PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Genome-Wide Organization and Expression Profiling of the NAC Transcription Factor Family in Potato (Solanum tuberosum L.) 
NAC [no apical meristem (NAM), Arabidopsis thaliana transcription activation factor [ATAF1/2] and cup-shaped cotyledon (CUC2)] proteins belong to one of the largest plant-specific transcription factor (TF) families and play important roles in plant development processes, response to biotic and abiotic cues and hormone signalling. Our genome-wide analysis identified 110 StNAC genes in potato encoding for 136 proteins, including 14 membrane-bound TFs. The physical map positions of StNAC genes on 12 potato chromosomes were non-random, and 40 genes were found to be distributed in 16 clusters. The StNAC proteins were phylogenetically clustered into 12 subgroups. Phylogenetic analysis of StNACs along with their Arabidopsis and rice counterparts divided these proteins into 18 subgroups. Our comparative analysis has also identified 36 putative TNAC proteins, which appear to be restricted to Solanaceae family. In silico expression analysis, using Illumina RNA-seq transcriptome data, revealed tissue-specific, biotic, abiotic stress and hormone-responsive expression profile of StNAC genes. Several StNAC genes, including StNAC072 and StNAC101that are orthologs of known stress-responsive Arabidopsis RESPONSIVE TO DEHYDRATION 26 (RD26) were identified as highly abiotic stress responsive. Quantitative real-time polymerase chain reaction analysis largely corroborated the expression profile of StNAC genes as revealed by the RNA-seq data. Taken together, this analysis indicates towards putative functions of several StNAC TFs, which will provide blue-print for their functional characterization and utilization in potato improvement.
doi:10.1093/dnares/dst019
PMCID: PMC3738166  PMID: 23649897
abiotic stress; genome-wide analysis; Illumina RNA-seq; NAC transcription factor; potato
2.  Braving the attitude of altitude: Caragana jubata at work in cold desert of Himalaya 
Scientific Reports  2013;3:1022.
The present work was conducted to understand the basis of adaptation in Caragana jubata in its niche environment at high altitude cold desert of Himalaya. Molecular data showed predominance of genes encoding chaperones and those involved in growth and development at low temperature (LT), a major cue operative at high altitude. Importantly, these genes expressed in C. jubata in its natural habitat. Their homologues in Arabidopsis thaliana, Oryza sativa, and Glycine max did not exhibit similar trend of gene expression at LT. Constitutive expression and a quick up-regulation of the above genes suggested the ability of C. jubata to adjust its cellular machinery to maintain growth and development in its niche. This was reflected in LT50 (the temperature at which 50% injury occurred) and LT mediated photosynthetic acclimatory response. Such molecular and physiological plasticity enables C. jubata to thrive in the high altitude cold desert of Himalayas.
doi:10.1038/srep01022
PMCID: PMC3535672  PMID: 23289064
3.  Engineering a thermo-stable superoxide dismutase functional at sub-zero to >50°C, which also tolerates autoclaving 
Scientific Reports  2012;2:387.
Superoxide dismutase (SOD) is a critical enzyme associated with controlling oxygen toxicity arising out of oxidative stress in any living system. A hyper-thermostable SOD isolated from a polyextremophile higher plant Potentilla atrosanguinea Lodd. var. argyrophylla (Wall. ex Lehm.) was engineered by mutation of a single amino acid that enhanced the thermostability of the enzyme to twofold. The engineered enzyme was functional from sub-zero temperature to >50°C, tolerated autoclaving (heating at 121°C, at a pressure of 1.1 kg per square cm for 20 min) and was resistant to proteolysis. The present work is the first example to enhance the thermostability of a hyper-thermostable protein and has potential to application to other proteins for enhancing thermostability.
doi:10.1038/srep00387
PMCID: PMC3339387  PMID: 22548128
4.  De novo sequencing and characterization of Picrorhiza kurrooa transcriptome at two temperatures showed major transcriptome adjustments 
BMC Genomics  2012;13:126.
Background
Picrorhiza kurrooa Royle ex Benth. is an endangered plant species of medicinal importance. The medicinal property is attributed to monoterpenoids picroside I and II, which are modulated by temperature. The transcriptome information of this species is limited with the availability of few hundreds of expressed sequence tags (ESTs) in the public databases. In order to gain insight into temperature mediated molecular changes, high throughput de novo transcriptome sequencing and analyses were carried out at 15°C and 25°C, the temperatures known to modulate picrosides content.
Results
Using paired-end (PE) Illumina sequencing technology, a total of 20,593,412 and 44,229,272 PE reads were obtained after quality filtering for 15°C and 25°C, respectively. Available (e.g., De-Bruijn/Eulerian graph) and in-house developed bioinformatics tools were used for assembly and annotation of transcriptome. A total of 74,336 assembled transcript sequences were obtained, with an average coverage of 76.6 and average length of 439.5. Guanine-cytosine (GC) content was observed to be 44.6%, while the transcriptome exhibited abundance of trinucleotide simple sequence repeat (SSR; 45.63%) markers.
