus (68.8%; 11/16), including two methicillin-resistant isolates (MRSA). Patients with focal bacterial infection were more likely to have bacterial sepsis (P < 0.001). Conclusions. The prevalence of culture confirmed bacterial sepsis was high, predominantly due to S. aureus. Concurrent focal bacterial infection was associated with bacterial sepsis, suggesting that focal infections could serve as sources for bacterial sepsis among VL patients. Careful clinical evaluation for focal infections and prompt initiation of empiric antibiotic treatment appears warranted in VL patients.
doi:10.1155/2014/361058
PMCID: PMC4033396  PMID: 24895569
3.  Invasive Salmonella enterica Serotype Typhimurium Infections, Democratic Republic of the Congo, 2007–2011 
Emerging Infectious Diseases  2014;20(4):701-704.
Infection with Salmonella enterica serotype Typhimurium sequence type (ST) 313 is associated with high rates of drug resistance, bloodstream infections, and death. To determine whether ST313 is dominant in the Democratic Republic of the Congo, we studied 180 isolates collected during 2007–2011; 96% belonged to CRISPOL type CT28, which is associated with ST313.
doi:10.3201/eid2004.131488
PMCID: PMC3966400  PMID: 24655438
Salmonella Typhimurium; ST313; CRISPOL; MLST; Central Africa; bacteremia; bacteria; Democratic Republic of the Congo
4.  Gambiense Human African Trypanosomiasis and Immunological Memory: Effect on Phenotypic Lymphocyte Profiles and Humoral Immunity 
PLoS Pathogens  2014;10(3):e1003947.
In mice, experimental infection with Trypanosoma brucei causes decreased bone marrow B-cell development, abolished splenic B-cell maturation and loss of antibody mediated protection including vaccine induced memory responses. Nothing is known about this phenomenon in human African trypanosomiasis (HAT), but if occurring, it would imply the need of revaccination of HAT patients after therapy and abolish hope for a HAT vaccine. The effect of gambiense HAT on peripheral blood memory T- and B-cells and on innate and vaccine induced antibody levels was examined. The percentage of memory B- and T-cells was quantified in peripheral blood, prospectively collected in DR Congo from 117 Trypanosoma brucei gambiense infected HAT patients before and six months after treatment and 117 controls at the same time points. Antibodies against carbohydrate antigens on red blood cells and against measles were quantified. Before treatment, significantly higher percentages of memory B-cells, mainly T-independent memory B-cells, were observed in HAT patients compared to controls (CD20+CD27+IgM+, 13.0% versus 2.0%, p<0.001). The percentage of memory T-cells, mainly early effector/memory T-cells, was higher in HAT (CD3+CD45RO+CD27+, 19.4% versus 16.7%, p = 0.003). After treatment, the percentage of memory T-cells normalized, the percentage of memory B-cells did not. The median anti-red blood cell carbohydrate IgM level was one titer lower in HAT patients than in controls (p<0.004), and partially normalized after treatment. Anti-measles antibody concentrations were lower in HAT patients than in controls (medians of 1500 versus 2250 mIU/ml, p = 0.02), and remained so after treatment, but were above the cut-off level assumed to provide protection in 94.8% of HAT patients, before and after treatment (versus 98.3% of controls, p = 0.3). Although functionality of the B-cells was not verified, the results suggest that immunity was conserved in T.b. gambiense infected HAT patients and that B-cell dysfunction might not be that severe as in mouse models.
Author Summary
African trypanosomes are parasites that cause sleeping sickness in humans. In mice models, trypanosomiasis causes loss of the spleen memory B-cell precursors, of the host memory response and of protection against certain pathogens, built up by vaccination. The phenomenon has never been studied in human sleeping sickness, but if occurring, revaccination after treatment would be required. We show that gambiense human sleeping sickness is associated with a relevant increase in memory T- and B- cells in peripheral blood, in particular T-independent memory B-cells. As measles vaccination is included in standard vaccination programs, we measured measles antibody concentrations, which, although slightly lower in sleeping sickness patients than in controls, exceeded in 95% of patients the minimum level considered protective. Anti-red blood cell IgM titres, measured to assess the T-cell independent antibody response, were one titre lower in patients than in controls, but normalized after treatment. Overall, our results in gambiense HAT patients do not suggest trypanosomiasis associated massive memory cell destruction, or loss of antibody levels, although the antibody's protective capacity remains to be confirmed.
doi:10.1371/journal.ppat.1003947
PMCID: PMC3946376  PMID: 24603894
5.  Frequency of Severe Malaria and Invasive Bacterial Infections among Children Admitted to a Rural Hospital in Burkina Faso 
PLoS ONE  2014;9(2):e89103.
Background
Although severe malaria is an important cause of mortality among children in Burkina Faso, data on community-acquired invasive bacterial infections (IBI, bacteremia and meningitis) are lacking, as well as data on the involved pathogens and their antibiotic resistance rates.
Methods
The present study was conducted in a rural hospital and health center in Burkina Faso, in a seasonal malaria transmission area. Hospitalized children (<15 years) presenting with T≥38.0°C and/or signs of severe illness were enrolled upon admission. Malaria diagnosis and blood culture were performed for all participants, lumbar puncture when clinically indicated. We assessed the frequency of severe malaria (microscopically confirmed, according to World Health Organization definitions) and IBI, and the species distribution and antibiotic resistance of the bacterial pathogens causing IBI.
