Search tips
Search criteria

Results 1-25 (34)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
Document Types
1.  Differential Sensitivity of Src-Family Kinases to Activation by SH3 Domain Displacement 
PLoS ONE  2014;9(8):e105629.
Src-family kinases (SFKs) are non-receptor protein-tyrosine kinases involved in a variety of signaling pathways in virtually every cell type. The SFKs share a common negative regulatory mechanism that involves intramolecular interactions of the SH3 domain with the PPII helix formed by the SH2-kinase linker as well as the SH2 domain with a conserved phosphotyrosine residue in the C-terminal tail. Growing evidence suggests that individual SFKs may exhibit distinct activation mechanisms dictated by the relative strengths of these intramolecular interactions. To elucidate the role of the SH3:linker interaction in the regulation of individual SFKs, we used a synthetic SH3 domain-binding peptide (VSL12) to probe the sensitivity of downregulated c-Src, Hck, Lyn and Fyn to SH3-based activation in a kinetic kinase assay. All four SFKs responded to VSL12 binding with enhanced kinase activity, demonstrating a conserved role for SH3:linker interaction in the control of catalytic function. However, the sensitivity and extent of SH3-based activation varied over a wide range. In addition, autophosphorylation of the activation loops of c-Src and Hck did not override regulatory control by SH3:linker displacement, demonstrating that these modes of activation are independent. Our results show that despite the similarity of their downregulated conformations, individual Src-family members show diverse responses to activation by domain displacement which may reflect their adaptation to specific signaling environments in vivo.
PMCID: PMC4140816  PMID: 25144189
2.  Partial cooperative unfolding in proteins as observed by hydrogen exchange mass spectrometry 
International reviews in physical chemistry  2012;32(1):10.1080/0144235X.2012.751175.
Many proteins do not exist in a single rigid conformation. Protein motions, or dynamics, exist and in many cases are important for protein function. The analysis of protein dynamics relies on biophysical techniques that can distinguish simultaneously existing populations of molecules and their rates of interconversion. Hydrogen exchange (HX) detected by mass spectrometry (MS) is contributing to our understanding of protein motions by revealing unfolding and dynamics on a wide timescale, ranging from seconds to hours to days. In this review we discuss HX MS-based analyses of protein dynamics, using our studies of multi-domain kinases as examples. Using HX MS, we have successfully probed protein dynamics and unfolding in the isolated SH3, SH2 and kinase domains of the c-Src and Abl kinase families, as well as the role of inter- and intra-molecular interactions in the global control of kinase function. Coupled with high-resolution structural information, HX MS has proved to be a powerful and versatile tool for the analysis of the conformational dynamics in these kinase systems, and has provided fresh insight regarding the regulatory control of these important signaling proteins. HX MS studies of dynamics are applicable not only to the proteins we illustrate here, but to a very wide range of proteins and protein systems, and should play a role in both classification of and greater understanding of the prevalence of protein motion.
PMCID: PMC3652491  PMID: 23682200
Src-family kinase; Hck; Lck; SH3 domain; SH2 domain; Abl; deuterium; HDX; protein dynamics, flexibility
3.  HIV-1 Nef interaction influences the ATP-binding site of the Src-family kinase, Hck 
BMC Chemical Biology  2012;12:1.
Nef is an HIV-1 accessory protein essential for viral replication and AIDS progression. Nef interacts with a multitude of host cell signaling partners, including members of the Src kinase family. Nef preferentially activates Hck, a Src-family kinase (SFK) strongly expressed in macrophages and other HIV target cells, by binding to its regulatory SH3 domain. Recently, we identified a series of kinase inhibitors that preferentially inhibit Hck in the presence of Nef. These compounds also block Nef-dependent HIV replication, validating the Nef-SFK signaling pathway as an antiretroviral drug target. Our findings also suggested that by binding to the Hck SH3 domain, Nef indirectly affects the conformation of the kinase active site to favor inhibitor association.
To test this hypothesis, we engineered a "gatekeeper" mutant of Hck with enhanced sensitivity to the pyrazolopyrimidine tyrosine kinase inhibitor, NaPP1. We also modified the RT loop of the Hck SH3 domain to enhance interaction of the kinase with Nef. This modification stabilized Nef:Hck interaction in solution-based kinase assays, as a way to mimic the more stable association that likely occurs at cellular membranes. Introduction of the modified RT loop rendered Hck remarkably more sensitive to activation by Nef, and led to a significant decrease in the Km for ATP as well as enhanced inhibitor potency.
These observations suggest that stable interaction with Nef may induce Src-family kinase active site conformations amenable to selective inhibitor targeting.
