Search tips
Search criteria

Results 1-12 (12)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Hepatic Dysfunction Induced by 7, 12-Dimethylbenz(α)anthracene and Its Obviation with Erucin Using Enzymatic and Histological Changes as Indicators 
PLoS ONE  2014;9(11):e112614.
The toxicity induced by 7, 12-dimethylbenz(α)anthracene (DMBA) has been widely delineated by a number of researchers. This potent chemical damages many internal organs including liver, by inducing the production of reactive oxygen species, DNA-adduct formation and affecting the activities of phase I, II, antioxidant and serum enzymes. Glucosinolate hydrolytic products like isothiocyanates (ITCs) are well known for inhibiting the DNA-adduct formation and modulating phase I, II enzymes. Sulforaphane is ITC, currently under phase trials, is readily metabolized and inter-converted into erucin upon ingestion. We isolated erucin from Eruca sativa (Mill.) Thell. evaluated its hepatoprotective role in DMBA induced toxicity in male wistar rats. The rats were subjected to hepatic damage by five day regular intraperitoneal doses of DMBA. At the end of the protocol, the rats were euthanized, their blood was collected and livers were processed. The liver homogenate was analyzed for phase I (NADPH-cytochrome P450 reductase, NADH-cytochrome b5 reductase, cytochrome P450, cytochrome P420 and cytochrome b5), phase II (DT diaphorase, glutathione-S-transferase and γ-glutamyl transpeptidase) and antioxidant enzymes (superoxide dismutase, catalase, guaiacol peroxidise, ascorbate peroxidise, glutathione reductase and lactate dehydrogenase). The level of thiobarbituric acid reactive substances, lipid hydroperoxides, conjugated dienes and reduced glutathione in the liver homogenate was also analyzed. The serum was also analyzed for markers indicating hepatic damage (alkaline phosphatase, serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase, direct bilirubin and total bilirubin). Erucin provided significant protection against DMBA induced damage by modulating the phase I, II and antioxidant enzymes. The histological evaluation of liver tissue was also conducted, which showed the hepatoprotective role of erucin.
PMCID: PMC4229223  PMID: 25390337
2.  Comparative evaluation of naftopidil and tamsulosin in the treatment of patients with lower urinary tract symptoms with benign prostatic hyperplasia 
Urology Annals  2014;6(3):181-186.
Naftopidil, approved initially in Japan, is an α1d-adrenergic receptor antagonist (α1-blocker) used to treat lower urinary tract symptoms (LUTS) due to benign prostatic hyperplasia (BPH). It is different from tamsulosin hydrochloride and silodosin, in that it has a higher affinity for the α1D-adrenergic receptor subtype than for the α1A subtype and has a superior efficacy to a placebo and comparable efficacy to other α1-blockers such as tamsulosin. The incidences of ejaculatory disorders and intraoperative floppy iris syndrome induced by naftopidil may also be lower than that for tamsulosin and silodosin, which have a high affinity for the α1A-adrenergic receptor subtype. However, it remains unknown if the efficacy and safety of naftopidil in Japanese men is applicable to Indian men having LUTS/BPH.
Material and Methods:
Two groups of 60 patients each, having LUTS due to BPH, were treated with tamsulosin 0.4 mg and Naftopidil 75 mg for three months. Ultrasonography (for prostate size, post-void residual volume), uroflowmetry, and the International Prostate Symptom Score (IPSS) and Quality of Life (QOL) score were recorded at the beginning of the study, and then at one and three months.
The prostate size, post-void residual volume, all the uroflowmetry variables, and the IPSS QOL scores showed a statistically significant improvement (P < 0.001) in both the groups. The improvement in the average flow rate and the QOL index was better in the naftopidil group on the intergroup comparison and was statistically significant (P < 0.001).
Although the QOL life index was significantly better in the naftopidil group, overall both naftopidil and tamsulosin were found to be equally effective in the treatment of LUTS due to BPH.
PMCID: PMC4127851  PMID: 25125888
Benign prostatic hyperplasia; LUTS; naftopidil; tamsulosin
3.  Chitinase Expression Due to Reduction in Fusaric Acid Level in an Antagonistic Trichoderma harzianum S17TH 
Indian Journal of Microbiology  2012;53(2):214-220.