Results
From July 2012 to July 2013, a total of 711 patients were included. Severe malaria was diagnosed in 292 (41.1%) children, including 8 (2.7%) with IBI co-infection. IBI was demonstrated in 67 (9.7%) children (bacteremia, n = 63; meningitis, n = 6), 8 (11.8%) were co-infected with malaria. Non-Typhoid Salmonella spp. (NTS) was the predominant isolate from blood culture (32.8%), followed by Salmonella Typhi (18.8%), Streptococcus pneumoniae (18.8%) and Escherichia coli (12.5%). High antibiotic resistance rates to first line antibiotics were observed, particularly among Gram-negative pathogens. In addition, decreased ciprofloxacin susceptibility and extended-spectrum beta lactamase (ESBL) production was reported for one NTS isolate each. ESBL production was observed in 3/8 E. coli isolates. In-hospital mortality was 8.2% and case-fatality rates for IBI (23.4%) were significantly higher compared to severe malaria (6.8%, p<0.001).
Conclusions
Although severe malaria was the main cause of illness, IBI were not uncommon and had higher case-fatality rates. The high frequency, antibiotic resistance rates and mortality rates of community acquired IBI require improvement in hygiene, better diagnostic methods and revision of current treatment guidelines.
doi:10.1371/journal.pone.0089103
PMCID: PMC3925230  PMID: 24551225
6.  Accuracy of PfHRP2 versus Pf-pLDH antigen detection by malaria rapid diagnostic tests in hospitalized children in a seasonal hyperendemic malaria transmission area in Burkina Faso 
Malaria Journal  2014;13:20.
Background
In most sub-Saharan African countries malaria rapid diagnostic tests (RDTs) are now used for the diagnosis of malaria. Most RDTs used detect Plasmodium falciparum histidine-rich protein-2 (PfHRP2), though P. falciparum-specific parasite lactate dehydrogenase (Pf-pLDH)-detecting RDTs may have advantages over PfHRP2-detecting RDTs. Only few data are available on the use of RDTs in severe illness and the present study compared Pf-pLDH to PfHRP2-detection.
Methods
Hospitalized children aged one month to 14 years presenting with fever or severe illness were included over one year. Venous blood samples were drawn for malaria diagnosis (microscopy and RDT), culture and complete blood count. Leftovers were stored at −80 °C and used for additional RDT analysis and PCR. An RDT targeting both PfHRP2 and Pf-pLDH was performed on all samples for direct comparison of diagnostic accuracy with microscopy as reference method. PCR was performed to explore false-positive RDT results.
Results
In 376 of 694 (54.2%) included children, malaria was microscopically confirmed. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value were 100.0, 70.9, 69.4 and 100.0%, respectively for PfHRP2-detection and 98.7, 94.0, 91.6 and 99.1%, respectively for Pf-pLDH-detection. Specificity and PPV were significantly lower for PfHRP2-detection (p <0.001). For both detection antigens, specificity was lowest for children one to five years and in the rainy season. PPV for both antigens was highest in the rainy season, because of higher malaria prevalence. False positive PfHRP2 results were associated with prior anti-malarial treatment and positive PCR results (98/114 (86.0%) samples tested).
Conclusion
Among children presenting with severe febrile illness in a seasonal hyperendemic malaria transmission area, the present study observed similar sensitivity but lower specificity and PPV of PfHRP2 compared to Pf-pLDH-detection. Further studies should assess the diagnostic accuracy and safety of an appropriate Pf-pLDH-detecting RDT in field settings and if satisfying, replacement of PfHRP2 by Pf-pLDH-detecting RDTs should be considered.
doi:10.1186/1475-2875-13-20
PMCID: PMC3896846  PMID: 24418119
7.  A Systematic Review and Meta-Analysis of the Performance of Two Point of Care Typhoid Fever Tests, Tubex TF and Typhidot, in Endemic Countries 
PLoS ONE  2013;8(12):e81263.
Background
In the absence of well-equipped laboratory infrastructure in many developing countries the accurate diagnosis of typhoid fever is challenging. Rapid diagnostic tests (RDT) with good performance indicators would be helpful to improve clinical management of suspected cases. We performed a systematic literature review and meta- analysis to determine the performance of TUBEX TF and Typhidot for the diagnosis of typhoid fever using PRISMA guidelines.
Methods
Titles and abstracts were reviewed for relevance. Articles were screened for language, reference method and completeness. Studies were categorized according to control groups used. Meta-analysis was performed only for categories where enough data was available to combine sensitivity and specificity estimates. Sub-analysis was performed for the Typhidot test to determine the influence of indeterminate results on test performance.
Results
A total of seven studies per test were included. The sensitivity of TUBEX TF ranged between 56% and 95%, Specificity between 72% and 95%. Meta-analysis showed an average sensitivity of 69% (95%CI: 45–85) and an average specificity of 88% (CI95%:83–91). A formal meta-analysis for Typhidot was not possible due to limited data available. Across the extracted studies, sensitivity and specificity estimates ranged from 56% to 84% and 31% to 97% respectively.