Large scale expression profiling through "read per exon kilobase per million (RPKM)", showed changes in several biological processes and metabolic pathways including cytochrome P450s (CYPs), UDP-glycosyltransferases (UGTs) and those associated with picrosides biosynthesis. RPKM data were validated by reverse transcriptase-polymerase chain reaction using a set of 19 genes, wherein 11 genes behaved in accordance with the two expression methods.
Conclusions
Study generated transcriptome of P. kurrooa at two different temperatures. Large scale expression profiling through RPKM showed major transcriptome changes in response to temperature reflecting alterations in major biological processes and metabolic pathways, and provided insight of GC content and SSR markers. Analysis also identified putative CYPs and UGTs that could help in discovering the hitherto unknown genes associated with picrosides biosynthesis.
doi:10.1186/1471-2164-13-126
PMCID: PMC3378455  PMID: 22462805
Mevalonate; Gene expression; 2-C-methyl-D-erythritol 4-phosphate; Next generation sequencing; Phenylpropanoid; Picrorhiza kurrooa; Picrosides; Transcriptome
5.  Post-Transcriptional Silencing of Flavonol Synthase mRNA in Tobacco Leads to Fruits with Arrested Seed Set 
PLoS ONE  2011;6(12):e28315.
Flavonoids are synthesized by phenylpropanoid pathway. They are known to participate in large number of physiological and biochemical processes in plants. Parthenocarpy and male sterility has earlier been reported by silencing chalcone synthase (CHS) encoding gene. Silencing of CHS has blocked the synthesis of most of useful flavonoids including flavan-3-ols and flavonols. Also, these studies could not identify whether parthenocarpy/male sterility were due to lack of flavan-3-ols or flavonols or both. Flavonol synthase (FLS) is an important enzyme of flavonoid pathway that catalyzes the formation of flavonols. In this article, we propose a novel strategy towards the generation of seedless or less-seeded fruits by downregulation of flavonol biosynthesis in tobacco (Nicotiana tabacum cv Xanthi) through post-transcriptional gene silencing (PTGS) of FLS encoding mRNA. The FLS silenced lines were observed for 20-80% reduction in FLS encoding gene expression and 25–93% reduction in flavonol (quercetin) content. Interestingly, these FLS silenced tobacco lines also showed reduction in their anthocyanidins content. While the content of flavan-3-ols (catechin, epi-catechin and epi-gallocatechin) was found to be increased in FLS silenced lines. The delayed flowering in FLS silenced lines could be due to decrease in level of indole acetic acid (IAA) at apical region of their shoots. Furthermore, the pollen germination was hampered and pollens were unable to produce functional pollen tube in FLS silenced tobacco lines. Pods of FLS silenced lines contained significantly less number of seeds. The in vitro and in vivo studies where 1 µM quercetin was supplied to germination media, documented the restoration of normal pollen germination and pollen tube growth. This finding identified the role of flavonols particularly quercetin in pollen germination as well as in the regulation of plant fertility. Results also suggest a novel approach towards generation of seedless/less-seeded fruits via PTGS of FLS encoding gene in plants.
doi:10.1371/journal.pone.0028315
PMCID: PMC3228754  PMID: 22145036
6.  Chemical modification of L-glutamine to alpha-amino glutarimide on autoclaving facilitates Agrobacterium infection of host and non-host plants: A new use of a known compound 
BMC Chemical Biology  2011;11:1.
Background
Accidental autoclaving of L-glutamine was found to facilitate the Agrobacterium infection of a non host plant like tea in an earlier study. In the present communication, we elucidate the structural changes in L-glutamine due to autoclaving and also confirm the role of heat transformed L-glutamine in Agrobacterium mediated genetic transformation of host/non host plants.
Results
When autoclaved at 121°C and 15 psi for 20 or 40 min, L-glutamine was structurally modified into 5-oxo proline and 3-amino glutarimide (α-amino glutarimide), respectively. Of the two autoclaved products, only α-amino glutarimide facilitated Agrobacterium infection of a number of resistant to susceptible plants. However, the compound did not have any vir gene inducing property.
Conclusions
We report a one pot autoclave process for the synthesis of 5-oxo proline and α-amino glutarimide from L-glutamine. Xenobiotic detoxifying property of α-amino glutarimide is also proposed.
doi:10.1186/1472-6769-11-1
PMCID: PMC3130638  PMID: 21624145
7.  Expression of 3-hydroxy-3-methylglutaryl-CoA reductase, p-hydroxybenzoate-m-geranyltransferase and genes of phenylpropanoid pathway exhibits positive correlation with shikonins content in arnebia [Arnebia euchroma (Royle) Johnston] 
BMC Molecular Biology  2010;11:88.