To study the effect of reduction in phytotoxin level on fungal chitinases, antagonistic Trichoderma spp. were screened for their ability to reduce the level of fusaric acid (FA), the phytotoxin produced by Fusarium spp. A T. harzianum isolate S17TH was able to tolerate high levels of FA (up to 500 ppm) but was unable to reduce the toxin to a significant level (non-toxic) added to minimal synthetic broth (MSB). However, the isolate was able to reduce 400 ppm FA in the liquid medium after 7 days to a non-toxic level and displayed similar level of antagonism over the control (without FA). In studies of the effect of the reduction in FA (400 ppm) level on chitinase gene expression in PCR assays, nag1 was significantly repressed but ech42 expression was only slightly repressed. Chitinase activity was either reduced or absent in the extracellular proteins of MSB supplemented with 400 ppm FA, which could be attributed to the effect of residual FA or its breakdown products through unknown mechanisms. Selection of S17TH as a toxin insensitive isolate that could commensurate the negative effect on chitinase activity makes it a potential antagonist against Fusarium spp.
PMCID: PMC3626965  PMID: 24426111
Fusaric acid; Reduction; Trichoderma harzianum; Chitinase
4.  Anti-malarial property of steroidal alkaloid conessine isolated from the bark of Holarrhena antidysenterica 
Malaria Journal  2013;12:194.
In the face of chronic and emerging resistance of parasites to currently available drugs and constant need for new anti-malarials, natural plant products have been the bastion of anti-malarials for thousands of years. Moreover natural plant products and their derivatives have traditionally been a common source of drugs, and represent more than 30% of the current pharmaceutical market. The present study shows evaluation of anti-malarial effects of compound conessine isolated from plant Holarrhena antidysenterica frequently used against malaria in the Garhwal region of north-west Himalaya.
In vitro anti-plasmodial activity of compound was assessed using schizont maturation and parasite lactate dehydrogenase (pLDH) assay. Cytotoxic activities of the examined compound were determined on L-6 cells of rat skeletal muscle myoblast. The four-day test for anti-malarial activity against a chloroquine-sensitive Plasmodium berghei NK65 strain in BALB/c mice was used for monitoring in vivo activity of compound. In liver and kidney function test, the activity of alkaline phosphatase (ALP) was examined by p-NPP method, bilirubin by Jendrassik and Grof method. The urea percentage was determined by modified Berthelot method and creatinine by alkaline picrate method in serum of mice using ENZOPAK/CHEMPAK reagent kits.
Compound conessine showed in vitro anti-plasmodial activity with its IC50 value 1.9 μg/ml and 1.3 μg/ml using schizont maturation and pLDH assay respectively. The compound showed cytotoxity IC50= 14 μg/ml against L6 cells of rat skeletal muscle myoblast. The isolated compound from plant H. antidysenterica significantly reduced parasitaemia (at 10 mg/kg exhibited 88.95% parasite inhibition) in P. berghei-infected mice. Due to slightly toxic nature (cytotoxicity = 14), biochemical analysis (liver and kidney function test) of the serum from mice after administration of conessine were also observed.
The present investigation demonstrates that the compound conessine exhibited substantial anti-malarial property. The isolated compound could be chemically modified to obtain a more potent chemical entity with improved characteristics against malaria.
PMCID: PMC3685520  PMID: 23758861
5.  Comparative study of extended versus short term thromboprophylaxis in patients undergoing elective total hip and knee arthroplasty in Indian population 
Indian Journal of Orthopaedics  2013;47(2):161-167.
Postoperative thromboprophylaxis with low molecular weight heparin (LMWH) for an extended period of 4 weeks is now preferred over short term thromboprophylaxis in patients undergoing total hip/knee arthroplasty (THA/TKA). However, most of the data demonstrating the efficacy and safety of extended thromboprophylaxis and short term thromboprophylaxis is from clinical trials done in the West. In India, the data of the incidence of venous thromboembolism (VTE) following THA/TKA has been conflicting and the duration has not been clearly defined. The aim of the study was to evaluate and compare the efficacy of extended thromboprophylaxis over short term thromboprophylaxis in Indian patients undergoing elective THA/TKA surgeries.
