PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (43)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
Document Types
2.  Identification of vitamin C transporters in the human airways: a cross-sectional in vivo study 
BMJ Open  2015;5(4):e006979.
Objectives
Vitamin C is an important low-molecular weight antioxidant at the air-lung interface. Despite its critical role as a sacrificial antioxidant, little is known about its transport into the respiratory tract lining fluid (RTLF), or the underlying airway epithelial cells. While several vitamin C transporters have been identified, such as sodium-ascorbate cotransporters (SVCT1/2) and glucose transporters (GLUTs), the latter transporting dehydroascorbate, knowledge of their protein distribution within the human lung is limited, in the case of GLUTs or unknown for SVCTs.
Setting and participants
Protein expression of vitamin C transporters (SVCT1/2 and GLUT1-4) was examined by immunohistochemistry in endobronchial biopsies, and by FACS in airway leucocytes from lavage fluid, obtained from 32 volunteers; 16 healthy and 16 mild asthmatic subjects. In addition, antioxidant concentrations were determined in RTLF. The study was performed at one Swedish centre.
Primary and secondary outcome measures
The primary outcome measure was to establish the location of vitamin C transporters in the human airways. As secondary outcome measures, RTLF vitamin C concentration was measured and related to transporter expression, as well as bronchial epithelial inflammatory and goblet cells numbers.
Results
Positive staining was identified for SVCT1 and 2 in the vascular endothelium. SVCT2 and GLUT2 were present in the apical bronchial epithelium, where SVCT2 staining was predominately localised to goblet cells and inversely related to RTLF vitamin C concentrations.
Conclusions
This experimental study is the first to demonstrate protein expression of GLUT2 and SVCT2 in the human bronchial epithelium. A negative correlation between SVCT2-positive goblet cells and bronchial RTLF vitamin C concentrations suggests a possible role for goblet cells in regulating the extracellular vitamin C pool.
doi:10.1136/bmjopen-2014-006979
PMCID: PMC4390727  PMID: 25854967
3.  High-Throughput Biochemical Fingerprinting of Saccharomyces cerevisiae by Fourier Transform Infrared Spectroscopy 
PLoS ONE  2015;10(2):e0118052.
Single-channel optical density measurements of population growth are the dominant large scale phenotyping methodology for bridging the gene-function gap in yeast. However, a substantial amount of the genetic variation induced by single allele, single gene or double gene knock-out technologies fail to manifest in detectable growth phenotypes under conditions readily testable in the laboratory. Thus, new high-throughput phenotyping technologies capable of providing information about molecular level consequences of genetic variation are sorely needed. Here we report a protocol for high-throughput Fourier transform infrared spectroscopy (FTIR) measuring biochemical fingerprints of yeast strains. It includes high-throughput cultivation for FTIR spectroscopy, FTIR measurements and spectral pre-treatment to increase measurement accuracy. We demonstrate its capacity to distinguish not only yeast genera, species and populations, but also strains that differ only by a single gene, its excellent signal-to-noise ratio and its relative robustness to measurement bias. Finally, we illustrated its applicability by determining the FTIR signatures of all viable Saccharomyces cerevisiae single gene knock-outs corresponding to lipid biosynthesis genes. Many of the examined knock-out strains showed distinct, highly reproducible FTIR phenotypes despite having no detectable growth phenotype. These phenotypes were confirmed by conventional lipid analysis and could be linked to specific changes in lipid composition. We conclude that the introduced protocol is robust to noise and bias, possible to apply on a very large scale, and capable of generating biologically meaningful biochemical fingerprints that are strain specific, even when strains lack detectable growth phenotypes. Thus, it has a substantial potential for application in the molecular functionalization of the yeast genome.
doi:10.1371/journal.pone.0118052
PMCID: PMC4338198  PMID: 25706524
4.  Serum metalloproteinase-9 is related to COPD severity and symptoms - cross-sectional data from a population based cohort-study 
Respiratory Research  2015;16(1):28.
Background
Chronic obstructive pulmonary disease, COPD, is an increasing cause of morbidity and mortality worldwide, and an imbalance between proteases and antiproteases has been implicated to play a role in COPD pathogenesis. Matrix metalloproteinases (MMP) are important proteases that along with their inhibitors, tissue inhibitors of metalloproteinases (TIMP), affect homeostasis of elastin and collagen, of importance for the structural integrity of human airways. Small observational studies indicate that these biomarkers are involved in the pathogenesis of COPD. The aim of this study was to investigate serum levels of MMP-9 and TIMP-1 in a large Swedish population-based cohort, and their association with disease severity and important clinical symptoms of COPD such as productive cough.
Methods
Spirometry was performed and peripheral blood samples were collected in a populations-based cohort (median age 67 years) comprising subjects with COPD (n = 594) and without COPD (n = 948), in total 1542 individuals. Serum MMP-9 and TIMP-1 concentrations were measured with enzyme linked immunosorbant assay (ELISA) and related to lung function data and symptoms.
Results
Median serum MMP-9 values were significantly higher in COPD compared with non-COPD 535 vs. 505 ng/ml (P = 0.017), without any significant differences in serum TIMP-1-levels or MMP-9/TIMP-1-ratio. In univariate analysis, productive cough and decreasing FEV1% predicted correlated significantly with increased MMP-9 among subjects with COPD (P = 0.004 and P = 0.001 respectively), and FEV1% predicted remained significantly associated to MMP-9 in a multivariate model adjusting for age, sex, pack years and productive cough (P = 0.033).