PMCID: PMC3328272  PMID: 22420777
4.  The c-Yes tyrosine kinase is a potent suppressor of ES cell differentiation and antagonizes the actions of its closest phylogenetic relative, c-Src 
ACS chemical biology  2013;9(1):139-146.
ES cells are derived from the inner cell mass of the blastocyst stage embryo and are characterized by self-renewal and pluripotency. Previous work has shown that Src-family tyrosine kinases display dynamic expression and activity changes during ES cell differentiation, suggesting distinct functions in the control of developmental fate. Here we used ES cells to test the hypothesis that c-Src and its closest phylogenetic relative, c-Yes, act in biological opposition despite their strong homology. Unlike c-Src, enforced expression of active c-Yes blocked ES cell differentiation to embryoid bodies by maintaining pluripotency gene expression. To explore the interplay of c-Src and c-Yes in ES cell differentiation, we engineered c-Src and c-Yes mutants that are resistant to A-419259, a potent pyrrolopyrimidine inhibitor of the Src kinase family. Previous studies have shown that A-419259 treatment blocks all Src-family kinase activity in ES cells, preventing differentiation while maintaining pluripotency. Expression of inhibitor-resistant c-Src but not c-Yes rescued the A-419259 differentiation block, resulting in a cell population with properties of both primitive ectoderm and endoderm. Remarkably, when inhibitor-resistant c-Src and c-Yes were expressed together in ES cells, c-Yes activity suppressed c-Src mediated differentiation. These studies show that even closely related kinases such as c-Src and c-Yes have unique and opposing functions in the same cell type. Selective agonists or inhibitors of c-Src vs. c-Yes activity may allow more precise pharmacological manipulation of ES cell fate and have broader applications in other biological systems which express multiple Src family members such as tumor cells.
PMCID: PMC3875617  PMID: 23895624
Src-family kinases; c-Yes kinase; ES cells; chemical genetics
5.  Small molecule inhibitors of the HIV-1 virulence factor, Nef 
Drug discovery today. Technologies  2013;10(4):e451-e548.
Although antiretroviral therapy has revolutionized the clinical management of AIDS, life-long treatment is required because these drugs do not eradicate HIV-infected cells. Chronic antiretroviral therapy may not protect AIDS patients from cognitive impairment, raising important quality of life issues. Because of the rise of HIV strains resistant to current drugs and uncertain vaccine prospects, an urgent need exists for the discovery and development of new therapeutic approaches. This review is focused on one such approach, which involves targeting HIV-1 Nef, a viral accessory protein essential for AIDS pathogenesis.
PMCID: PMC3900877  PMID: 24451644
6.  Development and Validation of a High-Content Bimolecular Fluorescence Complementation Assay for Small Molecule Inhibitors of HIV-1 Nef Dimerization 
Journal of biomolecular screening  2013;19(4):556-565.
Nef is an HIV-1 accessory factor essential for viral pathogenesis and AIDS progression. Many Nef functions require dimerization, and small molecules that block Nef dimerization may represent antiretroviral drug leads. Here we describe a cell-based assay for Nef dimerization inhibitors based on bimolecular fluorescence complementation (BiFC). Nef was fused to non-fluorescent, complementary fragments of YFP and co-expressed in the same cell population. Dimerization of Nef resulted in juxtaposition of the YFP fragments and reconstitution of the fluorophore. For automation, the Nef-YFP fusion proteins plus an mRFP reporter were expressed from a single vector, separated by picornavirus ‘2A’ linker peptides to permit equivalent translation of all three proteins. Validation studies revealed a critical role for gating on the mRFP-positive subpopulation of transfected cells, as well as use of the mRFP signal to normalize the Nef-BiFC signal. Nef-BiFC/mRFP ratios resulting from cells expressing wild-type vs. dimerization-defective Nef were very clearly separated, with Z-factors consistently in the 0.6–0.7 range. A fully automated pilot screen of the NIH Diversity Set III identified several hit compounds that reproducibly blocked Nef dimerization in the low micromolar range. This BiFC-based assay has the potential to identify cell-active small molecules that directly interfere with Nef dimerization and function.
PMCID: PMC4006692  PMID: 24282155
HIV-1; HIV-1 Nef; fluorescence complementation; BiFC; YFP; high-content screening
7.  Individual Src-family tyrosine kinases direct the degradation or protection of the clock protein Timeless via differential ubiquitylation 
Cellular signalling  2012;25(4):860-866.