Conclusion
The observed performance does not support the use of either rapid diagnostic test exclusively as the basis for diagnosis and treatment. There is a need to develop an RDT for typhoid fever that has a performance level comparable to malaria RDTs.
doi:10.1371/journal.pone.0081263
PMCID: PMC3864786  PMID: 24358109
8.  External Quality Assessment of Reading and Interpretation of Malaria Rapid Diagnostic Tests among 1849 End-Users in the Democratic Republic of the Congo through Short Message Service (SMS) 
PLoS ONE  2013;8(8):e71442.
Background
Although malaria rapid diagnostic tests (RDT) are simple to perform, they remain subject to errors, mainly related to the post-analytical phase. We organized the first large scale SMS based external quality assessment (EQA) on correct reading and interpretation of photographs of a three-band malaria RDT among laboratory health workers in the Democratic Republic of the Congo (DR Congo).
Methods and Findings
High resolution EQA photographs of 10 RDT results together with a questionnaire were distributed to health facilities in 9 out of 11 provinces in DR Congo. Each laboratory health worker answered the EQA by Short Message Service (SMS). Filled-in questionnaires from each health facility were sent back to Kinshasa. A total of 1849 laboratory health workers in 1014 health facilities participated. Most frequent errors in RDT reading were i) failure to recognize invalid (13.2–32.5% ) or negative test results (9.8–12.8%), (ii) overlooking faint test lines (4.1–31.2%) and (iii) incorrect identification of the malaria species (12.1–17.4%). No uniform strategy for diagnosis of malaria at the health facility was present. Stock outs of RDTs occurred frequently. Half of the health facilities had not received an RDT training. Only two thirds used the RDT recommended by the National Malaria Control Program. Performance of RDT reading was positively associated with training and the technical level of health facility. Facilities with RDT positivity rates >50% and located in Eastern DR Congo performed worse.
Conclusions
Our study confirmed that errors in reading and interpretation of malaria RDTs are widespread and highlighted the problem of stock outs of RDTs. Adequate training of end-users in the application of malaria RDTs associated with regular EQAs is recommended.
doi:10.1371/journal.pone.0071442
PMCID: PMC3742745  PMID: 23967211
9.  Irregular Migration as a Potential Source of Malaria Reintroduction in Sri Lanka and Use of Malaria Rapid Diagnostic Tests at Point-of-Entry Screening 
Case Reports in Medicine  2013;2013:465906.
Background. We describe an irregular migrant who returned to Sri Lanka after a failed people smuggling operation from West Africa. Results. On-arrival screening by Anti-Malaria Campaign (AMC) officers using a rapid diagnostic test (RDT) (CareStart Malaria HRP2/PLDH) indicated a negative result. On day 3 after arrival, he presented with fever and chills but was managed as dengue (which is hyperendemic in Sri Lanka). Only on day 7, diagnosis of Plasmodium falciparum malaria was made by microcopy and CareStart RDT. The initially negative RDT was ascribed to a low parasite density. Irregular migration may be an unrecognized source of malaria reintroduction. Despite some limitations in detection, RDTs form an important point-of-entry assessment. As a consequence of this case, the AMC is now focused on repeat testing and close monitoring of all irregular migrants from malaria-endemic zones. Conclusion. The present case study highlights the effective collaboration and coordination between inter-governmental agencies such as IOM and the Ministry of Health towards the goals of malaria elimination in Sri Lanka.
doi:10.1155/2013/465906
PMCID: PMC3703740  PMID: 23861687
10.  False Positivity of Non-Targeted Infections in Malaria Rapid Diagnostic Tests: The Case of Human African Trypanosomiasis 
Background
In endemic settings, diagnosis of malaria increasingly relies on the use of rapid diagnostic tests (RDTs). False positivity of such RDTs is poorly documented, although it is especially relevant in those infections that resemble malaria, such as human African trypanosomiasis (HAT). We therefore examined specificity of malaria RDT products among patients infected with Trypanosoma brucei gambiense.
Methodology/Principal Findings
Blood samples of 117 HAT patients and 117 matched non-HAT controls were prospectively collected in the Democratic Republic of the Congo. Reference malaria diagnosis was based on real-time PCR. Ten commonly used malaria RDT products were assessed including three two-band and seven three-band products, targeting HRP-2, Pf-pLDH and/or pan-pLDH antigens. Rheumatoid factor was determined in PCR negative subjects. Specificity of the 10 malaria RDT products varied between 79.5 and 100% in HAT-negative controls and between 11.3 and 98.8% in HAT patients. For seven RDT products, specificity was significantly lower in HAT patients compared to controls. False positive reactions in HAT were mainly observed for pan-pLDH test lines (specificities between 13.8 and 97.5%), but also occurred frequently for the HRP-2 test line (specificities between 67.9 and 98.8%). The Pf-pLDH test line was not affected by false-positive lines in HAT patients (specificities between 97.5 and 100%). False positivity was not associated to rheumatoid factor, detected in 7.6% of controls and 1.2% of HAT patients.
Conclusions/Significance
Specificity of some malaria RDT products in HAT was surprisingly low, and constitutes a risk for misdiagnosis of a fatal but treatable infection. Our results show the importance to assess RDT specificity in non-targeted infections when evaluating diagnostic tests.