Conclusion
Productive cough and decreasing FEV1 were each associated with MMP-9 in COPD, and decreasing FEV1 remained significantly associated with MMP-9 also after adjustment for common confounders in this population-based COPD cohort. The increased serum MMP-9 concentrations in COPD indicate an enhanced proteolytic activity that is related to disease severity, and further longitudinal studies are important for the understanding of MMP-9 in relation to the disease process and the pathogenesis of different COPD phenotypes.
doi:10.1186/s12931-015-0188-4
PMCID: PMC4337188  PMID: 25849664
Lung function; Productive cough; TIMP-1; MMP-9/TIMP-1 ratio; Proteases
5.  Effect of wood smoke exposure on vascular function and thrombus formation in healthy fire fighters 
Background
Myocardial infarction is the leading cause of death in fire fighters and has been linked with exposure to air pollution and fire suppression duties. We therefore investigated the effects of wood smoke exposure on vascular vasomotor and fibrinolytic function, and thrombus formation in healthy fire fighters.
Methods
In a double-blind randomized cross-over study, 16 healthy male fire fighters were exposed to wood smoke (~1 mg/m3 particulate matter concentration) or filtered air for one hour during intermittent exercise. Arterial pressure and stiffness were measured before and immediately after exposure, and forearm blood flow was measured during intra-brachial infusion of endothelium-dependent and -independent vasodilators 4–6 hours after exposure. Thrombus formation was assessed using the ex vivo Badimon chamber at 2 hours, and platelet activation was measured using flow cytometry for up to 24 hours after the exposure.
Results
Compared to filtered air, exposure to wood smoke increased blood carboxyhaemoglobin concentrations (1.3% versus 0.8%; P < 0.001), but had no effect on arterial pressure, augmentation index or pulse wave velocity (P > 0.05 for all). Whilst there was a dose-dependent increase in forearm blood flow with each vasodilator (P < 0.01 for all), there were no differences in blood flow responses to acetylcholine, sodium nitroprusside or verapamil between exposures (P > 0.05 for all). Following exposure to wood smoke, vasodilatation to bradykinin increased (P = 0.003), but there was no effect on bradykinin-induced tissue-plasminogen activator release, thrombus area or markers of platelet activation (P > 0.05 for all).
Conclusions
Wood smoke exposure does not impair vascular vasomotor or fibrinolytic function, or increase thrombus formation in fire fighters. Acute cardiovascular events following fire suppression may be precipitated by exposure to other air pollutants or through other mechanisms, such as strenuous physical exertion and dehydration.
Trial registration
ClinicalTrials.gov Identifier: NCT01495325.
Electronic supplementary material
The online version of this article (doi:10.1186/s12989-014-0062-4) contains supplementary material, which is available to authorized users.
doi:10.1186/s12989-014-0062-4
PMCID: PMC4338635  PMID: 25487196
Wood smoke; Air pollution; Fire-fighters; Vascular function; Thrombosis
6.  Metagenomics reveals that detoxification systems are underrepresented in marine bacterial communities 
BMC Genomics  2014;15(1):749.
Background
Environmental shotgun sequencing (metagenomics) provides a new way to study communities in microbial ecology. We here use sequence data from the Global Ocean Sampling (GOS) expedition to investigate toxicant selection pressures revealed by the presence of detoxification genes in marine bacteria. To capture a broad range of potential toxicants we selected detoxification protein families representing systems protecting microorganisms from a variety of stressors, such as metals, organic compounds, antibiotics and oxygen radicals.
Results
Using a bioinformatics procedure based on comparative analysis to finished bacterial genomes we found that the amount of detoxification genes present in marine microorganisms seems surprisingly small. The underrepresentation is particularly evident for toxicant transporters and proteins involved in detoxifying metals. Exceptions are enzymes involved in oxidative stress defense where peroxidase enzymes are more abundant in marine bacteria compared to bacteria in general. In contrast, catalases are almost completely absent from the open ocean environment, suggesting that peroxidases and peroxiredoxins constitute a core line of defense against reactive oxygen species (ROS) in the marine milieu.
Conclusions
We found no indication that detoxification systems would be generally more abundant close to the coast compared to the open ocean. On the contrary, for several of the protein families that displayed a significant geographical distribution, like peroxidase, penicillin binding transpeptidase and divalent ion transport protein, the open ocean samples showed the highest abundance. Along the same lines, the abundance of most detoxification proteins did not increase with estimated pollution. The low level of detoxification systems in marine bacteria indicate that the majority of marine bacteria have a low capacity to adapt to increased pollution. Our study exemplifies the use of metagenomics data in ecotoxicology, and in particular how anthropogenic consequences on life in the sea can be examined.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-749) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2164-15-749
PMCID: PMC4161860  PMID: 25179155
Detoxification; Ecotoxicology; Global ocean sampling; Marine; Metagenomics; Oxidative stress; Toxic metals
7.  Importance of plasticity and local adaptation for coping with changing salinity in coastal areas: a test case with barnacles in the Baltic Sea 
Background
Salinity plays an important role in shaping coastal marine communities. Near-future climate predictions indicate that salinity will decrease in many shallow coastal areas due to increased precipitation; however, few studies have addressed this issue. The ability of ecosystems to cope with future changes will depend on species’ capacities to acclimatise or adapt to new environmental conditions. Here, we investigated the effects of a strong salinity gradient (the Baltic Sea system – Baltic, Kattegat, Skagerrak) on plasticity and adaptations in the euryhaline barnacle Balanus improvisus. We used a common-garden approach, where multiple batches of newly settled barnacles from each of three different geographical areas along the Skagerrak-Baltic salinity gradient were exposed to corresponding native salinities (6, 15 and 30 PSU), and phenotypic traits including mortality, growth, shell strength, condition index and reproductive maturity were recorded.
Results
We found that B. improvisus was highly euryhaline, but had highest growth and reproductive maturity at intermediate salinities. We also found that low salinity had negative effects on other fitness-related traits including initial growth and shell strength, although mortality was also lowest in low salinity. Overall, differences between populations in most measured traits were weak, indicating little local adaptation to salinity. Nonetheless, we observed some population-specific responses – notably that populations from high salinity grew stronger shells in their native salinity compared to the other populations, possibly indicating adaptation to differences in local predation pressure.