Timeless was originally identified in Drosophila as an essential component of circadian cycle regulation, where its function is tightly controlled at the protein level by tyrosine phosphorylation and subsequent degradation. In mammals, Timeless has also been implicated in circadian rhythms as well as cell cycle control and embryonic development. Here we report that mammalian Timeless is an SH3 domain-binding protein and substrate for several members of the Src protein-tyrosine kinase family, including Fyn, Hck, c-Src and c-Yes. Co-expression of Tim with Fyn or Hck was followed by ubiquitylation and subsequent degradation in human 293T cells. While c-Src and c-Yes also promoted Tim ubiquitylation, in this case ubiquitylation correlated with Tim protein accumulation rather than degradation. Both c-Src and c-Yes selectively promoted modification of Tim through Lys63-linked polyubiquitin, which may explain the differential effects on Tim protein turnover. These data show distinct and opposing roles for individual Src-family members in the regulation of Tim protein levels, suggesting a unique mechanism for the regulation of Tim function in mammals.
PMCID: PMC3595377  PMID: 23266470
Timeless; Ubiquitylation; Clock proteins; Src-family Kinases
8.  A dynamic G-quadruplex region regulates the HIV-1 long terminal repeat promoter 
Journal of medicinal chemistry  2013;56(16):6521-6530.
G-quadruplexes, non-canonical nucleic acid structures, act as silencers in the promoter regions of human genes; putative G-quadruplex forming sequences are also present in promoters of other mammals, yeasts and prokaryotes. Here we show that also the HIV-1 LTR promoter exploits G-quadruplex-mediated transcriptional regulation with striking similarities to eukaryotic promoters and that treatment with a G-quadruplex ligand inhibits HIV-1 infectivity. Computational analysis on 953 HIV-1 strains substantiated a highly conserved G-rich sequence corresponding to Sp1 and NF-κB binding sites. Biophysical/biochemical analysis proved that two mutually exclusive parallel-like intramolecular G-quadruplexes, stabilized by small molecule ligands, primarily fold in this region. Mutations disrupting G-quadruplex formation enhanced HIV promoter activity in cells, whereas treatment with a G-quadruplex ligand impaired promoter activity and displayed antiviral effects. These findings disclose the possibility of inhibiting the HIV-1 LTR promoter by G-quadruplex-interacting small molecules, providing a new pathway to development of anti-HIV-1 drugs with unprecedented mechanism of action.
PMCID: PMC3791109  PMID: 23865750
9.  Effector Kinase Coupling Enables High-Throughput Screens for Direct HIV-1 Nef Antagonists with Anti-retroviral Activity 
Chemistry & biology  2013;20(1):82-91.
HIV-1 Nef, a critical AIDS progression factor, represents an important target protein for antiretroviral drug discovery. Because Nef lacks intrinsic enzymatic activity, we developed an assay that couples Nef to the activation of Hck, a Src-family member and Nef effector protein. Using this assay, we screened a large, diverse chemical library and identified small molecules that block Nef-dependent Hck activity with low micromolar potency. Of these, a diphenylpyrazolo compound demonstrated sub-micromolar potency in HIV-1 replication assays against a broad range of primary Nef variants. This compound binds directly to Nef via a pocket formed by the Nef dimerization interface and disrupts Nef dimerization in cells. Coupling of non-enzymatic viral accessory factors to host cell effector proteins amenable to high-throughput screening may represent a general strategy for the discovery of new antimicrobial agents.
PMCID: PMC3559019  PMID: 23352142
10.  Small Molecule Inhibitors of the c-Fes Protein-tyrosine Kinase 
Chemistry & biology  2012;19(4):529-540.
The c-Fes protein-tyrosine kinase modulates cellular signaling pathways governing differentiation, the innate immune response, and vasculogenesis. Here we report the identification of Type I and II kinase inhibitors with potent activity against c-Fes both in vitro and in cell-based assays. One of the most potent inhibitors is the previously described anaplastic lymphoma kinase inhibitor, TAE684. The crystal structure of TAE684 in complex with the c-Fes SH2-kinase domain showed excellent shape complementarity with the ATP-binding pocket and a key role for the gatekeeper methionine in the inhibitory mechanism. TAE684 and two pyrazolopyrimidines with nanomolar potency against c-Fes in vitro were used to establish a novel role for this kinase in osteoclastogenesis, illustrating the value of these inhibitors as tool compounds to probe the diverse biological functions associated with this unique kinase.
PMCID: PMC3334838  PMID: 22520759
11.  Discovery of a diaminoquinoxaline benzenesulfonamide antagonist of HIV-1 Nef function using a yeast-based phenotypic screen 
Retrovirology  2013;10:135.