Author Summary
Rapid diagnostic tests (RDT) for malaria are currently rolled-out as the backbone of parasite-based diagnosis, and their diagnostic accuracy is sufficiently high to substitute microscopy. One decade ago, attention has been given to occurrence of limited false positivity in a number of malaria RDTs, but false positivity of RDTs has remained poorly documented since then. In the last years, the number of available RDT products has dramatically increased and test performance has improved. False positivity may therefore not be perceived as a problem anymore. In this manuscript, we demonstrate that specificities of malaria rapid diagnostic tests detecting parasite antigens are seriously affected by human African trypanosomiasis (sleeping sickness), with values down to 11%. Malaria constitutes the main differential diagnosis of human African trypanosomiasis, and the false-positive results for malaria RDTs increase the risk of misdiagnosis or delayed diagnosis of human African trypanosomiasis which is a fatal but treatable infection.
doi:10.1371/journal.pntd.0002180
PMCID: PMC3636101  PMID: 23638201
11.  Bloodstream Infection among Adults in Phnom Penh, Cambodia: Key Pathogens and Resistance Patterns 
PLoS ONE  2013;8(3):e59775.
Background
Bloodstream infections (BSI) cause important morbidity and mortality worldwide. In Cambodia, no surveillance data on BSI are available so far.
Methods
From all adults presenting with SIRS at Sihanouk Hospital Centre of HOPE (July 2007–December 2010), 20 ml blood was cultured. Isolates were identified using standard microbiological techniques; antibiotic susceptibilities were assessed using disk diffusion and MicroScan®, with additional E-test, D-test and double disk test where applicable, according to CLSI guidelines.
Results
A total of 5714 samples from 4833 adult patients yielded 501 clinically significant organisms (8.8%) of which 445 available for further analysis. The patients’ median age was 45 years (range 15–99 y), 52.7% were women. HIV-infection and diabetes were present in 15.6% and 8.8% of patients respectively. The overall mortality was 22.5%. Key pathogens included Escherichia coli (n = 132; 29.7%), Salmonella spp. (n = 64; 14.4%), Burkholderia pseudomallei (n = 56; 12.6%) and Staphylococcus aureus (n = 53; 11.9%). Methicillin resistance was seen in 10/46 (21.7%) S. aureus; 4 of them were co-resistant to erythromycin, clindamycin, moxifloxacin and sulphamethoxazole-trimethoprim (SMX-TMP). We noted combined resistance to amoxicillin, SMX-TMP and ciprofloxacin in 81 E. coli isolates (62.3%); 62 isolates (47.7%) were confirmed as producers of extended spectrum beta-lactamase. Salmonella isolates displayed high rates of multidrug resistance (71.2%) with high rates of decreased ciprofloxacin susceptibility (90.0%) in Salmonella Typhi while carbapenem resistance was observed in 5.0% of 20 Acinetobacter sp. isolates.
Conclusions
BSI in Cambodian adults is mainly caused by difficult-to-treat pathogens. These data urge for microbiological capacity building, nationwide surveillance and solid interventions to contain antibiotic resistance.
doi:10.1371/journal.pone.0059775
PMCID: PMC3612098  PMID: 23555777
12.  Antimicrobial Resistance in Invasive Non-typhoid Salmonella from the Democratic Republic of the Congo: Emergence of Decreased Fluoroquinolone Susceptibility and Extended-spectrum Beta Lactamases 
Background
Co-resistance against the first-line antibiotics ampicillin, chloramphenicol and trimethoprim/sulphamethoxazole or multidrug resistance (MDR) is common in non typhoid Salmonella (NTS). Use of alternative antibiotics, such as fluoroquinolones or third generation cephalosporins is threatened by increasing resistance, but remains poorly documented in Central-Africa.
Methodology/Principal findings
As part of a microbiological surveillance study in DR Congo, blood cultures were collected between 2007 and 2011. Isolated NTS were assessed for serotype and antimicrobial resistance including decreased ciprofloxacin susceptibility and extended-spectrum beta-lactamase (ESBL) production. In total, 233 NTS isolates (representing 23.6% of clinically significant organisms) were collected, mainly consisting of Salmonella Typhimurium (79%) and Salmonella Enteritidis (18%). The majority of NTS were isolated in the rainy season, and recovered from children ≤2 years old. MDR, decreased ciprofloxacin susceptibility, azithromycin and cefotaxime resistance were 80.7%, 4.3%, 3.0% and 2.1% respectively. ESBL production was noted in three (1.3%) isolates. Decreased ciprofloxacin susceptibility was associated with mutations in codon 87 of the gyrA gene, while ESBLs all belonged to the SHV-2a type.
Conclusions/Significance
Presence of almost full MDR among NTS isolates from blood cultures in Central Africa was confirmed. Resistance to fluoroquinolones, azithromycin and third generation cephalosporins is still low, but emerging. Increased microbiological surveillance in DR Congo is crucial for adapted antibiotic therapy and the development of treatment guidelines.