Conclusions
Our study shows that B. improvisus is an example of a true brackish-water species, and that plastic responses are more likely than evolutionary tracking in coping with future changes in coastal salinity.
doi:10.1186/1471-2148-14-156
PMCID: PMC4223505  PMID: 25038588
Evolutionary change; Phenotypic plasticity; Baltic Sea; Crustacea; Common-garden experiment; Balanus (Amphibalanus) improvisus; Gompertz growth model
8.  Controlled Exposures to Air Pollutants and Risk of Cardiac Arrhythmia 
Environmental Health Perspectives  2014;122(7):747-753.
Background: Epidemiological studies have reported associations between air pollution exposure and increases in cardiovascular morbidity and mortality. Exposure to air pollutants can influence cardiac autonomic tone and reduce heart rate variability, and may increase the risk of cardiac arrhythmias, particularly in susceptible patient groups.
Objectives: We investigated the incidence of cardiac arrhythmias during and after controlled exposure to air pollutants in healthy volunteers and patients with coronary heart disease.
Methods: We analyzed data from 13 double-blind randomized crossover studies including 282 participants (140 healthy volunteers and 142 patients with stable coronary heart disease) from whom continuous electrocardiograms were available. The incidence of cardiac arrhythmias was recorded for each exposure and study population.
Results: There were no increases in any cardiac arrhythmia during or after exposure to dilute diesel exhaust, wood smoke, ozone, concentrated ambient particles, engineered carbon nanoparticles, or high ambient levels of air pollution in either healthy volunteers or patients with coronary heart disease.
Conclusions: Acute controlled exposure to air pollutants did not increase the short-term risk of arrhythmia in participants. Research employing these techniques remains crucial in identifying the important pathophysiological pathways involved in the adverse effects of air pollution, and is vital to inform environmental and public health policy decisions.
Citation: Langrish JP, Watts SJ, Hunter AJ, Shah AS, Bosson JA, Unosson J, Barath S, Lundbäck M, Cassee FR, Donaldson K, Sandström T, Blomberg A, Newby DE, Mills NL. 2014. Controlled exposures to air pollutants and risk of cardiac arrhythmia. Environ Health Perspect 122:747–753; http://dx.doi.org/10.1289/ehp.1307337
doi:10.1289/ehp.1307337
PMCID: PMC4080532  PMID: 24667535
9.  Assessment of the capacity of vehicle cabin air inlet filters to reduce diesel exhaust-induced symptoms in human volunteers 
Environmental Health  2014;13:16.
Background
Exposure to particulate matter (PM) air pollution especially derived from traffic is associated with increases in cardiorespiratory morbidity and mortality. In this study, we evaluated the ability of novel vehicle cabin air inlet filters to reduce diesel exhaust (DE)-induced symptoms and markers of inflammation in human subjects.
Methods
Thirty healthy subjects participated in a randomized double-blind controlled crossover study where they were exposed to filtered air, unfiltered DE and DE filtered through two selected particle filters, one with and one without active charcoal. Exposures lasted for one hour. Symptoms were assessed before and during exposures and lung function was measured before and after each exposure, with inflammation assessed in peripheral blood five hours after exposures. In parallel, PM were collected from unfiltered and filtered DE and assessed for their capacity to drive damaging oxidation reactions in a cell-free model, or promote inflammation in A549 cells.
Results
The standard particle filter employed in this study reduced PM10 mass concentrations within the exposure chamber by 46%, further reduced to 74% by the inclusion of an active charcoal component. In addition use of the active charcoal filter was associated by a 75% and 50% reduction in NO2 and hydrocarbon concentrations, respectively. As expected, subjects reported more subjective symptoms after exposure to unfiltered DE compared to filtered air, which was significantly reduced by the filter with an active charcoal component. There were no significant changes in lung function after exposures. Similarly diesel exhaust did not elicit significant increases in any of the inflammatory markers examined in the peripheral blood samples 5 hour post-exposure. Whilst the filters reduced chamber particle concentrations, the oxidative activity of the particles themselves, did not change following filtration with either filter. In contrast, diesel exhaust PM passed through the active charcoal combination filter appeared less inflammatory to A549 cells.
Conclusions
A cabin air inlet particle filter including an active charcoal component was highly effective in reducing both DE particulate and gaseous components, with reduced exhaust-induced symptoms in healthy volunteers. These data demonstrate the effectiveness of cabin filters to protect subjects travelling in vehicles from diesel exhaust emissions.
doi:10.1186/1476-069X-13-16
PMCID: PMC4007775  PMID: 24621126
10.  Peripheral Blood Neutrophilia as a Biomarker of Ozone-Induced Pulmonary Inflammation 
PLoS ONE  2013;8(12):e81816.
Background
Ozone concentrations are predicted to increase over the next 50 years due to global warming and the increased release of precursor chemicals. It is therefore urgent that good, reliable biomarkers are available to quantify the toxicity of this pollutant gas at the population level. Such a biomarker would need to be easily performed, reproducible, economically viable, and reflective of ongoing pathological processes occurring within the lung.
Methodology
We examined whether blood neutrophilia occurred following a controlled ozone challenge and addressed whether this could serve as a biomarker for ozone-induced airway inflammation. Three separate groups of healthy subjects were exposed to ozone (0.2 ppm, 2h) and filtered air (FA) on two separate occasions. Peripheral blood samples were collected and bronchoscopy with biopsy sampling and lavages was performed at 1.5h post exposures in group 1 (n=13), at 6h in group 2 (n=15) and at 18h in group 3 (n=15). Total and differential cell counts were assessed in blood, bronchial tissue and airway lavages.
Results
In peripheral blood, we observed fewer neutrophils 1.5h after ozone compared with the parallel air exposure (-1.1±1.0x109 cells/L, p<0.01), at 6h neutrophil numbers were increased compared to FA (+1.2±1.3x109 cells/L, p<0.01), and at 18h this response had fully attenuated. Ozone induced a peak in neutrophil numbers at 6h post exposure in all compartments examined, with a positive correlation between the response in blood and bronchial biopsies.