Materials and Methods:
A prospective arm of 197 consecutive patients undergoing elective THA/TKA surgeries who were administered extended thromboprophylaxis for 4 weeks was compared with a historical group of 795 patients who were administered short term thromboprophylaxis for only 7-11 days. In both groups, LMWH (enoxaparin) was used in a dose of 40 mg subcutaneously, in addition to mechanical thromboprophylaxis. Primary efficacy endpoint was objectively confirmed venous thromboembolism (VTE). The presence of DVT was confirmed by a combination of pretest scoring, D-dimer, and Color Doppler Flow Imaging (CDFI) of deep veins of the legs, and pulmonary thromboembolism (PTE) was confirmed by ventilation perfusion (V/Q) scan or pulmonary angiography. Fisher's exact test and t test were used for the statistical analysis. The baseline confounding factors were compared between the two groups using t test for comparing the means for continuous data and Fisher's exact test for categorical data.
In the prospective arm, only 1 patient developed symptomatic PTE compared to 26 (3.27%) cases of VTE (20 cases of PTE and 6 cases of DVT) in the retrospective group.
Extended thromboprophylaxis (for 4 weeks) was found to be more effective than short term thromboprophylaxis in minimizing the risk of postoperative VTE in patients who underwent THA/TKA.
PMCID: PMC3654466  PMID: 23682178
Deep vein thromboembolism; LMWH; pulmonary embolism; thromboprophylaxis; venous thromboembolism
6.  Modulation of genotoxicity of oxidative mutagens by glycyrrhizic acid from Glycyrrhiza glabra L. 
Pharmacognosy Research  2012;4(4):189-195.
The chemopreventive effects of certain phytoconstituents can be exploited for their use as functional foods, dietary supplements and even as drugs. The natural compounds, acting as anti-genotoxic and free radical scavenging compounds, may serve as potent chemopreventive agents. These can inhibit DNA modulatory activities of mutagens and help preventing pathological processes.
Present study on Glycyrrhiza glabra L., a promising medicinal plant, widely used in traditional medicine, focused on the bioassay-guided fractionation of its extracts for the isolation of certain phytochemicals with anti-genotoxic potential against oxidative mutagens.
Materials and Methods:
The methanol extract of Glycyrrhiza glabra rhizomes was subjected to column chromatography, and isolated fraction was evaluated for its anti-genotoxic and antioxidant potential using SOS chromotest, Comet assay, and DPPH radical scavenging assay.
GLG fraction, which was characterized as Glycyrrhizic acid, inhibited the genotoxicity of oxidative mutagens viz., H2O2 and 4NQOquite efficiently. In SOS chromotest, using E.coli PQ37 tester strain, it inhibited induction factor induced by H2O2 and 4NQO by 75.54% and 71.69% at the concentration of 121.46 μM,respectively. In Comet assay, it reduced the tail moment induced by H2O2 and 4NQO by 70.21% and 69.04%, respectively, at the same concentration in human blood lymphocytes. The isolated fraction also exhibited DPPH free radical scavenging activity and was able to scavenge 85.95% radicals at a concentration of 120 μM.
Glycyrrhizic acid is a potential modulator of genotoxins as well as efficient scavenger of free radicals.
PMCID: PMC3510870  PMID: 23225961
Chemoprevention; Glycyrrhiza glabra L.; glycyrrhizic acid; H2O2; oxidative mutagens; 4NQO
7.  Chemical Composition and In Vitro Cytotoxic Activity of Essential Oil of Leaves of Malus domestica Growing in Western Himalaya (India) 
Light pale-colored volatile oil was obtained from fresh leaves of Malus domestica tree, growing in Dhauladhar range of Himalaya (Himachal Pradesh, India), with characteristic eucalyptol dominant fragrance. The oil was found to be a complex mixture of mono-, sesqui-, di-terpenes, phenolics, and aliphatic hydrocarbons. Seventeen compounds accounting for nearly 95.3% of the oil were characterized with the help of capillary GC, GC-MS, and NMR. Major compounds of the oil were characterized as eucalyptol (43.7%), phytol (11.5%), α-farnesene (9.6%), and pentacosane (7.6%). Cytotoxicity of essential oil of leaves of M. domestica was evaluated by sulforhodamine B (SRB) assays. The essential oil of leaves of M. domestica, tested against three cancer cell lines, namely, C-6 (glioma cells), A549 (human lung carcinoma), CHOK1 (Chinese hamster ovary cells), and THP-1 (human acute monocytic leukemia cell). The highest activity showed by essential oil on C-6 cell lines (98.2%) at concentration of 2000 μg/ml compared to control. It is the first paper in literature to exploit the chemical composition and cytotoxic activity of leaves essential oil of M. domestica.
