Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Neurofibroma of the maxillary antrum: A rare case 
Contemporary Clinical Dentistry  2014;5(1):115-118.
Neurofibromas are benign tumors of peripheral nerve tissue, frequently associated with neurofibromatosis type 1. Their isolated occurrence in the maxillary antrum is rare, with only 6 cases described in the English literature to the best of our knowledge. Primary neurogenic tumors in the maxillary sinus are unusual entities. The majority of the reported cases that have dealt with neurilemmomas and isolated neurofibromas are extremely rare. Here, a case of neurofibroma of the maxillary sinus. We present the case of a 60-year-old female patient with the chief complain of growth in the upper right back region of the jaw, which was preceded by exfoliation of teeth in the same region 1 month back.
PMCID: PMC4012102  PMID: 24808710
Maxillary sinus; neurofibroma; neurofibromatosis type 1
2.  Detection of micrometastasis in lymph nodes of oral squamous cell carcinoma: A comparative study 
The annual mortality rate from head and neck squamous cell carcinoma (HNSCC) is over 11,000 worldwide. Squamous cell carcinoma of the head and neck (SCCHN) frequently metastasizes to the regional lymph nodes which are the first site of arrest of tumor cells that have invaded the peritumoral lymphatics, hence the strongest predictor of disease prognosis and outcome.
The present study aims to compare the efficacy of frozen sections (cryosection), step-serial sectioning conventional H and E staining, immunohistochemistry (IHC) and RT-PCR analysis in detection of lymph node micrometastasis.
Materials and Methods:
A prospective series of 30 patients who were diagnosed with primary squamous cell carcinoma of the oral cavity and underwent surgical treatment including unilateral or bilateral selective neck dissection were considered for the study.
Metastatic carcinomatous cells were observed in H and E staining of frozen section in 18 lymph nodes (54%) and in 19 lymph nodes (57%) in step-serial sectioned H and E-stained sections of the 78 lymph nodes from 30 patients. Carcinomatous cells were immunolabeled with pancytokeratin in 18 lymphnodes (54%). CK19 mRNA was detected in 33 lymph nodes of 16 patients. RT-PCR gave positive signals for 24% and 23% of lymph nodes positive by histopathology and immunohistochemistry.
Our study demonstrated that RT-PCR is far more sensitive in detection of micrometastasis than any other technique used in routine procedures and immunohistochemistry. Fifty-three percent patients with micrometastasis detected by RT-PCR had large T3/T4 tumors. Prognosis was poor for patients who were positive for micrometastasis detected only by RT-PCR, among which two patients died within a period of 6 months.
PMCID: PMC3927338  PMID: 24574655
Cryosection; immunohistochemistry; lymph node; micrometastasis; oral squamous cell carcinoma; RT-PCR; step-serial sectioning
3.  Nitric oxide and cancer: a review 
Nitric oxide (NO), is a ubiquitous, water soluble, free radical gas, which plays key role in various physiological as well as pathological processes. Over past decades, NO has emerged as a molecule of interest in carcinogenesis and tumor growth progression. However, there is considerable controversy and confusion in understanding its role in cancer biology. It is said to have both tumoricidal as well as tumor promoting effects which depend on its timing, location, and concentration. NO has been suggested to modulate different cancer-related events including angiogenesis, apoptosis, cell cycle, invasion, and metastasis. On the other hand, it is also emerging as a potential anti-oncogenic agent. Strategies for manipulating in vivo production and exogenous delivery of this molecule for therapeutic gain are being investigated. However, further validation and experimental/clinical trials are required for development of novel strategies based on NO for cancer treatment and prevention. This review discusses the range of actions of NO in cancer by performing an online MEDLINE search using relevant search terms and a review of the literature. Various mechanisms by which NO acts in different cancers such as breast, cervical, gastric,colorectal, and head and neck cancers are addressed. It also offers an insight into the dichotomous nature of NO and discusses its novel therapeutic applications for cancer prevention and treatment.
PMCID: PMC3669621  PMID: 23718886
Breast cancer; Gastric cancer; Lung cancer, Head and Neck cancer; H. Pylori; Human papillomavirus; Nitric oxide; Nitric oxide synthase
4.  Comparison of Myofibroblasts Expression in Oral Squamous Cell Carcinoma, Verrucous Carcinoma, High Risk Epithelial Dysplasia, Low Risk Epithelial Dysplasia and Normal Oral Mucosa 
Head and Neck Pathology  2012;6(3):305-313.