Conclusions
These data demonstrate a systemic neutrophilia in healthy subjects following an acute ozone exposure, which mirrors the inflammatory response in the lung mucosa and lumen. This relationship suggests that blood neutrophilia could be used as a relatively simple functional biomarker for the effect of ozone on the lung.
doi:10.1371/journal.pone.0081816
PMCID: PMC3876972  PMID: 24391708
11.  Cardiopulmonary involvement in Puumala hantavirus infection 
BMC Infectious Diseases  2013;13:501.
Background
Hantavirus infections cause potentially life-threatening disease in humans world-wide. Infections with American hantaviruses may lead to hantavirus pulmonary syndrome characterised by severe cardiopulmonary distress with high mortality. Pulmonary involvement in European Puumala hantavirus (PUUV) infection has been reported, whereas knowledge of potential cardiac manifestations is limited. We aimed to comprehensively investigate cardiopulmonary involvement in patients with PUUV-infection.
Methods
Twenty-seven hospitalised patients with PUUV-infection were examined with lung function tests, chest high-resolution CT (HRCT), echocardiography including speckle tracking strain rate analysis, ECG and measurements of cardiac biomarkers N-terminal pro-B-type natriuretic peptide (NT-ProBNP) and troponin T. Patients were re-evaluated after 3 months. Twenty-five age and sex-matched volunteers acted as controls for echocardiography data.
Results
Two-thirds of the patients experienced respiratory symptoms as dry cough or dyspnoea. Gas diffusing capacity was impaired in most patients, significantly improving at follow-up but still subnormal in 38%. HRCT showed thoracic effusions or pulmonary oedema in 46% of the patients. Compared to controls, the main echocardiographic findings in patients during the acute phase were significantly higher pulmonary vascular resistance, higher systolic pulmonary artery pressure, lower left ventricular ejection fraction and impaired left atrial myocardial motion. Pathological ECG, atrial fibrillation or T-wave changes, was demonstrated in 26% of patients. NT-ProBNP concentrations were markedly increased and were inversely associated with gas diffusing capacity but positively correlated to pulmonary vascular resistance. Furthermore, patients experiencing impaired general condition at follow-up had significantly lower gas diffusing capacity and higher pulmonary vascular resistance, compared to those feeling fully recovered.
Conclusions
In a majority of patients with PUUV-infection, both cardiac and pulmonary involvement was demonstrated with implications on patients’ recovery. The results demonstrate vascular leakage in the lungs that most likely is responsible for impaired gas diffusing capacity and increased pulmonary vascular resistance with secondary pulmonary hypertension and right heart distress. Interestingly, NT-ProBNP was markedly elevated even in the absence of overt ventricular heart failure. The method of simultaneous investigations of important cardiac and respiratory measurements improves the interpretation of the underlying pathophysiologic mechanisms.
doi:10.1186/1471-2334-13-501
PMCID: PMC4231367  PMID: 24160911
Haemorrhagic fever with renal syndrome; Hantavirus; Echocardiography; Computed tomography; Respiratory function tests; Natriuretic peptides
12.  Molecular Characterization of the α-Subunit of Na+/K+ ATPase from the Euryhaline Barnacle Balanus improvisus Reveals Multiple Genes and Differential Expression of Alternative Splice Variants  
PLoS ONE  2013;8(10):e77069.
The euryhaline bay barnacle Balanus improvisus has one of the broadest salinity tolerances of any barnacle species. It is able to complete its life cycle in salinities close to freshwater (3 PSU) up to fully marine conditions (35 PSU) and is regarded as one of few truly brackish-water species. Na+/K+ ATPase (NAK) has been shown to be important for osmoregulation when marine organisms are challenged by changing salinities, and we therefore cloned and examined the expression of different NAKs from B. improvisus. We found two main gene variants, NAK1 and NAK2, which were approximately 70% identical at the protein level. The NAK1 mRNA existed in a long and short variant with the encoded proteins differing only by 27 N-terminal amino acids. This N-terminal stretch was coded for by a separate exon, and the two variants of NAK1 mRNAs appeared to be created by alternative splicing. We furthermore showed that the two NAK1 isoforms were differentially expressed in different life stages and in various tissues of adult barnacle, i.e the long isoform was predominant in cyprids and in adult cirri. In barnacle cyprid larvae that were exposed to a combination of different salinities and pCO2 levels, the expression of the long NAK1 mRNA increased relative to the short in low salinities. We suggest that the alternatively spliced long variant of the Nak1 protein might be of importance for osmoregulation in B. improvisus in low salinity conditions.
doi:10.1371/journal.pone.0077069
PMCID: PMC3793950  PMID: 24130836
13.  Short-Term Exposure to Ozone Does Not Impair Vascular Function or Affect Heart Rate Variability in Healthy Young Men 
Toxicological Sciences  2013;135(2):292-299.
Air pollution exposure is associated with cardiovascular morbidity and mortality, yet the role of individual pollutants remains unclear. In particular, there is uncertainty regarding the acute effect of ozone exposure on cardiovascular disease. In these studies, we aimed to determine the effect of ozone exposure on vascular function, fibrinolysis, and the autonomic regulation of the heart. Thirty-six healthy men were exposed to ozone (300 ppb) and filtered air for 75min on two occasions in randomized double-blind crossover studies. Bilateral forearm blood flow (FBF) was measured using forearm venous occlusion plethysmography before and during intra-arterial infusions of vasodilators 2–4 and 6–8h after each exposure. Heart rhythm and heart rate variability (HRV) were monitored during and 24h after exposure. Compared with filtered air, ozone exposure did not alter heart rate, blood pressure, or resting FBF at either 2 or 6h. There was a dose-dependent increase in FBF with all vasodilators that was similar after both exposures at 2–4h. Ozone exposure did not impair vasomotor or fibrinolytic function at 6–8h but rather increased vasodilatation to acetylcholine (p = .015) and sodium nitroprusside (p = .005). Ozone did not affect measures of HRV during or after the exposure. Our findings do not support a direct rapid effect of ozone on vascular function or cardiac autonomic control although we cannot exclude an effect of chronic exposure or an interaction between ozone and alternative air pollutants that may be responsible for the adverse cardiovascular health effects attributed to ozone.
doi:10.1093/toxsci/kft157
PMCID: PMC3807622  PMID: 23872581
air pollution; blood flow; endothelium; fibrinolysis; oxidative stress; ozone.