Author Summary
Invasive non typhoid Salmonella spp. (NTS) are an important cause of bloodstream infection in sub-Saharan Africa and associated with a high mortality. Levels of multidrug resistance have become alarmingly high. Treatment therefore increasingly relies on the oral fluoroquinolones such as ciprofloxacin, with third generation cephalosporins such as cefotaxime as alternatives for parenteral treatment. Azithromycin represents another alternative antimicrobial drug. Worldwide, increased use of these drugs is associated with spread of resistance as well, a phenomenon poorly documented in Central-Africa. In the present study, 233 NTS isolates were collected from blood cultures sampled between 2007 and 2011 in DR Congo, mainly from children ≤2 years of age. Most isolates were recovered during the rainy season. Widespread multidrug resistance was confirmed as well as decreased susceptibility to ciprofloxacin, resistance to azithromycin and resistance to third generation cephalosporins. Our findings demonstrate emergence of antibiotic resistance among NTS in DR Congo and underline the need for increased microbiological surveillance, being a prerequisite for rational antibiotic therapy and the development of standard treatment guidelines.
doi:10.1371/journal.pntd.0002103
PMCID: PMC3597487  PMID: 23516651
13.  Antibiotic Prescribing in DR Congo: A Knowledge, Attitude and Practice Survey among Medical Doctors and Students 
PLoS ONE  2013;8(2):e55495.
Objectives
Antibiotic resistance (ABR) particularly hits resource poor countries, and is fuelled by irrational antibiotic (AB) prescribing. We surveyed knowledge, attitudes and practices of AB prescribing among medical students and doctors in Kisangani, DR Congo.
Methods
Self-administered questionnaires.
Results
A total of 184 questionnaires were completed (response rate 94.4%). Knowledge about AB was low (mean score 4.9/8 points), as was the estimation of local resistance rates of S. Typhi and Klebsiella spp.(correct by 42.5% and 6.9% of respondents respectively). ABR was recognized as a problem though less in their own practice (67.4%) than nation- or worldwide (92.9% and 85.5%, p<.0001). Confidence in AB prescribing was high (88.6%) and students consulted more frequently colleagues than medical doctors when prescribing (25.4% versus 11.6%, p  = 0.19). Sources of AB prescribing included pharmaceutical companies (73.9%), antibiotic guidelines (66.3%), university courses (63.6%), internet-sites (45.7%) and WHO guidelines (26.6%). Only 30.4% and 16.3% respondents perceived AB procured through the central procurement and local pharmacies as of good quality. Local AB guidelines and courses about AB prescribing are welcomed (73.4% and 98.8% respectively).
Conclusions
This data shows the need for interventions that support rational AB prescribing.
doi:10.1371/journal.pone.0055495
PMCID: PMC3575397  PMID: 23441152
14.  Persistent digestive disorders in the tropics: causative infectious pathogens and reference diagnostic tests 
Background
Persistent digestive disorders account for considerable disease burden in the tropics. Despite advances in understanding acute gastrointestinal infections, important issues concerning epidemiology, diagnosis, treatment and control of most persistent digestive symptomatologies remain to be elucidated. Helminths and intestinal protozoa are considered to play major roles, but the full extent of the aetiologic spectrum is still unclear. We provide an overview of pathogens causing digestive disorders in the tropics and evaluate available reference tests.
Methods
We searched the literature to identify pathogens that might give rise to persistent diarrhoea, chronic abdominal pain and/or blood in the stool. We reviewed existing laboratory diagnostic methods for each pathogen and stratified them by (i) microscopy; (ii) culture techniques; (iii) immunological tests; and (iv) molecular methods. Pathogen-specific reference tests providing highest diagnostic accuracy are described in greater detail.
Results
Over 30 pathogens may cause persistent digestive disorders. Bacteria, viruses and parasites are important aetiologic agents of acute and long-lasting symptomatologies. An integrated approach, consisting of stool culture, microscopy and/or specific immunological techniques for toxin, antigen and antibody detection, is required for accurate diagnosis of bacteria and parasites. Molecular techniques are essential for sensitive diagnosis of many viruses, bacteria and intestinal protozoa, and are increasingly utilised as adjuncts for helminth identification.
Conclusions
Diagnosis of the broad spectrum of intestinal pathogens is often cumbersome. There is a need for rapid diagnostic tests that are simple and affordable for resource-constrained settings, so that the management of patients suffering from persistent digestive disorders can be improved.
doi:10.1186/1471-2334-13-37
PMCID: PMC3579720  PMID: 23347408
Bacteria; Clinical microbiology; Diagnosis; Digestive disorders; Gastroenterology; Helminths; Intestinal protozoa; Persistent diarrhoea; Virus
15.  Self-Diagnosis of Malaria by Travelers and Expatriates: Assessment of Malaria Rapid Diagnostic Tests Available on the Internet 
PLoS ONE  2013;8(1):e53102.
Introduction
In the past malaria rapid diagnostic tests (RDTs) for self-diagnosis by travelers were considered suboptimal due to poor performance. Nowadays RDTs for self-diagnosis are marketed and available through the internet. The present study assessed RDT products marketed for self-diagnosis for diagnostic accuracy and quality of labeling, content and instructions for use (IFU).
Methods
Diagnostic accuracy of eight RDT products was assessed with a panel of stored whole blood samples comprising the four Plasmodium species (n = 90) as well as Plasmodium negative samples (n = 10). IFUs were assessed for quality of description of procedure and interpretation and for lay-out and readability level. Errors in packaging and content were recorded.