The aim was to evaluate and compare the presence of myofibroblasts in oral squamous cell carcinoma (OSCC), verrucous carcinoma (VC), high-risk epithelial dysplasia (HRED), low-risk epithelial dysplasia (LRED), and normal oral mucosa (NOM). The study consisted of 37 OSCC, 15 VC, 15 HRED, 15 LRED and 15 NOM. α-smooth muscle actin (α-SMA) antibody was used to identify myofibroblasts. The α-SMA expression was not observed in NOM and LRED. The α-SMA was expressed in 97.29% of OSCC, 86.66% of VC, 46.66 % of HRED. The α-SMA expression was significantly higher in OSCC than VC (p = 0.023) and HRED (p < 0.000). The α-SMA expression was significantly higher in VC than HRED (p = 0.043). Myofibroblastic expression, as highlighted by α-SMA, is undetectable in NOM and LRED but increases as the disease progresses from potentially malignant disorders, as HRED to VC to invasive OSCC. Thus, proliferation of myofibroblasts may be used as a stromal marker of oral premalignancy and malignancy.
PMCID: PMC3422591  PMID: 22392407
Oral premalignancy; Oral epithelial dysplasia; Oral squamous cell carcinoma; Verrucous carcinoma; Myofibroblast; α-smooth muscle actin
5.  Evaluation of chemiluminescence, toluidine blue and histopathology for detection of high risk oral precancerous lesions: A cross-sectional study 
Early detection holds the key to an effective control of cancers in general and of oral cancers in particular. However, screening procedures for oral cancer are not straightforward due to procedural requirements as well as feasibility issues, especially in resource-limited countries.
We conducted a cross-sectional study to compare the performance of chemiluminescence, toluidine blue and histopathology for detection of high-risk precancerous oral lesions. We evaluated 99 lesions from 55 patients who underwent chemiluminescence and toluidine blue tests along with biopsy and histopathological examination. We studied inter-as well as intra-rater agreement in the histopathological evaluation and then using latent class modeling, we estimated the operating characteristics of these tests in the absence of a reference standard test.
There was a weak inter-rater agreement (kappa < 0.15) as well as a weak intra-rater reproducibility (Pearson's r = 0.28, intra-class correlation rho = 0.03) in the histopathological evaluation of potentially high-risk precancerous lesions. When compared to histopathology, chemiluminescence and toluidine blue retention had a sensitivity of 1.00 and 0.59, respectively and a specificity of 0.01 and 0.79, respectively. However, latent class analysis indicated a low sensitivity (0.37) and high specificity (0.90) of histopathological evaluation. Toluidine blue had a near perfect high sensitivity and specificity for detection of high-risk lesions.
In our study, there was variability in the histopathological evaluation of oral precancerous lesions. Our results indicate that toluidine blue retention test may be better suited than chemiluminescence to detect high-risk oral precancerous lesions in a high-prevalence and low-resource setting like India.
PMCID: PMC3315728  PMID: 22410295
Oral cancer; Leukoplakia; Screening; light-based methods
6.  Biphasic synovial sarcoma in mandibular region 
The term synovioma was coined by Smith in 1927, and later in 1936 Knox suggested the name synovial sarcoma. It occurs primarily in the paraarticular regions, usually in close association with tendon sheaths, bursae, and joint capsules. On rare occasions it may be seen in areas without any apparent relationship to synovial structures as in parapharyngeal region or the abdominal cavity. The first description of synovial sarcoma in the head and neck region was by Pack and Ariel in 1950. The majority of these tumors seem to take origin from paravertebral connective tissue spaces and manifest as solitary retropharyngeal or parapharyngeal masses near the carotid bifurcation. Synovial sarcoma has been reported in soft palate, tongue, maxillofacial region, angle of mandible, sternoclavicular region, scapular region, and the esophagus. We report a case of 28-year-old male patient with synovial sarcoma in mandibular region with biphasic pattern.
PMCID: PMC3329687  PMID: 22529590
Biphasic pattern; head and neck; synovial sarcoma

Results 1-6 (6)