14.  Exposure to wood smoke increases arterial stiffness and decreases heart rate variability in humans 
Background
Emissions from biomass combustion are a major source of indoor and outdoor air pollution, and are estimated to cause millions of premature deaths worldwide annually. Whilst adverse respiratory health effects of biomass exposure are well established, less is known about its effects on the cardiovascular system. In this study we assessed the effect of exposure to wood smoke on heart rate, blood pressure, central arterial stiffness and heart rate variability in otherwise healthy persons.
Methods
Fourteen healthy non-smoking subjects participated in a randomized, double-blind crossover study. Subjects were exposed to dilute wood smoke (mean particle concentration of 314±38 μg/m3) or filtered air for three hours during intermittent exercise. Heart rate, blood pressure, central arterial stiffness and heart rate variability were measured at baseline and for one hour post-exposure.
Results
Central arterial stiffness, measured as augmentation index, augmentation pressure and pulse wave velocity, was higher after wood smoke exposure as compared to filtered air (p < 0.01 for all), and heart rate was increased (p < 0.01) although there was no effect on blood pressure. Heart rate variability (SDNN, RMSSD and pNN50; p = 0.003, p < 0.001 and p < 0.001 respectively) was decreased one hour following exposure to wood smoke compared to filtered air.
Conclusions
Acute exposure to wood smoke as a model of exposure to biomass combustion is associated with an immediate increase in central arterial stiffness and a simultaneous reduction in heart rate variability. As biomass is used for cooking and heating by a large fraction of the global population and is currently advocated as a sustainable alternative energy source, further studies are required to establish its likely impact on cardiovascular disease.
Trial registration
ClinicalTrials.gov, NCT01488500
doi:10.1186/1743-8977-10-20
PMCID: PMC3685524  PMID: 23742058
Biomass; Air pollution; Arterial stiffness; Blood pressure; Heart rate variability; Cardiovascular
15.  Diesel exhaust but not ozone increases fraction of exhaled nitric oxide in a randomized controlled experimental exposure study of healthy human subjects 
Environmental Health  2013;12:36.
Background
Fraction of exhaled nitric oxide (FENO) is a promising non-invasive index of airway inflammation that may be used to assess respiratory effects of air pollution. We evaluated FENO as a measure of airway inflammation after controlled exposure to diesel exhaust or ozone.
Methods
Healthy volunteers were exposed to either diesel exhaust (particle concentration 300 μg/m3) and filtered air for one hour, or ozone (300 ppb) and filtered air for 75 minutes. FENO was measured in duplicate at expiratory flow rates of 10, 50, 100 and 270 mL/s before, 6 and 24 hours after each exposure.
Results
Exposure to diesel exhaust increased FENO at 6 hours compared with air at expiratory flow rates of 10 mL/s (p = 0.01) and at 50 mL/s (p = 0.011), but FENO did not differ significantly at higher flow rates. Increases in FENO following diesel exhaust were attenuated at 24 hours. Ozone did not affect FENO at any flow rate or time point.
Conclusions
Exposure to diesel exhaust, but not ozone, increased FENO concentrations in healthy subjects. Differences in the induction of airway inflammation may explain divergent responses to diesel exhaust and ozone, with implications for the use of FENO as an index of exposure to air pollution.
doi:10.1186/1476-069X-12-36
PMCID: PMC3639134  PMID: 23602059
Air pollution; Particulate matter pollution; Airway inflammation
16.  Ancient Evolutionary Trade-Offs between Yeast Ploidy States 
PLoS Genetics  2013;9(3):e1003388.
The number of chromosome sets contained within the nucleus of eukaryotic organisms is a fundamental yet evolutionarily poorly characterized genetic variable of life. Here, we mapped the impact of ploidy on the mitotic fitness of baker's yeast and its never domesticated relative Saccharomyces paradoxus across wide swaths of their natural genotypic and phenotypic space. Surprisingly, environment-specific influences of ploidy on reproduction were found to be the rule rather than the exception. These ploidy–environment interactions were well conserved across the 2 billion generations separating the two species, suggesting that they are the products of strong selection. Previous hypotheses of generalizable advantages of haploidy or diploidy in ecological contexts imposing nutrient restriction, toxin exposure, and elevated mutational loads were rejected in favor of more fine-grained models of the interplay between ecology and ploidy. On a molecular level, cell size and mating type locus composition had equal, but limited, explanatory power, each explaining 12.5%–17% of ploidy–environment interactions. The mechanism of the cell size–based superior reproductive efficiency of haploids during Li+ exposure was traced to the Li+ exporter ENA. Removal of the Ena transporters, forcing dependence on the Nha1 extrusion system, completely altered the effects of ploidy on Li+ tolerance and evoked a strong diploid superiority, demonstrating how genetic variation at a single locus can completely reverse the relative merits of haploidy and diploidy. Taken together, our findings unmasked a dynamic interplay between ploidy and ecology that was of unpredicted evolutionary importance and had multiple molecular roots.
