PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  An efficient algorithm for de novo predictions of biochemical pathways between chemical compounds 
BMC Bioinformatics  2012;13(Suppl 17):S8.
Background
Prediction of biochemical (metabolic) pathways has a wide range of applications, including the optimization of drug candidates, and the elucidation of toxicity mechanisms. Recently, several methods have been developed for pathway prediction to derive a goal compound from a start compound. However, these methods require high computational costs, and cannot perform comprehensive prediction of novel metabolic pathways. Our aim of this study is to develop a de novo prediction method for reconstructions of metabolic pathways and predictions of unknown biosynthetic pathways in the sense that it does not require any initial network such as KEGG metabolic network to be explored.
Results
We formulated pathway prediction between a start compound and a goal compound as the shortest path search problem in terms of the number of enzyme reactions applied. We propose an efficient search method based on A* algorithm and heuristic techniques utilizing Linear Programming (LP) solution for estimation of the distance to the goal. First, a chemical compound is represented by a feature vector which counts frequencies of substructure occurrences in the structural formula. Second, an enzyme reaction is represented as an operator vector by detecting the structural changes to compounds before and after the reaction. By defining compound vectors as nodes and operator vectors as edges, prediction of the reaction pathway is reduced to the shortest path search problem in the vector space. In experiments on the DDT degradation pathway, we verify that the shortest paths predicted by our method are biologically correct pathways registered in the KEGG database. The results also demonstrate that the LP heuristics can achieve significant reduction in computation time. Furthermore, we apply our method to a secondary metabolite pathway of plant origin, and successfully find a novel biochemical pathway which cannot be predicted by the existing method. For the reconstruction of a known biochemical pathway, our method is over 40 times as fast as the existing method.
Conclusions
Our method enables fast and accurate de novo pathway predictions and novel pathway detection.
doi:10.1186/1471-2105-13-S17-S8
PMCID: PMC3521390  PMID: 23282285
2.  Comprehensive predictions of target proteins based on protein-chemical interaction using virtual screening and experimental verifications 
BMC Chemical Biology  2012;12:2.
Background
Identification of the target proteins of bioactive compounds is critical for elucidating the mode of action; however, target identification has been difficult in general, mostly due to the low sensitivity of detection using affinity chromatography followed by CBB staining and MS/MS analysis.
Results
We applied our protocol of predicting target proteins combining in silico screening and experimental verification for incednine, which inhibits the anti-apoptotic function of Bcl-xL by an unknown mechanism. One hundred eighty-two target protein candidates were computationally predicted to bind to incednine by the statistical prediction method, and the predictions were verified by in vitro binding of incednine to seven proteins, whose expression can be confirmed in our cell system.
As a result, 40% accuracy of the computational predictions was achieved successfully, and we newly found 3 incednine-binding proteins.
Conclusions
This study revealed that our proposed protocol of predicting target protein combining in silico screening and experimental verification is useful, and provides new insight into a strategy for identifying target proteins of small molecules.
doi:10.1186/1472-6769-12-2
PMCID: PMC3471015  PMID: 22480302

Results 1-2 (2)