HIV-1 Nef is a viral accessory protein critical for AIDS progression. Nef lacks intrinsic catalytic activity and binds multiple host cell signaling proteins, including Hck and other Src-family tyrosine kinases. Nef binding induces constitutive Hck activation that may contribute to HIV pathogenesis by promoting viral infectivity, replication and downregulation of cell-surface MHC-I molecules. In this study, we developed a yeast-based phenotypic screen to identify small molecules that inhibit the Nef-Hck complex.
Nef-Hck interaction was faithfully reconstituted in yeast cells, resulting in kinase activation and growth arrest. Yeast cells expressing the Nef-Hck complex were used to screen a library of small heterocyclic compounds for their ability to rescue growth inhibition. The screen identified a dihydrobenzo-1,4-dioxin-substituted analog of 2-quinoxalinyl-3-aminobenzene-sulfonamide (DQBS) as a potent inhibitor of Nef-dependent HIV-1 replication and MHC-I downregulation in T-cells. Docking studies predicted direct binding of DQBS to Nef which was confirmed in differential scanning fluorimetry assays with recombinant purified Nef protein. DQBS also potently inhibited the replication of HIV-1 NL4-3 chimeras expressing Nef alleles representative of all M-group HIV-1 clades.
Our findings demonstrate the utility of a yeast-based growth reversion assay for the identification of small molecule Nef antagonists. Inhibitors of Nef function discovered with this assay, such as DQBS, may complement the activity of current antiretroviral therapies by enabling immune recognition of HIV-infected cells through the rescue of cell surface MHC-I.
PMCID: PMC3874621  PMID: 24229420
HIV-1; Nef; Src-family kinases; Hck; Zap-70; MHC-I downregulation; Small molecule Nef antagonists
12.  Formation of a Unique Cluster of G-Quadruplex Structures in the HIV-1 nef Coding Region: Implications for Antiviral Activity 
PLoS ONE  2013;8(8):e73121.
G-quadruplexes are tetraplex structures of nucleic acids that can form in G-rich sequences. Their presence and functional role have been established in telomeres, oncogene promoters and coding regions of the human chromosome. In particular, they have been proposed to be directly involved in gene regulation at the level of transcription. Because the HIV-1 Nef protein is a fundamental factor for efficient viral replication, infectivity and pathogenesis invitro and invivo, we investigated G-quadruplex formation in the HIV-1 nef gene to assess the potential for viral inhibition through G-quadruplex stabilization. A comprehensive computational analysis of the nef coding region of available strains showed the presence of three conserved sequences that were uniquely clustered. Biophysical testing proved that G-quadruplex conformations were efficiently stabilized or induced by G-quadruplex ligands in all three sequences. Upon incubation with a G-quadruplex ligand, Nef expression was reduced in a reporter gene assay and Nef-dependent enhancement of HIV-1 infectivity was significantly repressed in an antiviral assay. These data constitute the first evidence of the possibility to regulate HIV-1 gene expression and infectivity through G-quadruplex targeting and therefore open a new avenue for viral treatment.
PMCID: PMC3754912  PMID: 24015290
13.  Bimolecular Fluorescence Complementation Demonstrates that the c-Fes Protein-tyrosine Kinase Forms Constitutive Oligomers in Living Cells† 
Biochemistry  2009;48(22):4780-4788.
The c-fes proto-oncogene encodes a unique non-receptor protein-tyrosine kinase (c-Fes) that contributes to the differentiation of myeloid hematopoietic, vascular endothelial, and some neuronal cell types. Although originally identified as the normal cellular homolog of the oncoproteins encoded by avian and feline transforming retroviruses, c-Fes has recently been implicated as a tumor suppressor in breast and colonic epithelial cells. Structurally, c-Fes consists of a unique N-terminal region harboring an FCH domain, two coiled-coil motifs, a central SH2 domain, and a C-terminal kinase domain. In living cells, c-Fes kinase activity is tightly regulated by a mechanism that remains unclear. Previous studies have established that c-Fes forms high molecular weight oligomers in vitro, suggesting that the dual coiled-coil motifs may regulate the interconversion of inactive monomeric and active oligomeric states. Here we show for the first time that c-Fes forms oligomers in live cells independently of its activation status using a YFP bimolecular fluorescence complementation assay. We also demonstrate that both N-terminal coiled-coil regions are essential for c-Fes oligomerization in transfected COS-7 cells as well as HCT 116 colorectal cancer and K-562 myeloid leukemia cell lines. Together, these data provide the first evidence that c-Fes, unlike c-Src, c-Abl and other non-receptor tyrosine kinases, is constitutively oligomeric in both its repressed and active states. This finding suggests that conformational changes, rather than oligomerization, may govern its kinase activity in vivo.