Author Summary
Organisms vary in the number of chromosome sets contained within the nucleus of each cell, but neither the reasons nor the consequences of this variation are well understood. We designed yeasts that differed in the number of chromosome sets but were otherwise identical and mapped the consequences of such ploidy variations during exposure to a large palette of environments. Contrary to commonly held assumptions, we found ploidy effects on the mitotic reproductive capacity of yeast to be the rule rather than the exception and to be highly evolutionarily conserved. Furthermore, our data rejected previously contemplated hypotheses of generalizable advantages of haploidy or diploidy when cells face nutrient starvation or are exposed to toxins or increased mutation rates. We also mapped the molecular processes mediating ploidy–environment interactions, showing that cell size and mating type locus composition had equal explanatory power. Finally we show that ploidy effects can be mechanistically very subtle, as a designed shift from one plasma membrane Li+ transporter to another completely altered the relative merits of having one or two chromosome sets when exposed to high Li+ concentrations. This complex and dynamic interplay between the number of chromosomes sets and the fluctuating environment must be taken into account when considering organismal form and behavior.
doi:10.1371/journal.pgen.1003388
PMCID: PMC3605057  PMID: 23555297
17.  Altered Nitric Oxide Bioavailability Contributes to Diesel Exhaust Inhalation‐Induced Cardiovascular Dysfunction in Man 
Background
Diesel exhaust inhalation causes cardiovascular dysfunction including impaired vascular reactivity, increased blood pressure, and arterial stiffness. We investigated the role of nitric oxide (NO) bioavailability in mediating these effects.
Methods and Results
In 2 randomized double‐blind crossover studies, healthy nonsmokers were exposed to diesel exhaust or filtered air. Study 1: Bilateral forearm blood flow was measured during intrabrachial infusions of acetylcholine (ACh; 5 to 20 μg/min) and sodium nitroprusside (SNP; 2 to 8 μg/min) in the presence of the NO clamp (NO synthase inhibitor NG‐monomethyl‐l‐arginine (l‐NMMA) 8 μg/min coinfused with the NO donor SNP at 90 to 540 ng/min to restore basal blood flow). Study 2: Blood pressure, arterial stiffness, and cardiac output were measured during systemic NO synthase inhibition with intravenous l‐NMMA (3 mg/kg). Following diesel exhaust inhalation, plasma nitrite concentrations were increased (68±48 versus 41±32 nmol/L; P=0.006) despite similar l‐NMMA–induced reductions in basal blood flow (−20.6±14.7% versus −21.1±14.6%; P=0.559) compared to air. In the presence of the NO clamp, ACh and SNP caused dose‐dependent vasodilatation that was not affected by diesel exhaust inhalation (P>0.05 for both). Following exposure to diesel exhaust, l‐NMMA caused a greater increase in blood pressure (P=0.048) and central arterial stiffness (P=0.007), but reductions in cardiac output and increases in systemic vascular resistance (P>0.05 for both) were similar to those seen with filtered air.
Conclusions
Diesel exhaust inhalation disturbs normal vascular homeostasis with enhanced NO generation unable to compensate for excess consumption. We suggest the adverse cardiovascular effects of air pollution are, in part, mediated through reduced NO bioavailability.
Clinical Trial Registration
URL: http://www.ClinicalTrials.gov. Unique identifiers: NCT00845767 and NCT01060930.
doi:10.1161/JAHA.112.004309
PMCID: PMC3603248  PMID: 23525434
air pollution; endothelial function; nitric oxide; nitric oxide synthase; vascular biology
18.  The Yeast Transcription Factor Crz1 Is Activated by Light in a Ca2+/Calcineurin-Dependent and PKA-Independent Manner 
PLoS ONE  2013;8(1):e53404.
Light in the visible range can be stressful to non-photosynthetic organisms. The yeast Saccharomyces cerevisiae has earlier been reported to respond to blue light via activation of the stress-regulated transcription factor Msn2p. Environmental changes also induce activation of calcineurin, a Ca2+/calmodulin dependent phosphatase, which in turn controls gene transcription by dephosphorylating the transcription factor Crz1p. We investigated the connection between cellular stress caused by blue light and Ca2+ signalling in yeast by monitoring the nuclear localization dynamics of Crz1p, Msn2p and Msn4p. The three proteins exhibit distinctly different stress responses in relation to light exposure. Msn2p, and to a lesser degree Msn4p, oscillate rapidly between the nucleus and the cytoplasm in an apparently stochastic fashion. Crz1p, in contrast, displays a rapid and permanent nuclear localization induced by illumination, which triggers Crz1p-dependent transcription of its target gene CMK2. Moreover, increased extracellular Ca2+ levels stimulates the light-induced responses of all three transcription factors, e.g. Crz1p localizes much quicker to the nucleus and a larger fraction of cells exhibits permanent Msn2p nuclear localization at higher Ca2+ concentration. Studies in mutants lacking Ca2+ transporters indicate that influx of extracellular Ca2+ is crucial for the initial stages of light-induced Crz1p nuclear localization, while mobilization of intracellular Ca2+ stores appears necessary for a sustained response. Importantly, we found that Crz1p nuclear localization is dependent on calcineurin and the carrier protein Nmd5p, while not being affected by increased protein kinase A activity (PKA), which strongly inhibits light-induced nuclear localization of Msn2/4p. We conclude that the two central signalling pathways, cAMP-PKA-Msn2/4 and Ca2+-calcineurin-Crz1, are both activated by blue light illumination.
doi:10.1371/journal.pone.0053404
PMCID: PMC3546054  PMID: 23335962
19.  Lung function in volunteers before and after exposure to trichloramine in indoor pool environments and asthma in a cohort of pool workers 
BMJ Open  2012;2(5):e000973.
Objectives
Exposure to trichloramine (NCl3) in indoor swimming-pool environments is known to cause mucous membrane irritation, but if it gives rise to changes in lung function or asthma in adults is not known. (1) We determined lung function in volunteers before and after exposure to indoor pool environments. (2) We studied the occurrence of respiratory symptoms and asthma in a cohort of pool workers.