Results
Two products gave false-positive test lines in 70% and 80% of Plasmodium negative samples, precluding their use. Of the remaining products, 4/6 had good to excellent sensitivity for the diagnosis of Plasmodium falciparum (98.2%–100.0%) and Plasmodium vivax (93.3%–100.0%). Sensitivity for Plasmodium ovale and Plasmodium malariae diagnosis was poor (6.7%–80.0%). All but one product yielded false-positive test lines after reading beyond the recommended reading time. Problems with labeling (not specifying target antigens (n = 3), and content (desiccant with no humidity indicator (n = 6)) were observed. IFUs had major shortcomings in description of test procedure and interpretation, poor readability and lay-out and user-unfriendly typography. Strategic issues (e.g. the need for repeat testing and reasons for false-negative tests) were not addressed in any of the IFUs.
Conclusion
Diagnostic accuracy of RDTs for self-diagnosis was variable, with only 4/8 RDT products being reliable for the diagnosis of P. falciparum and P. vivax, and none for P. ovale and P. malariae. RDTs for self-diagnosis need improvements in IFUs (content and user-friendliness), labeling and content before they can be considered for self-diagnosis by the traveler.
doi:10.1371/journal.pone.0053102
PMCID: PMC3534644  PMID: 23301027
16.  Staphylococcus aureus Causing Tropical Pyomyositis, Amazon Basin, Peru  
Emerging Infectious Diseases  2013;19(1):123-125.
We studied 12 Staphylococcus aureus isolates causing tropical pyomyositis in the Amazon Basin of Peru. All isolates were methicillin-susceptible; 11 carried Panton-Valentine leukocidin–encoding genes, and 5 belonged to multilocus sequence type 25 and possessed an extensive set of enterotoxins. Our findings suggest sequence type 25 is circulating in tropical areas of South America.
doi:10.3201/eid1901.120819
PMCID: PMC3557995  PMID: 23260279
tropical pyomyositis; Staphylococcus aureus; S. aureus; Panton-Valentine leukocidin; Peru; Amazon Basin; methicillin-susceptible Staphylococcus aureus; MSSA; community-associated methicillin-resistant S. aureus clones; MRSA; bacteria; staphylococci
17.  Azithromycin and Ciprofloxacin Resistance in Salmonella Bloodstream Infections in Cambodian Adults 
Background
Salmonella enterica is a frequent cause of bloodstream infection (BSI) in Asia but few data are available from Cambodia. We describe Salmonella BSI isolates recovered from patients presenting at Sihanouk Hospital Centre of Hope, Phnom Penh, Cambodia (July 2007–December 2010).
Methodology
Blood was cultured as part of a microbiological prospective surveillance study. Identification of Salmonella isolates was performed by conventional methods and serotyping. Antibiotic susceptibilities were assessed using disk diffusion, MicroScan and E-test macromethod. Clonal relationships were assessed by Pulsed Field Gel Electrophoresis; PCR and sequencing for detection of mutations in Gyrase and Topoisomerase IV and presence of qnr genes.
Principal Findings
Seventy-two Salmonella isolates grew from 58 patients (mean age 34.2 years, range 8–71). Twenty isolates were identified as Salmonella Typhi, 2 as Salmonella Paratyphi A, 37 as Salmonella Choleraesuis and 13 as other non-typhoid Salmonella spp. Infection with human immunodeficiency virus (HIV) was present in 21 of 24 (87.5%) patients with S. Choleraesuis BSI. Five patients (8.7%) had at least one recurrent infection, all with S. Choleraesuis; five patients died. Overall, multi drug resistance (i.e., co-resistance to ampicillin, sulphamethoxazole-trimethoprim and chloramphenicol) was high (42/59 isolates, 71.2%). S. Typhi displayed high rates of decreased ciprofloxacin susceptibility (18/20 isolates, 90.0%), while azithromycin resistance was very common in S. Choleraesuis (17/24 isolates, 70.8%). Two S. Choleraesuis isolates were extended spectrum beta-lactamase producer.
Conclusions and Significance
Resistance rates in Salmonella spp. in Cambodia are alarming, in particular for azithromycin and ciprofloxacin. This warrants nationwide surveillance and revision of treatment guidelines.
Author Summary
Salmonella enterica is a bacterium that causes important morbidity and mortality worldwide, especially in tropical low-resource settings. Over the past two decades, increasing rates of resistance for the commonly available oral antibiotics have been reported in Salmonella spp., especially from South(east) Asia. As microbiology laboratories are extremely scarce in Cambodia, data on the presence and resistance of Salmonella spp. in this country are limited. The authors describe the different types and antibiotic resistance of 72 Salmonella isolates from blood cultures sampled in 58 adult Cambodian patients with fever. The most common serovars were Salmonella Typhi and Salmonella Choleraesuis. The latter serovar causes illness in pigs, and may occasionally infect humans through contact with contaminated animals or environments, especially those with decreased immunity. The authors noted resistance for the first line oral antibiotics in nearly three quarters of all Salmonella isolates. In addition, 90% of all S. Typhi had decreased susceptibility for ciprofloxacin, while around 70% of S. Choleraesuis showed resistance to azithromycin. These results seriously limit the treatment options for typhoid fever and other invasive Salmonella infections and warrant nationwide surveillance of antibiotic resistance. This is the first report to describe such high rates of azithromycin resistance in Salmonella enterica.
doi:10.1371/journal.pntd.0001933
PMCID: PMC3521708  PMID: 23272255
18.  Salmonella Typhi in the Democratic Republic of the Congo: Fluoroquinolone Decreased Susceptibility on the Rise 
Background
Drug resistance of Salmonella enterica serovar Typhi (Salmonella Typhi) to first-line antibiotics is emerging in Central Africa. Although increased use of fluoroquinolones is associated with spread of resistance, Salmonella Typhi with decreased ciprofloxacin susceptibility (DCS) has rarely been reported in Central Africa.