PMCID: PMC3351209  PMID: 22619691
8.  The first draft of the pigeonpea genome sequence 
Pigeonpea (Cajanus cajan) is an important grain legume of the Indian subcontinent, South-East Asia and East Africa. More than eighty five percent of the world pigeonpea is produced and consumed in India where it is a key crop for food and nutritional security of the people. Here we present the first draft of the genome sequence of a popular pigeonpea variety ‘Asha’. The genome was assembled using long sequence reads of 454 GS-FLX sequencing chemistry with mean read lengths of >550 bp and >10-fold genome coverage, resulting in 510,809,477 bp of high quality sequence. Total 47,004 protein coding genes and 12,511 transposable elements related genes were predicted. We identified 1,213 disease resistance/defense response genes and 152 abiotic stress tolerance genes in the pigeonpea genome that make it a hardy crop. In comparison to soybean, pigeonpea has relatively fewer number of genes for lipid biosynthesis and larger number of genes for cellulose synthesis. The sequence contigs were arranged in to 59,681 scaffolds, which were anchored to eleven chromosomes of pigeonpea with 347 genic-SNP markers of an intra-species reference genetic map. Eleven pigeonpea chromosomes showed low but significant synteny with the twenty chromosomes of soybean. The genome sequence was used to identify large number of hypervariable ‘Arhar’ simple sequence repeat (HASSR) markers, 437 of which were experimentally validated for PCR amplification and high rate of polymorphism among pigeonpea varieties. These markers will be useful for fingerprinting and diversity analysis of pigeonpea germplasm and molecular breeding applications. This is the first plant genome sequence completed entirely through a network of Indian institutions led by the Indian Council of Agricultural Research and provides a valuable resource for the pigeonpea variety improvement.
Electronic supplementary material
The online version of this article (doi:10.1007/s13562-011-0088-8) contains supplementary material, which is available to authorized users.
PMCID: PMC3886394  PMID: 24431589
Pigeonpea; Genome sequence; Disease resistance; SSR markers; Legumes
9.  Chemical modification of L-glutamine to alpha-amino glutarimide on autoclaving facilitates Agrobacterium infection of host and non-host plants: A new use of a known compound 
BMC Chemical Biology  2011;11:1.
Accidental autoclaving of L-glutamine was found to facilitate the Agrobacterium infection of a non host plant like tea in an earlier study. In the present communication, we elucidate the structural changes in L-glutamine due to autoclaving and also confirm the role of heat transformed L-glutamine in Agrobacterium mediated genetic transformation of host/non host plants.
When autoclaved at 121°C and 15 psi for 20 or 40 min, L-glutamine was structurally modified into 5-oxo proline and 3-amino glutarimide (α-amino glutarimide), respectively. Of the two autoclaved products, only α-amino glutarimide facilitated Agrobacterium infection of a number of resistant to susceptible plants. However, the compound did not have any vir gene inducing property.
We report a one pot autoclave process for the synthesis of 5-oxo proline and α-amino glutarimide from L-glutamine. Xenobiotic detoxifying property of α-amino glutarimide is also proposed.
PMCID: PMC3130638  PMID: 21624145
10.  Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea [Cajanus cajan (L.) Millspaugh] 
BMC Plant Biology  2011;11:17.
Pigeonpea [Cajanus cajan (L.) Millspaugh], one of the most important food legumes of semi-arid tropical and subtropical regions, has limited genomic resources, particularly expressed sequence based (genic) markers. We report a comprehensive set of validated genic simple sequence repeat (SSR) markers using deep transcriptome sequencing, and its application in genetic diversity analysis and mapping.