Design/methods/participants
(1) We studied two groups of volunteers, 37 previously non-exposed healthy persons and 14 pool workers, who performed exercise for 2 h in an indoor pool environment. NCl3 in air was measured during pool exposures and in 10 other pool environments. Filtered air exposures were used as controls. Lung function and biomarkers of pulmonary epithelial integrity were measured before and after exposure. (2) We mailed a questionnaire to 1741 persons who indicated in the Swedish census 1990 that they worked at indoor swimming-pools.
Results
(1) In previously non-exposed volunteers, statistically significant decreases in FEV1 (forced expiratory volume) and FEV% (p=0.01 and 0.05, respectively) were found after exposure to pool air (0.23 mg/m3 of NCl3). In pool workers, a statistically significant decrease in FEV% (p=0.003) was seen (but no significant change of FEV1). In the 10 other pool environments the median NCl3 concentration was 0.18 mg/m3. (2) Our nested case/control study in pool workers found an OR for asthma of 2.31 (95% CI 0.79 to 6.74) among those with the highest exposure. Exposure-related acute mucous membrane and respiratory symptoms were also found.
Conclusions
This is the first study in adults showing statistically significant decreases in lung function after exposure to NCl3. An increased OR for asthma among highly exposed pool workers did not reach statistical significance, but the combined evidence supports the notion that current workroom exposures may contribute to asthma development. Further research on sensitive groups is warranted.
doi:10.1136/bmjopen-2012-000973
PMCID: PMC3488741  PMID: 23048058
Public Health; Respiratory Medicine (See Thoracic Medicine); Occupational & Industrial Medicine
20.  Experimental determination of the respiratory tract deposition of diesel combustion particles in patients with chronic obstructive pulmonary disease 
Background
Air pollution, mainly from combustion, is one of the leading global health risk factors. A susceptible group is the more than 200 million people worldwide suffering from chronic obstructive pulmonary disease (COPD). There are few data on lung deposition of airborne particles in patients with COPD and none for combustion particles.
Objectives
To determine respiratory tract deposition of diesel combustion particles in patients with COPD during spontaneous breathing.
Methods
Ten COPD patients and seven healthy subjects inhaled diesel exhaust particles generated during idling and transient driving in an exposure chamber. The respiratory tract deposition of the particles was measured in the size range 10–500 nm during spontaneous breathing.
Results
The deposited dose rate increased with increasing severity of the disease. However, the deposition probability of the ultrafine combustion particles (< 100 nm) was decreased in COPD patients. The deposition probability was associated with both breathing parameters and lung function, but could be predicted only based on lung function.
Conclusions
The higher deposited dose rate of inhaled air pollution particles in COPD patients may be one of the factors contributing to their increased vulnerability. The strong correlations between lung function and particle deposition, especially in the size range of 20–30 nm, suggest that altered particle deposition could be used as an indicator respiratory disease.
doi:10.1186/1743-8977-9-30
PMCID: PMC3464711  PMID: 22839109
Lung deposition; Toxicity; Health effects; Air pollution; Agglomerate; Nanoparticles; Aerosol; COPD; Diesel exhaust
21.  Systematic exploration of essential yeast gene function with temperature-sensitive mutants 
Nature Biotechnology  2011;29(4):361-367.
Conditional temperature-sensitive (ts) mutations are valuable reagents for studying essential genes in the yeast Saccharomyces cerevisiae. We constructed 787 ts strains, covering 497 (~45%) of the 1,101 essential yeast genes, with ~30% of the genes represented by multiple alleles. All of the alleles are integrated into their native genomic locus in the S288C common reference strain and are linked to a kanMX selectable marker, allowing further genetic manipulation by synthetic genetic array (SGA)–based, high-throughput methods. We show two such manipulations: barcoding of 440 strains, which enables chemical-genetic suppression analysis, and the construction of arrays of strains carrying different fluorescent markers of subcellular structure, which enables quantitative analysis of phenotypes using high-content screening. Quantitative analysis of a GFP-tubulin marker identified roles for cohesin and condensin genes in spindle disassembly. This mutant collection should facilitate a wide range of systematic studies aimed at understanding the functions of essential genes.
doi:10.1038/nbt.1832
PMCID: PMC3286520  PMID: 21441928
22.  A Geographically Diverse Collection of Schizosaccharomyces pombe Isolates Shows Limited Phenotypic Variation but Extensive Karyotypic Diversity 
G3: Genes|Genomes|Genetics  2011;1(7):615-626.
The fission yeast Schizosaccharomyces pombe has been widely used to study eukaryotic cell biology, but almost all of this work has used derivatives of a single strain. We have studied 81 independent natural isolates and 3 designated laboratory strains of Schizosaccharomyces pombe. Schizosaccharomyces pombe varies significantly in size but shows only limited variation in proliferation in different environments compared with Saccharomyces cerevisiae. Nucleotide diversity, π, at a near neutral site, the central core of the centromere of chromosome II is approximately 0.7%. Approximately 20% of the isolates showed karyotypic rearrangements as detected by pulsed field gel electrophoresis and filter hybridization analysis. One translocation, found in 6 different isolates, including the type strain, has a geographically widespread distribution and a unique haplotype and may be a marker of an incipient speciation event. All of the other translocations are unique. Exploitation of this karyotypic diversity may cast new light on both the biology of telomeres and centromeres and on isolating mechanisms in single-celled eukaryotes.
doi:10.1534/g3.111.001123
PMCID: PMC3276172  PMID: 22384373
pombe; karyotype; diversity; fission yeast
23.  Combustion-derived nanoparticulate induces the adverse vascular effects of diesel exhaust inhalation 
European Heart Journal  2011;32(21):2660-2671.
Aim
Exposure to road traffic and air pollution may be a trigger of acute myocardial infarction, but the individual pollutants responsible for this effect have not been established. We assess the role of combustion-derived-nanoparticles in mediating the adverse cardiovascular effects of air pollution.