Methodology/Principal Findings
As part of a microbiological surveillance study in the Democratic Republic of the Congo (DR Congo), Salmonella Typhi isolates from bloodstream infections were collected prospectively between 2007 and 2011. The genetic relationship of the Salmonella Typhi isolates was assessed by pulsed-field gel electrophoresis (PFGE). The antimicrobial resistance profile of the isolates was determined and mutations associated with DCS were studied. In total, 201 Salmonella Typhi isolates were collected. More than half of the Salmonella Typhi isolates originated from children and young adults aged 5–19. Thirty different PFGE profiles were identified, with 72% of the isolates showing a single profile. Multidrug resistance, DCS and azithromycin resistance were 30.3%, 15.4% and 1.0%, respectively. DCS was associated with point mutations in the gyrA gene at codons 83 and 87.
Conclusions/Significance
Our study describes the first report of widespread multidrug resistance and DCS among Salmonella Typhi isolates from DR Congo. Our findings highlight the need for increased microbiological diagnosis and surveillance in DR Congo, being a prerequisite for rational use of antimicrobials and the development of standard treatment guidelines.
Author Summary
Typhoid fever, caused by infection with Salmonella enterica serovar Typhi (Salmonella Typhi), is an important health problem in sub-Saharan Africa. Multidrug resistance of Salmonella Typhi to the first line antibiotics is spreading and treatment of typhoid fever increasingly relies on fluoroquinolone antibiotics such as ciprofloxacin. Increased use of fluoroquinolones is however associated with spread of resistance as well. In sub-Saharan Africa, microbiological cultures to detect invasive bacterial diseases are frequently absent and the extent of the problem is poorly known. In the present study, 201 Salmonella Typhi isolates were collected between 2007 and 2011 in DR Congo, mainly from children and young adults. For the first time, widespread Salmonella Typhi multidrug resistance (30.3%) and decreased ciprofloxacin susceptibility (15.4%) is described in Central Africa. Decreased ciprofloxacin susceptibility was associated with point mutations in the quinolone resistance determining region of the gyrA gene. Resistance to azithromycin, an alternative for treatment of uncomplicated typhoid fever in the case of decreased ciprofloxacin susceptibility, was still rare (1.0%). Our findings demonstrate emergence of multidrug resistance and fluoroquinolone decreased susceptibility in DR Congo, and highlight the need for increased microbiological diagnosis and surveillance, being a prerequisite for rational use of antimicrobials and the development of standard treatment guidelines.
doi:10.1371/journal.pntd.0001921
PMCID: PMC3499407  PMID: 23166855
19.  Evaluation of the malaria rapid diagnostic test SDFK90: detection of both PfHRP2 and Pf-pLDH 
Malaria Journal  2012;11:359.
Background
Rapid diagnosis of Plasmodium falciparum infections is important because of the potentially fatal complications. SDFK90 is a recently marketed malaria rapid diagnostic test (RDT) targeting both histidine-rich protein 2 (PfHRP2) and P. falciparum-specific Plasmodium lactate dehydrogenase (Pf-pLDH). The present study evaluated its diagnostic accuracy.
Methods
SDFK90 was tested against a panel of stored whole blood samples (n= 591) obtained from international travellers suspected of malaria, including the four human Plasmodium species and Plasmodium negative samples. Microscopy was used as a reference method, corrected by PCR for species diagnosis. In addition, SDFK90 was challenged against 59 P. falciparum samples with parasite density ≥4% to assess the prozone effect (no or weak visible line on initial testing and a higher intensity upon 10-fold dilution).
Results
Overall sensitivity for the detection of P. falciparum was 98.5% and reached 99.3% at parasite densities >100/μl. There were significantly more PfHRP2 lines visible compared to Pf-pLDH (97.3% vs 86.9%), which was mainly absent at parasite densities <100/μl. Specificity of SDFK90 was 98.8%. No lot-to-lot variability was observed (p = 1.00) and test results were reproducible. A prozone effect was seen for the PfHRP2 line in 14/59 (23.7%) P. falciparum samples tested, but not for the Pf-pLDH line. Few minor shortcomings were observed in the kit’s packaging and information insert.