PMCID: PMC3222594  PMID: 19382747
14.  HIV-1 Nef Dimerization is required for Nef-Mediated Receptor Downregulation and Viral Replication 
Journal of molecular biology  2009;394(2):329-342.
Nef, an HIV-1 accessory factor capable of interaction with a diverse array of host cell signaling molecules, is essential for high-titer HIV replication and AIDS progression. Previous biochemical and structural studies have suggested that Nef may form homodimers and higher order oligomers in HIV-infected cells, which may be required for both immune and viral receptor downregulation as well as viral replication. Using bimolecular fluorescence complementation (BiFC), we provide the first direct evidence for Nef dimers within HIV host cells and identify the structural requirements for dimerization in vivo. BiFC analysis shows that the multiple hydrophobic and electrostatic interactions found within the dimerization interface of the Nef X-ray crystal structure are essential for dimerization in cells. Nef dimers localized to the plasma membrane as well as the trans-Golgi network, two subcellular localizations essential for Nef function. Mutations in the Nef dimerization interface dramatically reduced both Nef-induced CD4 downregulation and HIV replication. Viruses expressing dimerization-defective Nef mutants were disabled to the same extent as HIV that fails to express Nef in terms of replication. These results identify the Nef dimerization region as a potential molecular target for anti-retroviral drug discovery.
PMCID: PMC2783173  PMID: 19781555
HIV Nef; bimolecular fluorescence complementation; dimerization; CD4; HIV replication
15.  Chemical Library Screens Targeting an HIV-1 Accessory Factor/Host Cell Kinase Complex Identify Novel Anti-retroviral Compounds 
ACS chemical biology  2009;4(11):939-947.
Nef is an HIV-1 accessory protein essential for AIDS progression and an attractive target for drug discovery. Lack of a catalytic function makes Nef difficult to assay in chemical library screens. We developed a high-throughput screening assay for inhibitors of Nef function by coupling it to one of its host cell binding partners, the Src-family kinase Hck. Hck activation is dependent upon Nef in this assay, providing a direct readout of Nef activity in vitro. Using this screen, a unique diphenylfuropyrimidine was identified as a strong inhibitor of Nef-dependent Hck activation. This compound also exhibited remarkable antiretroviral effects, blocking Nef-dependent HIV replication in cell culture. Structurally related analogs were synthesized and shown to exhibit similar Nef-dependent anti-viral activity, identifying the diphenylfuropyrimidine substructure as a new lead for antiretroviral drug development. This study demonstrates that coupling non-catalytic HIV accessory factors with host cell target proteins addressable by high-throughput assays may afford new avenues for the discovery of anti-HIV agents.
PMCID: PMC2861989  PMID: 19807124
16.  Promoter Methylation Blocks FES Protein-tyrosine Kinase Gene Expression in Colorectal Cancer 
Genes, chromosomes & cancer  2009;48(3):272-284.
The FES locus encodes a unique non-receptor protein-tyrosine kinase (FES) traditionally viewed as a proto-oncogene but more recently implicated as a tumor suppressor in colorectal cancer (CRC). Recent studies have demonstrated that while FES is expressed in normal colonic epithelium, expression is lost in tumor tissue and colorectal cancer cell lines, a finding common among tumor suppressors. Here we provide compelling evidence that promoter methylation is an important mechanism responsible for down-regulation of FES gene expression in colorectal cancer cells. Treatment with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine resulted in the expression of functional FES transcripts in all CRC cell lines examined, including Caco-2, COLO 320, DLD-1, HCT 116, SNU-1040, SW-480, and HT-29. Bisulfite sequencing of genomic DNA isolated from 5-aza-2′-deoxycytidine-treated HT-29 cells identified methylated CpG dinucleotides immediately upstream from the FES transcription initiation sites. In contrast, this region of the FES promoter was hypomethylated in genomic DNA from normal colonic epithelium. In addition, methylation completely blocked the activity of the FES promoter in reporter gene assays. Promoter methylation is a previously unrecognized mechanism by which FES expression is suppressed in CRC cell lines, and is consistent with a tumor suppressor role for FES in this tumor site despite its tyrosine kinase activity.
PMCID: PMC2648816  PMID: 19051325
17.  On the solution conformation and dynamics of the HIV-1 Viral Infectivity Factor 
Journal of molecular biology  2011;410(5):1008-1022.