Methods and results
To determine the in vivo effects of inhalation of diesel exhaust components, 16 healthy volunteers were exposed to (i) dilute diesel exhaust, (ii) pure carbon nanoparticulate, (iii) filtered diesel exhaust, or (iv) filtered air, in a randomized double blind cross-over study. Following each exposure, forearm blood flow was measured during intra-brachial bradykinin, acetylcholine, sodium nitroprusside, and verapamil infusions. Compared with filtered air, inhalation of diesel exhaust increased systolic blood pressure (145 ± 4 vs. 133 ± 3 mmHg, P< 0.05) and attenuated vasodilatation to bradykinin (P= 0.005), acetylcholine (P= 0.008), and sodium nitroprusside (P< 0.001). Exposure to pure carbon nanoparticulate or filtered exhaust had no effect on endothelium-dependent or -independent vasodilatation. To determine the direct vascular effects of nanoparticulate, isolated rat aortic rings (n= 6–9 per group) were assessed in vitro by wire myography and exposed to diesel exhaust particulate, pure carbon nanoparticulate and vehicle. Compared with vehicle, diesel exhaust particulate (but not pure carbon nanoparticulate) attenuated both acetylcholine (P< 0.001) and sodium-nitroprusside (P= 0.019)-induced vasorelaxation. These effects were partially attributable to both soluble and insoluble components of the particulate.
Conclusion
Combustion-derived nanoparticulate appears to predominately mediate the adverse vascular effects of diesel exhaust inhalation. This provides a rationale for testing environmental health interventions targeted at reducing traffic-derived particulate emissions.
doi:10.1093/eurheartj/ehr195
PMCID: PMC3205591  PMID: 21753226
Air pollution; Diesel exhaust; Nanoparticles; Endothelium; Blood flow
24.  Trait Variation in Yeast Is Defined by Population History 
PLoS Genetics  2011;7(6):e1002111.
A fundamental goal in biology is to achieve a mechanistic understanding of how and to what extent ecological variation imposes selection for distinct traits and favors the fixation of specific genetic variants. Key to such an understanding is the detailed mapping of the natural genomic and phenomic space and a bridging of the gap that separates these worlds. Here we chart a high-resolution map of natural trait variation in one of the most important genetic model organisms, the budding yeast Saccharomyces cerevisiae, and its closest wild relatives and trace the genetic basis and timing of major phenotype changing events in its recent history. We show that natural trait variation in S. cerevisiae exceeds that of its relatives, despite limited genetic variation, and follows the population history rather than the source environment. In particular, the West African population is phenotypically unique, with an extreme abundance of low-performance alleles, notably a premature translational termination signal in GAL3 that cause inability to utilize galactose. Our observations suggest that many S. cerevisiae traits may be the consequence of genetic drift rather than selection, in line with the assumption that natural yeast lineages are remnants of recent population bottlenecks. Disconcertingly, the universal type strain S288C was found to be highly atypical, highlighting the danger of extrapolating gene-trait connections obtained in mosaic, lab-domesticated lineages to the species as a whole. Overall, this study represents a step towards an in-depth understanding of the causal relationship between co-variation in ecology, selection pressure, natural traits, molecular mechanism, and alleles in a key model organism.
Author Summary
An overall aim in modern biology is to achieve an in-depth understanding of an organism's physiology in the context of its ecology and historic selective pressures that have been acting on its genome. The baker's yeast, Saccharomyces cerevisiae, has a peculiar life history completely dominated by clonal reproduction and self-fertilization, prompting the suggestion that natural yeasts are remnants of repeated population bottlenecks in essentially clonal lineages. Such a life history dominated by mitotic proliferation purports a strong evolutionary influence of genetic drift and predicts trait variation to be high and largely defined by the genetic history of each population. Here we chart a highly resolved map of natural trait variation in S. cerevisiae and its closest non-domesticated relative, Saccharomyces paradoxus, and confirm this prediction. We found that trait variation in budding yeast is indeed high and largely defined by population rather than source environment. In particular, the West African population was found to be phenotypically unique with an extreme abundance of low-performance alleles. Our findings support the idea of population bottlenecks in the recent yeast evolutionary history and a large influence of genetic drift.
doi:10.1371/journal.pgen.1002111
PMCID: PMC3116910  PMID: 21698134
25.  Expansion of CD4+CD25+ helper T cells without regulatory function in smoking and COPD 
Respiratory Research  2011;12(1):74.
Background
Regulatory T cells have been implicated in the pathogenesis of COPD by the increased expression of CD25 on helper T cells along with enhanced intracellular expression of FoxP3 and low/absent CD127 expression on the cell surface.
Method
Regulatory T cells were investigated in BALF from nine COPD subjects and compared to fourteen smokers with normal lung function and nine never-smokers.
Results
In smokers with normal lung function, the expression of CD25+CD4+ was increased, whereas the proportions of FoxP3+ and CD127+ were unchanged compared to never-smokers. Among CD4+ cells expressing high levels of CD25, the proportion of FoxP3+ cells was decreased and the percentage of CD127+ was increased in smokers with normal lung function. CD4+CD25+ cells with low/absent CD127 expression were increased in smokers with normal lung function, but not in COPD, when compared to never smokers.
Conclusion
The reduction of FoxP3 expression in BALF from smokers with normal lung function indicates that the increase in CD25 expression is not associated with the expansion of regulatory T cells. Instead, the high CD127 and low FoxP3 expressions implicate a predominantly non-regulatory CD25+ helper T-cell population in smokers and stable COPD. Therefore, we suggest a smoking-induced expansion of predominantly activated airway helper T cells that seem to persist after COPD development.
doi:10.1186/1465-9921-12-74
PMCID: PMC3127771  PMID: 21651772
Bronchoalveolar lavage; BAL; CD25bright; CD127; FoxP3; lymphocyte subsets

Results 1-25 (43)