Conclusions
SDFK90 performed excellent for P. falciparum diagnosis. The combination of PfHRP2 and Pf-pLDH ensures a low detection threshold and counters potential problems of PfHRP2 detection such as gene deletions and the prozone effect.
doi:10.1186/1475-2875-11-359
PMCID: PMC3508951  PMID: 23107162
Malaria; Plasmodium falciparum; Diagnosis; Rapid diagnostic test; Histidine-rich protein; Plasmodium falciparum-specific Plasmodium lactate dehydrogenase; Evaluation
23.  Multidrug-Resistant Salmonella enterica, Democratic Republic of the Congo 
Emerging Infectious Diseases  2012;18(10):1692-1694.
doi:10.3201/eid1810.120525
PMCID: PMC3471636  PMID: 23017665
Salmonella; bacteria; outbreak; Democratic Republic of the Congo; multidrug resistance; pediatric; epidemic; bacteremia; antimicrobial resistance; Suggested citation for this article: Phoba M-F; Lunguya O; Mayimona DV; Lewo di Mputu P; Bertrand S; Vanhoof R; et al. Multidrug-resistant Salmonella enterica; Democratic Republic of the Congo [letter]. Emerg Infect Dis [Internet]. 2012 Oct [date cited]. http://dx.doi.org/10.3201/eid1810.120525
24.  Assessment of desiccants and their instructions for use in rapid diagnostic tests 
Malaria Journal  2012;11:326.
Background
Malaria rapid diagnostic tests (RDTs) are protected from humidity-caused degradation by a desiccant added to the device packaging. The present study assessed malaria RDT products for the availability, type and design of desiccants and their information supplied in the instructions for use (IFU).
Methods
Criteria were based on recommendations of the World Health Organization (WHO), the European Community (CE) and own observations. Silica gel sachets were defined as self-indicating (all beads coated with a humidity indicator that changes colour upon saturation), partial-indicating (part of beads coated) and non-indicating (none of the beads coated). Indicating silica gel sachets were individually assessed for humidity saturation and (in case of partial-indicating silica gels) for the presence of indicating beads.
Results
Fifty malaria RDT products from 25 manufacturers were assessed, 14 (28%) products were listed by the “Global Fund Quality Assurance Policy” and 31 (62%) were CE-marked. All but one product contained a desiccant, mostly (47/50, 94%) silica gel. Twenty (40%) RDT products (one with no desiccant and 19 with non-indicating desiccant) did not meet the WHO guidelines recommending indicating desiccant. All RDT products with self- or partial-indicating silica gel (n = 22 and 8 respectively) contained the toxic cobalt dichloride as humidity indicator. Colour change indicating humidity saturation was observed for 8/16 RDT products, at a median incidence of 0.8% (range 0.05%-4.6%) of sachets inspected. In all RDTs with partial-indicating silica gel, sachets with no colour indicating beads were found (median proportion 13.5% (0.6% - 17.8%) per product) and additional light was needed to assess the humidity colour. Less than half (14/30, 47%) IFUs of RDT products with indicating desiccants mentioned to check the humidity saturation before using the test. Information on properties, safety hazards and disposal of the desiccant was not included in any of the IFUs. There were no differences between Global Fund-listed and CE marked RDT products compared to those which were not. Similar findings were noted for a panel of 11 HIV RDTs that was assessed with the same checklist as the malaria RDTs.
Conclusion
RDTs showed shortcomings in desiccant type and information supplied in the IFU.
doi:10.1186/1475-2875-11-326
PMCID: PMC3493316  PMID: 22974115
Desiccant; Silica gel; Rapid diagnostic test; RDT-malaria; HIV; Diagnosis
25.  Rapid Diagnostic Tests for Malaria Diagnosis in the Peruvian Amazon: Impact of pfhrp2 Gene Deletions and Cross-Reactions 
PLoS ONE  2012;7(8):e43094.
Background
In the Peruvian Amazon, Plasmodium falciparum and Plasmodium vivax malaria are endemic in rural areas, where microscopy is not available. Malaria rapid diagnostic tests (RDTs) provide quick and accurate diagnosis. However, pfhrp2 gene deletions may limit the use of histidine-rich protein-2 (PfHRP2) detecting RDTs. Further, cross-reactions of P. falciparum with P. vivax-specific test lines and vice versa may impair diagnostic specificity.
Methods
Thirteen RDT products were evaluated on 179 prospectively collected malaria positive samples. Species diagnosis was performed by microscopy and confirmed by PCR. Pfhrp2 gene deletions were assessed by PCR.
Results
Sensitivity for P. falciparum diagnosis was lower for PfHRP2 compared to P. falciparum-specific Plasmodium lactate dehydrogenase (Pf-pLDH)- detecting RDTs (71.6% vs. 98.7%, p<0.001). Most (19/21) false negative PfHRP2 results were associated with pfhrp2 gene deletions (25.7% of 74 P. falciparum samples). Diagnostic sensitivity for P. vivax (101 samples) was excellent, except for two products. In 10/12 P. vivax-detecting RDT products, cross-reactions with the PfHRP2 or Pf-pLDH line occurred at a median frequency of 2.5% (range 0%–10.9%) of P. vivax samples assessed. In two RDT products, two and one P. falciparum samples respectively cross-reacted with the Pv-pLDH line. Two Pf-pLDH/pan-pLDH-detecting RDTs showed excellent sensitivity with few (1.0%) cross-reactions but showed faint Pf-pLDH lines in 24.7% and 38.9% of P. falciparum samples.
Conclusion
PfHRP2-detecting RDTs are not suitable in the Peruvian Amazon due to pfhrp2 gene deletions. Two Pf-pLDH-detecting RDTs performed excellently and are promising RDTs for this region although faint test lines are of concern.
doi:10.1371/journal.pone.0043094
PMCID: PMC3429466  PMID: 22952633

Results 1-25 (61)