HIV-1 has evolved a cunning mechanism to circumvent the antiviral activity of the APOBEC3 family of host-cell enzymes. The HIV-1 virion infectivity factor, one of several HIV accessory proteins, targets APOBEC3 proteins for proteasomal degradation and down-regulates their expression at the mRNA level. Despite the importance of Vif for HIV-1 infection, there is little conformational data on Vif alone or in complex with other cellular factors due to incompatibilities with many structural techniques and difficulties in producing suitable quantities of protein for biophysical analysis. As an alternative, we have turned to hydrogen exchange mass spectrometry (HX MS), a conformational analysis method well suited for proteins that are difficult to study using X-ray crystallography and/or NMR. HX MS was used to probe the solution conformation of recombinant full-length HIV-1 Vif. Vif specifically interacted with the previously identified binding partner Hck and was able to cause kinase activation suggesting that the Vif studied by HX MS retained a biochemically competent conformation relevant to Hck interaction. HX MS analysis of Vif alone revealed low deuteration levels in the N-terminal portion indicating that this region contained structured or otherwise protected elements. In contrast, high deuteration levels in the C-terminal portion of Vif indicated that this region was likely unstructured in the absence of cellular interacting proteins. Several regions within Vif displayed conformational heterogeneity in solution including the APOBEC3G/F binding site and HCCH zinc finger. Taken together, these HX MS results provide new insights into the solution conformation of Vif.
PMCID: PMC3139145  PMID: 21763503
Accessory protein; APOBEC3F/G; E3 Ligase; hydrogen exchange; mass spectrometry; deuterium; Vif
18.  Allosteric Loss-of-function Mutations in HIV-1 Nef from a Long-Term Non-Progressor 
Journal of molecular biology  2007;374(1):121-129.
Activation of Src family kinases by HIV-1 Nef may play an important role in the pathogenesis of HIV/AIDS. Here we investigated whether diverse Nef sequences universally activate Hck, a Src family member expressed in macrophages and other HIV-1 target cells. In general, we observed that Hck activation is a highly conserved Nef function. However, we identified an unusual Nef variant from an HIV-positive individual that did not develop AIDS which failed to activate Hck despite the presence of conserved residues linked to Hck SH3 domain binding and kinase activation. Amino acid sequence alignment with active Nef proteins revealed differences in regions not previously implicated in Hck activation, including a large internal flexible loop absent from available Nef structures. Substitution of these residues in active Nef compromised Hck activation without affecting SH3 domain binding. These findings show that residues at a distance from the SH3 domain binding site allosterically influence Nef interactions with a key effector protein linked to AIDS progression.
PMCID: PMC2117379  PMID: 17920628
19.  Phosphotyrosine-Dependent Coupling of Tim-3 to T-Cell Receptor Signaling Pathways ▿  
Molecular and Cellular Biology  2011;31(19):3963-3974.
The transmembrane protein Tim-3 has been shown to negatively regulate T-cell-dependent immune responses and was recently demonstrated to be associated with the phenomenon of immune exhaustion, which can occur as a consequence of chronic viral infection. Unlike other negative regulators of T-cell function (e.g., PD-1), Tim-3 does not contain any obvious inhibitory signaling motifs. We have found that ectopic expression of Tim-3 in T cells leads to enhancement of T-cell receptor (TCR)-dependent signaling pathways, which was observed at the level of transcriptional reporters and endogenous cytokine production. We have exploited this observation to dissect what elements within the cytoplasmic tail of Tim-3 are required for coupling to downstream signaling pathways. Here we have demonstrated that two of the more membrane-proximal cytoplasmic tail tyrosines are required for Tim-3 signaling to T-cell activation pathways in a redundant fashion. Furthermore, we show that Tim-3 can directly bind to the Src family tyrosine kinase Fyn and the p85 phosphatidylinositol 3-kinase (PI3K) adaptor. Thus, at least under conditions of short-term stimulation, Tim-3 can augment T-cell activation, although this effect can be blocked by the inclusion of an agonistic antibody to Tim-3. These findings should help further the study of Tim-3 function in other physiological settings, such as those that lead to immune exhaustion.
PMCID: PMC3187355  PMID: 21807895
20.  Nef Alleles from All Major HIV-1 Clades Activate Src-Family Kinases and Enhance HIV-1 Replication in an Inhibitor-Sensitive Manner 
PLoS ONE  2012;7(2):e32561.
