Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Intestinal CFTR expression alleviates meconium ileus in cystic fibrosis pigs 
The Journal of Clinical Investigation  2013;123(6):2685-2693.
Cystic fibrosis (CF) pigs develop disease with features remarkably similar to those in people with CF, including exocrine pancreatic destruction, focal biliary cirrhosis, micro-gallbladder, vas deferens loss, airway disease, and meconium ileus. Whereas meconium ileus occurs in 15% of babies with CF, the penetrance is 100% in newborn CF pigs. We hypothesized that transgenic expression of porcine CF transmembrane conductance regulator (pCFTR) cDNA under control of the intestinal fatty acid–binding protein (iFABP) promoter would alleviate the meconium ileus. We produced 5 CFTR–/–;TgFABP>pCFTR lines. In 3 lines, intestinal expression of CFTR at least partially restored CFTR-mediated anion transport and improved the intestinal phenotype. In contrast, these pigs still had pancreatic destruction, liver disease, and reduced weight gain, and within weeks of birth, they developed sinus and lung disease, the severity of which varied over time. These data indicate that expressing CFTR in intestine without pancreatic or hepatic correction is sufficient to rescue meconium ileus. Comparing CFTR expression in different lines revealed that approximately 20% of wild-type CFTR mRNA largely prevented meconium ileus. This model may be of value for understanding CF pathophysiology and testing new preventions and therapies.
PMCID: PMC3668832  PMID: 23676501
2.  Nrt1 and Tna1-Independent Export of NAD+ Precursor Vitamins Promotes NAD+ Homeostasis and Allows Engineering of Vitamin Production 
PLoS ONE  2011;6(5):e19710.
NAD+ is both a co-enzyme for hydride transfer enzymes and a substrate of sirtuins and other NAD+ consuming enzymes. NAD+ biosynthesis is required for two different regimens that extend lifespan in yeast. NAD+ is synthesized from tryptophan and the three vitamin precursors of NAD+: nicotinic acid, nicotinamide and nicotinamide riboside. Supplementation of yeast cells with NAD+ precursors increases intracellular NAD+ levels and extends replicative lifespan. Here we show that both nicotinamide riboside and nicotinic acid are not only vitamins but are also exported metabolites. We found that the deletion of the nicotinamide riboside transporter, Nrt1, leads to increased export of nicotinamide riboside. This discovery was exploited to engineer a strain to produce high levels of extracellular nicotinamide riboside, which was recovered in purified form. We further demonstrate that extracellular nicotinamide is readily converted to extracellular nicotinic acid in a manner that requires intracellular nicotinamidase activity. Like nicotinamide riboside, export of nicotinic acid is elevated by the deletion of the nicotinic acid transporter, Tna1. The data indicate that NAD+ metabolism has a critical extracellular element in the yeast system and suggest that cells regulate intracellular NAD+ metabolism by balancing import and export of NAD+ precursor vitamins.
PMCID: PMC3092764  PMID: 21589930
3.  NAD+ metabolite levels as a function of vitamins and calorie restriction: evidence for different mechanisms of longevity 
BMC Chemical Biology  2010;10:2.
NAD+ is a coenzyme for hydride transfer enzymes and a substrate for sirtuins and other NAD+-dependent ADPribose transfer enzymes. In wild-type Saccharomyces cerevisiae, calorie restriction accomplished by glucose limitation extends replicative lifespan in a manner that depends on Sir2 and the NAD+ salvage enzymes, nicotinic acid phosphoribosyl transferase and nicotinamidase. Though alterations in the NAD+ to nicotinamide ratio and the NAD+ to NADH ratio are anticipated by models to account for the effects of calorie restriction, the nature of a putative change in NAD+ metabolism requires analytical definition and quantification of the key metabolites.
Hydrophilic interaction chromatography followed by tandem electrospray mass spectrometry were used to identify the 12 compounds that constitute the core NAD+ metabolome and 6 related nucleosides and nucleotides. Whereas yeast extract and nicotinic acid increase net NAD+ synthesis in a manner that can account for extended lifespan, glucose restriction does not alter NAD+ or nicotinamide levels in ways that would increase Sir2 activity.
The results constrain the possible mechanisms by which calorie restriction may regulate Sir2 and suggest that provision of vitamins and calorie restriction extend lifespan by different mechanisms.
PMCID: PMC2834649  PMID: 20175898
4.  Nicotinamide Riboside Kinase Structures Reveal New Pathways to NAD+ 
PLoS Biology  2007;5(10):e263.
The eukaryotic nicotinamide riboside kinase (Nrk) pathway, which is induced in response to nerve damage and promotes replicative life span in yeast, converts nicotinamide riboside to nicotinamide adenine dinucleotide (NAD+) by phosphorylation and adenylylation. Crystal structures of human Nrk1 bound to nucleoside and nucleotide substrates and products revealed an enzyme structurally similar to Rossmann fold metabolite kinases and allowed the identification of active site residues, which were shown to be essential for human Nrk1 and Nrk2 activity in vivo. Although the structures account for the 500-fold discrimination between nicotinamide riboside and pyrimidine nucleosides, no enzyme feature was identified to recognize the distinctive carboxamide group of nicotinamide riboside. Indeed, nicotinic acid riboside is a specific substrate of human Nrk enzymes and is utilized in yeast in a novel biosynthetic pathway that depends on Nrk and NAD+ synthetase. Additionally, nicotinic acid riboside is utilized in vivo by Urh1, Pnp1, and Preiss-Handler salvage. Thus, crystal structures of Nrk1 led to the identification of new pathways to NAD+.
Author Summary
Biosynthesis of nicotinamide adenine dinucleotide (NAD+) is fundamental to cells, because NAD+ is an essential co-factor for metabolic and gene regulatory pathways that control life and death. Two vitamin precursors of NAD+ were discovered in 1938. We recently discovered nicotinamide riboside (NR) as a third vitamin precursor of NAD+ in eukaryotes, which extends yeast life span without caloric restriction and protects damaged dorsal root ganglion neurons from degeneration. Biosynthesis of NAD+ from NR requires enzyme activities in either of two pathways. In one pathway, specific NR kinases, including human Nrk1 and Nrk2, phosphorylate NR to nicotinamide mononucleotide. A second and Nrk-independent pathway is initiated by yeast nucleoside-splitting enzymes, Urh1 and Pnp1. We solved five crystal structures of human Nrk1 and, on the basis of co-crystal structures with substrates, suggested that the enzyme might be able to phosphorylate a novel compound, nicotinic acid riboside (NaR). We then demonstrated that human Nrk enzymes have dual specificity as NR/NaR kinases in vitro, and we established the ability of NaR to be used as a vitamin precursor of NAD+ via pathways initiated by Nrk1, Urh1, and Pnp1 in living yeast cells. Thus, starting from the structure of human Nrk1, we discovered a synthetic vitamin precursor of NAD+ and suggest the possibility that NaR is a normal NAD+ metabolite.
Eukaryotic nicotinamide riboside kinase (Nrk) converts nicotinamide riboside to NAD+ by phosphorylation and adenylylation. The structures of this enzyme bound to several substrates lead to identification of new pathways to NAD+
PMCID: PMC1994991  PMID: 17914902

Results 1-4 (4)