In this study, 43,324 transcriptome shotgun assembly unigene contigs were assembled from 1.696 million 454 GS-FLX sequence reads of separate pooled cDNA libraries prepared from leaf, root, stem and immature seed of two pigeonpea varieties, Asha and UPAS 120. A total of 3,771 genic-SSR loci, excluding homopolymeric and compound repeats, were identified; of which 2,877 PCR primer pairs were designed for marker development. Dinucleotide was the most common repeat motif with a frequency of 60.41%, followed by tri- (34.52%), hexa- (2.62%), tetra- (1.67%) and pentanucleotide (0.76%) repeat motifs. Primers were synthesized and tested for 772 of these loci with repeat lengths of ≥18 bp. Of these, 550 markers were validated for consistent amplification in eight diverse pigeonpea varieties; 71 were found to be polymorphic on agarose gel electrophoresis. Genetic diversity analysis was done on 22 pigeonpea varieties and eight wild species using 20 highly polymorphic genic-SSR markers. The number of alleles at these loci ranged from 4-10 and the polymorphism information content values ranged from 0.46 to 0.72. Neighbor-joining dendrogram showed distinct separation of the different groups of pigeonpea cultivars and wild species. Deep transcriptome sequencing of the two parental lines helped in silico identification of polymorphic genic-SSR loci to facilitate the rapid development of an intra-species reference genetic map, a subset of which was validated for expected allelic segregation in the reference mapping population.
We developed 550 validated genic-SSR markers in pigeonpea using deep transcriptome sequencing. From these, 20 highly polymorphic markers were used to evaluate the genetic relationship among species of the genus Cajanus. A comprehensive set of genic-SSR markers was developed as an important genomic resource for diversity analysis and genetic mapping in pigeonpea.
PMCID: PMC3036606  PMID: 21251263
11.  Chemical Composition and Larvicidal Activities of the Himalayan Cedar, Cedrus deodara Essential Oil and Its Fractions Against the Diamondback Moth, Plutella xylostella  
Plants and plant-derived materials play an extremely important role in pest management programs. Essential oil from wood chips of Himalayan Cedar, Cedrus deodara (Roxburgh) Don (Pinales: Pinaceae), was obtained by hydrodistillation and fractionated to pentane and acetonitrile from which himachalenes and atlantones enriched fractions were isolated. A total of forty compounds were identified from these fractions using GC and GC-MS analyses. Essential oils and fractions were evaluated for insecticidal activities against second instars of the diamondback moth, Plutella xylostella L. (Lepidoptera: Yponomeutidae), using a leaf dip method. All samples showed promising larvicidal activity against larvae of P. xylostella. The pentane fraction was the most toxic with a LC50 value of 287 µg/ml. The himachalenes enriched fraction was more toxic (LC50 = 362 µg/ml) than the atlantones enriched fraction (LC50 = 365 µg/ml). LC50 of crude oil was 425 µg/ml and acetonitrile fraction was LC50 = 815 µg/ml. The major constituents, himachalenes and atlantones, likely accounted for the insecticidal action. Present bioassay results revealed the potential for essential oil and different constituents of C. deodara as botanical larvicides for their use in pest management.
PMCID: PMC3281365  PMID: 22239128
atlantones; biopesticide; essential oils; himachalenes; insecticidal activity
12.  Selective Th2 Upregulation by Crocus sativus: A Neutraceutical Spice 
The immunomodulatory activity of an Indian neutraceutical spice, saffron (Crocus sativus) was studied on Th1 and Th2 limbs of the immune system. Oral administration of alcoholic extract of Crocus sativus (ACS) at graded dose levels from 1.56–50 mg/kg p.o. potentiated the Th2 response of humoral immunity causing the significant increases in agglutinating antibody titre in mice at a dose of 6.25 mg/kg and an elevation of CD19+ B cells and IL-4 cytokine, a signature cytokine of Th2 pathway. Appreciable elevation in levels of IgG-1 and IgM antibodies of the primary and secondary immune response was observed. However, ACS showed no appreciable expression of the Th1 cytokines IL-2 (growth factor for CD4+ T cells) and IFN-γ (signature cytokine of Th1 response). A significant modulation of immune reactivity was observed in all the animal models used. This paper represents the selective upregulation of the Th2 response of the test material and suggests its use for subsequent selective Th2 immunomodulation.
PMCID: PMC2952317  PMID: 20953384

Results 1-12 (12)