PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  PA1b Inhibitor Binding to Subunits c and e of the Vacuolar ATPase Reveals Its Insecticidal Mechanism* 
The Journal of Biological Chemistry  2014;289(23):16399-16408.
Background: Pea albumin 1b (PA1b) is a potent and selective inhibitor of insect vacuolar ATPase, but its mechanism is poorly understood.
Results: PA1b binds the extracellular surface of the c ring and contacts subunit e.
Conclusion: PA1b inhibits V-ATPase by blocking transition of its rotor past subunit e.
Significance: This reveals insights into the mechanics and mode of inhibition of the V-ATPase.
The vacuolar ATPase (V-ATPase) is a 1MDa transmembrane proton pump that operates via a rotary mechanism fuelled by ATP. Essential for eukaryotic cell homeostasis, it plays central roles in bone remodeling and tumor invasiveness, making it a key therapeutic target. Its importance in arthropod physiology also makes it a promising pesticide target. The major challenge in designing lead compounds against the V-ATPase is its ubiquitous nature, such that any therapeutic must be capable of targeting particular isoforms. Here, we have characterized the binding site on the V-ATPase of pea albumin 1b (PA1b), a small cystine knot protein that shows exquisitely selective inhibition of insect V-ATPases. Electron microscopy shows that PA1b binding occurs across a range of equivalent sites on the c ring of the membrane domain. In the presence of Mg·ATP, PA1b localizes to a single site, distant from subunit a, which is predicted to be the interface for other inhibitors. Photoaffinity labeling studies show radiolabeling of subunits c and e. In addition, weevil resistance to PA1b is correlated with bafilomycin resistance, caused by mutation of subunit c. The data indicate a binding site to which both subunits c and e contribute and inhibition that involves locking the c ring rotor to a static subunit e and not subunit a. This has implications for understanding the V-ATPase mechanism and that of inhibitors with therapeutic or pesticidal potential. It also provides the first evidence for the position of subunit e within the complex.
doi:10.1074/jbc.M113.541250
PMCID: PMC4047407  PMID: 24795045
ATPase; Drug Action; Electron Microscopy (EM); Membrane Protein; Vacuolar ATPase; PA1b
2.  Expression and Biological Activity of the Cystine Knot Bioinsecticide PA1b (Pea Albumin 1 Subunit b) 
PLoS ONE  2013;8(12):e81619.
The PA1b (Pea Albumin 1, subunit b) peptide is an entomotoxin extract from Legume seeds with lethal activity on several insect pests, such as mosquitoes, some aphids and cereal weevils. This 37 amino-acid cysteine-rich peptide has been, until now, obtained by biochemical purification or chemical synthesis. In this paper, we present our results for the transient production of the peptide in Nicotiana benthamiana by agro-infiltration, with a yield of about 35 µg/g of fresh leaves and maximum production 8 days after infiltration. PA1b is part of the PA1 gene which, after post-translational modifications, encodes two peptides (PA1b and PA1a). We show that transforming tobacco with the PA1b cDNA alone does not result in production of the toxin and, in fact, the entire cDNA is necessary, raising the question of the role of PA1a. We constructed a PA1-cassette, allowing for the quick “cut/paste” of different PA1b mutants within a conserved PA1 cDNA. This cassette enabled us to produce the six isoforms of PA1b which exist in pea seeds. Biological tests revealed that all the isoforms display similar activity, with the exception of one which is inactive. The lack of activity in this isoform led us to conclude that the amphiphilic nature of the peptide is necessary for activity. The possible applications of this expression system for other cysteine-rich biomolecules are discussed.
doi:10.1371/journal.pone.0081619
PMCID: PMC3859497  PMID: 24349099
3.  High toxicity and specificity of the saponin 3-GlcA-28-AraRhaxyl-medicagenate, from Medicago truncatula seeds, for Sitophilus oryzae 
BMC Chemical Biology  2012;12:3.
Background
Because of the increasingly concern of consumers and public policy about problems for environment and for public health due to chemical pesticides, the search for molecules more safe is currently of great importance. Particularly, plants are able to fight the pathogens as insects, bacteria or fungi; so that plants could represent a valuable source of new molecules.
Results
It was observed that Medicago truncatula seed flour displayed a strong toxic activity towards the adults of the rice weevil Sitophilus oryzae (Coleoptera), a major pest of stored cereals. The molecule responsible for toxicity was purified, by solvent extraction and HPLC, and identified as a saponin, namely 3-GlcA-28-AraRhaxyl-medicagenate. Saponins are detergents, and the CMC of this molecule was found to be 0.65 mg per mL. Neither the worm Caenorhabditis elegans nor the bacteria E. coli were found to be sensitive to this saponin, but growth of the yeast Saccharomyces cerevisiae was inhibited at concentrations higher than 100 μg per mL. The purified molecule is toxic for the adults of the rice weevils at concentrations down to 100 μg per g of food, but this does not apply to the others insects tested, including the coleopteran Tribolium castaneum and the Sf9 insect cultured cells.