The HIV-1 accessory factor Nef is essential for high-titer viral replication and AIDS progression. Nef function requires interaction with many host cell proteins, including specific members of the Src kinase family. Here we explored whether Src-family kinase activation is a conserved property of Nef alleles from a wide range of primary HIV-1 isolates and their sensitivity to selective pharmacological inhibitors. Representative Nef proteins from the major HIV-1 subtypes A1, A2, B, C, F1, F2, G, H, J and K strongly activated Hck and Lyn as well as c-Src to a lesser extent, demonstrating for the first time that Src-family kinase activation is a highly conserved property of primary M-group HIV-1 Nef isolates. Recently, we identified 4-amino substituted diphenylfuropyrimidines (DFPs) that selectively inhibit Nef-dependent activation of Src-family kinases as well as HIV replication. To determine whether DFP compounds exhibit broad-spectrum Nef-dependent antiretroviral activity against HIV-1, we first constructed chimeric forms of the HIV-1 strain NL4-3 expressing each of the primary Nef alleles. The infectivity and replication of these Nef chimeras was indistinguishable from that of wild-type virus in two distinct cell lines (U87MG astroglial cells and CEM-T4 lymphoblasts). Importantly, the 4-aminopropanol and 4-aminobutanol derivatives of DFP potently inhibited the replication of all chimeric forms of HIV-1 in both U87MG and CEM-T4 cells in a Nef-dependent manner. The antiretroviral effects of these compounds correlated with inhibition of Nef-dependent activation of endogenous Src-family kinases in the HIV-infected cells. Our results demonstrate that the activation of Hck, Lyn and c-Src by Nef is highly conserved among all major clades of HIV-1 and that selective targeting of this pathway uniformly inhibits HIV-1 replication.
PMCID: PMC3290594  PMID: 22393415
21.  DNA methylation-dependent repression of PDZ-LIM domain-containing protein 2 in colon cancer and its role as a potential therapeutic target 
Cancer research  2010;70(5):1766-1772.
Constitutive activation of the NF-κB transcription factor plays a key role in chronic colonic inflammation and colon tumorigenesis. However, the mechanisms by which the tightly regulated NF-κB pathway becomes constitutively activated during colonic pathogenesis remain obscure. Here, we report that PDLIM2, an essential terminator of NF-κB activation, is repressed in various human colorectal cancer cell lines, suggesting one important mechanism for the constitutive activation of NF-κB. Indeed, expression of exogenous PDLIM2 inhibited constitutive NF-κB activation in these colorectal cancer cells. Importantly, the PDLIM2 expression was sufficient to suppress in vitro anchorage-independent growth and in vivo tumor formation of these malignant cells. We have further shown that the PDLIM2 repression involves promoter methylation. Accordingly, treatment of the colorectal tumor cell lines with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (5-aza-dC) restored PDLIM2 expression and resulted in growth arrest. These studies thus provide new mechanistic insights into colon tumorigenesis by identifying a novel tumor suppressor role for PDLIM2.
PMCID: PMC3003295  PMID: 20145149
22.  An Unexpected Role for the Clock Protein Timeless in Developmental Apoptosis 
PLoS ONE  2011;6(2):e17157.
Programmed cell death is critical not only in adult tissue homeostasis but for embryogenesis as well. One of the earliest steps in development, formation of the proamniotic cavity, involves coordinated apoptosis of embryonic cells. Recent work from our group demonstrated that c-Src protein-tyrosine kinase activity triggers differentiation of mouse embryonic stem (mES) cells to primitive ectoderm-like cells. In this report, we identified Timeless (Tim), the mammalian ortholog of a Drosophila circadian rhythm protein, as a binding partner and substrate for c-Src and probed its role in the differentiation of mES cells.
Methodology/Principal Findings
To determine whether Tim is involved in ES cell differentiation, Tim protein levels were stably suppressed using shRNA. Tim-defective ES cell lines were then tested for embryoid body (EB) formation, which models early mammalian development. Remarkably, confocal microscopy revealed that EBs formed from the Tim-knockdown ES cells failed to cavitate. Cells retained within the centers of the failed cavities strongly expressed the pluripotency marker Oct4, suggesting that further development is arrested without Tim. Immunoblots revealed reduced basal Caspase activity in the Tim-defective EBs compared to wild-type controls. Furthermore, EBs formed from Tim-knockdown cells demonstrated resistance to staurosporine-induced apoptosis, consistent with a link between Tim and programmed cell death during cavitation.
Our data demonstrate a novel function for the clock protein Tim during a key stage of early development. Specifically, EBs formed from ES cells lacking Tim showed reduced caspase activity and failed to cavitate. As a consequence, further development was halted, and the cells present in the failed cavity remained pluripotent. These findings reveal a new function for Tim in the coordination of ES cell differentiation, and raise the intriguing possibility that circadian rhythms and early development may be intimately linked.