Background
Geranyl pyrophosphate (GPP) and p-hydroxybenzoate (PHB) are the basic precursors involved in shikonins biosynthesis. GPP is derived from mevalonate (MVA) and/or 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway(s), depending upon the metabolite and the plant system under consideration. PHB, however, is synthesized by only phenylpropanoid (PP) pathway. GPP and PHB are central moieties to yield shikonins through the synthesis of m-geranyl-p-hydroxybenzoate (GHB). Enzyme p-hydroxybenzoate-m-geranyltransferase (PGT) catalyses the coupling of GPP and PHB to yield GHB.
The present research was carried out in shikonins yielding plant arnebia [Arnebia euchroma (Royle) Johnston], wherein no molecular work has been reported so far. The objective of the work was to identify the preferred GPP synthesizing pathway for shikonins biosynthesis, and to determine the regulatory genes involved in the biosynthesis of GPP, PHB and GHB.
Results
A cell suspension culture-based, low and high shikonins production systems were developed to facilitate pathway identification and finding the regulatory gene. Studies with mevinolin and fosmidomycin, inhibitors of MVA and MEP pathway, respectively suggested MVA as a preferred route of GPP supply for shikonins biosynthesis in arnebia. Accordingly, genes of MVA pathway (eight genes), PP pathway (three genes), and GHB biosynthesis were cloned. Expression studies showed down-regulation of all the genes in response to mevinolin treatment, whereas gene expression was not influenced by fosmidomycin. Expression of all the twelve genes vis-à-vis shikonins content in low and high shikonins production system, over a period of twelve days at frequent intervals, identified critical genes of shikonins biosynthesis in arnebia.
Conclusion
A positive correlation between shikonins content and expression of 3-hydroxy-3-methylglutaryl-CoA reductase (AeHMGR) and AePGT suggested critical role played by these genes in shikonins biosynthesis. Higher expression of genes of PP pathway was a general feature for higher shikonins biosynthesis.
doi:10.1186/1471-2199-11-88
PMCID: PMC3002352  PMID: 21092138
8.  Identification, characterization and utilization of unigene derived microsatellite markers in tea (Camellia sinensis L.) 
BMC Plant Biology  2009;9:53.
Background
Despite great advances in genomic technology observed in several crop species, the availability of molecular tools such as microsatellite markers has been limited in tea (Camellia sinensis L.). The development of microsatellite markers will have a major impact on genetic analysis, gene mapping and marker assisted breeding. Unigene derived microsatellite (UGMS) markers identified from publicly available sequence database have the advantage of assaying variation in the expressed component of the genome with unique identity and position. Therefore, they can serve as efficient and cost effective alternative markers in such species.
Results
Considering the multiple advantages of UGMS markers, 1,223 unigenes were predicted from 2,181 expressed sequence tags (ESTs) of tea (Camellia sinensis L.). A total of 109 (8.9%) unigenes containing 120 SSRs were identified. SSR abundance was one in every 3.55 kb of EST sequences. The microsatellites mainly comprised of di (50.8%), tri (30.8%), tetra (6.6%), penta (7.5%) and few hexa (4.1%) nucleotide repeats. Among the dinucleotide repeats, (GA)n.(TC)n were most abundant (83.6%). Ninety six primer pairs could be designed form 83.5% of SSR containing unigenes. Of these, 61 (63.5%) primer pairs were experimentally validated and used to investigate the genetic diversity among the 34 accessions of different Camellia spp. Fifty one primer pairs (83.6%) were successfully cross transferred to the related species at various levels. Functional annotation of the unigenes containing SSRs was done through gene ontology (GO) characterization. Thirty six (60%) of them revealed significant sequence similarity with the known/putative proteins of Arabidopsis thaliana. Polymorphism information content (PIC) ranged from 0.018 to 0.972 with a mean value of 0.497. The average heterozygosity expected (HE) and observed (Ho) obtained was 0.654 and 0.413 respectively, thereby suggesting highly heterogeneous nature of tea. Further, test for IAM and SMM models for the UGMS loci showed excess heterozygosity and did not show any bottleneck operating in the tea population.
Conclusion
UGMS markers identified and characterized in this study provided insight about the abundance and distribution of SSR in the expressed genome of C. sinensis. The identification and validation of 61 new UGMS markers will not only help in intra and inter specific genetic diversity assessment but also be enriching limited microsatellite markers resource in tea. Further, the use of these markers would reduce the cost and facilitate the gene mapping and marker-aided selection in tea. Since, 36 of these UGMS markers correspond to the Arabidopsis protein sequence data with known functions will offer the opportunity to investigate the consequences of SSR polymorphism on gene functions.
doi:10.1186/1471-2229-9-53
PMCID: PMC2693106  PMID: 19426565

Results 1-8 (8)