Conclusions
This specificity for the weevil led us to investigate this saponin potential for pest control and to propose the hypothesis that this saponin has a specific mode of action, rather than acting via its non-specific detergent properties.
doi:10.1186/1472-6769-12-3
PMCID: PMC3388004  PMID: 22536832
Saponin; Insect; Medicago truncatula; Sitophilus oryzae
4.  Pea Albumin 1 Subunit b (PA1b), a Promising Bioinsecticide of Plant Origin 
Toxins  2011;3(12):1502-1517.
PA1b (Pea Albumin 1, subunit b) is a peptide extract from pea seeds showing significant insecticidal activity against certain insects, such as cereal weevils (genus Sitophilus), the mosquitoes Culex pipiens and Aedes aegyptii, and certain species of aphids. PA1b has great potential for use on an industrial scale and for use in organic farming: it is extracted from a common plant; it is a peptide (and therefore suitable for transgenic applications); it can withstand many steps of extraction and purification without losing its activity; and it is present in a seed regularly consumed by humans and mammals without any known toxicity or allergenicity. The potential of this peptide to limit pest damage has stimulated research concerning its host range, its mechanism of action, its three-dimensional structure, the natural diversity of PA1b and its structure-function relationships.
doi:10.3390/toxins3121502
PMCID: PMC3268454  PMID: 22295174
PA1b; insect; bioinsecticide; Legumes
5.  Biological Activity and Binding Site Characteristics of the PA1b Entomotoxin on Insects from Different Orders 
The aim of this work was to investigate both the biological activity of an entomotoxin, the pea albumin 1b (PA1b), and the presence or absence of its binding site within an array of insect species. The data obtained showed that insect sensitivity was not related to its taxonomic position. Moreover, PA1b was not toxic to several tested microorganisms. However, the binding site was found to be conserved among very different insects, displaying similar thermodynamic constants regardless of the in vivo species sensitivity. The binding site alone was, therefore, not sufficient for toxicity. One exception was the pea weevil, Bruchus pisorum, which was the only tested species without any detectable binding activity. These findings indicate that the binding site probably has an important endogenous function in insects and that adaptation to pea seeds resulted in the elimination of the toxin binding activity in two independent insect lineages. Other mechanisms are likely to interact with the toxin effects, although they are still largely unknown, but there is no evidence of any specific degradation of PA1b in the midgut of insects insensitive to the toxin, such as Drosophila melanogaster or Mamestra brassicae.
doi:10.1673/031.007.1201
PMCID: PMC2999418  PMID: 20331395
PA1b; binding site; toxin; knottin; cystine-knot peptide
6.  Radiolabeling of lipo-chitooligosaccharides using the NodH sulfotransferase: a two-step enzymatic procedure  
BMC Biochemistry  2004;5:4.
Background
The NodH sulfotransferase from Sinorhizobium meliloti has been used to radiolabel lipochitooligosaccharidic (LCO) Nod factor signals with 35S from inorganic sulfate in a two-step enzymatic procedure. The first step involved the production of 3'-phosphoadenosine 5'-phosphosulfate (PAPS), a sulphate donor, using enzymes contained in a yeast extract, and the second step used the NodH enzyme. However with this established procedure, only a low incorporation of the initial inorganic sulfate into the Nod factors was obtained (about 7% after purification of the labeled compounds). The aim of this work was to optimize the radiolabelling of Nod factors with 35S.
Results
The limiting step has been shown to be the sulfation of ATP and its subsequent conversion into PAPS (first step), the sulfate donor for the NodH sulfotransferase activity (second step). By the addition of GTP to the reaction mixture and by manipulating the [ATP]/[Mg2+] ratio the yield of PAPS has been increased from 13% to 80%. Using the radiolabeled PAPS we have shown that the efficiency of sulfate transfer to LCOs, by the recombinant S. meliloti NodH sulfotransferase is strongly influenced by the length of the oligosaccharide chain. Variations in the substitutions on the non-reducing sugar, including the structure of the fatty acyl chain, had little effect and Nod factors from the heterologous bacterium Rhizobium tropici could be sulfated by NodH from S. meliloti.
Conclusions
By characterizing the two steps we have optimized the procedure to radiolabel biologically-important, lipo-chitooligosaccharide (LCO) Nod factors to a specific radioactivity of about 800 Ci.mmol-1 with an incorporation of 60% of the initial inorganic sulfate. The two-step sulfation procedure may be used to radiolabel a variety of related LCO molecules.
doi:10.1186/1471-2091-5-4
PMCID: PMC404373  PMID: 15084228

Results 1-6 (6)