PMCID: PMC3040764  PMID: 21359199
23.  Small Molecule Inhibition of HIV-1–Induced MHC-I Down-Regulation Identifies a Temporally Regulated Switch in Nef Action 
Molecular Biology of the Cell  2010;21(19):3279-3292.
Nef assembles a multi-kinase complex triggering MHC-I down-regulation. We identify an inhibitor that blocks MHC-I down-regulation, identifying a temporally regulated switch in Nef action from directing MHC-I endocytosis to blocking cell surface delivery. These findings challenge current dogma and reveal a regulated immune evasion program.
HIV-1 Nef triggers down-regulation of cell-surface MHC-I by assembling a Src family kinase (SFK)-ZAP-70/Syk-PI3K cascade. Here, we report that chemical disruption of the Nef-SFK interaction with the small molecule inhibitor 2c blocks assembly of the multi-kinase complex and represses HIV-1–mediated MHC-I down-regulation in primary CD4+ T-cells. 2c did not interfere with the PACS-2–dependent trafficking of Nef required for the Nef-SFK interaction or the AP-1 and PACS-1–dependent sequestering of internalized MHC-I, suggesting the inhibitor specifically interfered with the Nef-SFK interaction required for triggering MHC-I down-regulation. Transport studies revealed Nef directs a highly regulated program to down-regulate MHC-I in primary CD4+ T-cells. During the first two days after infection, Nef assembles the 2c-sensitive multi-kinase complex to trigger down-regulation of cell-surface MHC-I. By three days postinfection Nef switches to a stoichiometric mode that prevents surface delivery of newly synthesized MHC-I. Pharmacologic inhibition of the multi-kinase cascade prevents the Nef-dependent block in MHC-I transport, suggesting the signaling and stoichiometric modes are causally linked. Together, these studies resolve the seemingly controversial models that describe Nef-induced MHC-I down-regulation and provide new insights into the mechanism of Nef action.
PMCID: PMC2947465  PMID: 20702582
24.  HIV-1 Nef Selectively Activates Src Family Kinases Hck, Lyn, and c-Src through Direct SH3 Domain Interaction* 
The Journal of biological chemistry  2006;281(37):27029-27038.
Nef is an HIV-1 virulence factor that promotes viral pathogenicity by altering host cell signaling pathways. Nef binds several members of the Src kinase family, and these interactions have been implicated in the pathogenesis of HIV/AIDS. However, the direct effect of Nef interaction on Src family kinase (SFK) regulation and activity has not been systematically addressed. We explored this issue using Saccharomyces cerevisiae, a well defined model system for the study of SFK regulation. Previous studies have shown that ectopic expression of c-Src arrests yeast cell growth in a kinase-dependent manner. We expressed Fgr, Fyn, Hck, Lck, Lyn, and Yes as well as c-Src in yeast and found that each kinase was active and induced growth suppression. Co-expression of the negative regulatory kinase Csk suppressed SFK activity and reversed the growth-inhibitory effect. We then co-expressed each SFK with HIV-1 Nef in the presence of Csk. Nef strongly activated Hck, Lyn, and c-Src but did not detectably affect Fgr, Fyn, Lck, or Yes. Mutagenesis of the Nef PXXP motif essential for SH3 domain binding greatly reduced the effect of Nef on Hck, Lyn, and c-Src, suggesting that Nef activates these Src family members through allosteric displacement of intra-molecular SH3-linker interactions. These data show that Nef selectively activates Hck, Lyn, and c-Src among SFKs, identifying these kinases as proximal effectors of Nef signaling and potential targets for anti-HIV drug discovery.
PMCID: PMC2892265  PMID: 16849330
25.  Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages 
Nature chemical biology  2009;5(9):680-687.
The dual specificity phosphatase 6 (Dusp6) functions as a feedback regulator of fibroblast growth factor (FGF) signaling to limit the activity of extracellular signal regulated kinase (ERK) 1 and 2. We have identified a small molecule inhibitor of Dusp6, (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI), using a transgenic zebrafish chemical screen. BCI treatment blocked Dusp6 activity and enhanced FGF target gene expression in zebrafish embryos. Docking simulations predicted an allosteric binding site for BCI within the phosphatase domain. In vitro studies supported a model that BCI inhibits Dusp6 catalytic activation by ERK2 substrate binding. A temporal role for Dusp6 in restricting cardiac progenitors and controlling heart organ size was uncovered with BCI treatment at varying developmental stages. This study highlights the power of in vivo zebrafish chemical screens to identify novel compounds targeting Dusp6, a component of the FGF signaling pathway that has eluded traditional high-throughput in vitro screens.
PMCID: PMC2771339  PMID: 19578332

Results 1-25 (34)