PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Characterization of the C. elegans erlin homologue 
BMC Cell Biology  2012;13:2.
Background
Erlins are highly conserved proteins associated with lipid rafts within the endoplasmic reticulum (ER). Biochemical studies in mammalian cell lines have shown that erlins are required for ER associated protein degradation (ERAD) of activated inositol-1,4,5-trisphosphate receptors (IP3Rs), implying that erlin proteins might negatively regulate IP3R signalling. In humans, loss of erlin function appears to cause progressive intellectual disability, motor dysfunction and joint contractures. However, it is unknown if defects in IP3R ERAD are the underlying cause of this disease phenotype, whether ERAD of activated IP3Rs is the only function of erlin proteins, and what role ERAD plays in regulating IP3R-dependent processes in the context of an intact animal or embryo. In this study, we characterize the erlin homologue of the nematode Caenorhabditis elegans and examine erlin function in vivo. We specifically set out to test whether C. elegans erlin modulates IP3R-dependent processes, such as egg laying, embryonic development and defecation rates. We also explore the possibility that erlin might play a more general role in the ERAD pathway of C. elegans.
Results
We first show that the C. elegans erlin homologue, ERL-1, is highly similar to mammalian erlins with respect to amino acid sequence, domain structure, biochemical properties and subcellular location. ERL-1 is present throughout the C. elegans embryo; in adult worms, ERL-1 appears restricted to the germline. The expression pattern of ERL-1 thus only partially overlaps with that of ITR-1, eliminating the possibility of ERL-1 being a ubiquitous and necessary regulator of ITR-1. We show that loss of ERL-1 does not affect overall phenotype, or alter brood size, embryonic development or defecation cycle length in either wild type or sensitized itr-1 mutant animals. Moreover we show that ERL-1 deficient worms respond normally to ER stress conditions, suggesting that ERL-1 is not an essential component of the general ERAD pathway.
Conclusions
Although loss of erlin function apparently causes a strong phenotype in humans, no such effect is seen in C. elegans. C. elegans erlin does not appear to be a ubiquitous major modulator of IP3 receptor activity nor does erlin appear to play a major role in ERAD.
doi:10.1186/1471-2121-13-2
PMCID: PMC3292932  PMID: 22269071
2.  Mice that exclusively express TLR4 on endothelial cells can efficiently clear a lethal systemic Gram-negative bacterial infection 
The Journal of Clinical Investigation  2009;119(7):1921-1930.
Recognition of LPS by TLR4 on immune sentinel cells such as macrophages is thought to be key to the recruitment of neutrophils to sites of infection with Gram-negative bacteria. To explore whether endothelial TLR4 plays a role in this process, we engineered and imaged mice that expressed TLR4 exclusively on endothelium (known herein as EndotheliumTLR4 mice). Local administration of LPS into tissue induced comparable neutrophil recruitment in EndotheliumTLR4 and wild-type mice. Following systemic LPS or intraperitoneal E. coli administration, most neutrophils were sequestered in the lungs of wild-type mice and did not accumulate at primary sites of infection. In contrast, EndotheliumTLR4 mice showed reduced pulmonary capillary neutrophil sequestration over the first 24 hours; as a result, they mobilized neutrophils to primary sites of infection, cleared bacteria, and resisted a dose of E. coli that killed 50% of wild-type mice in the first 48 hours. In fact, the only defect we detected in EndotheliumTLR4 mice was a failure to accumulate neutrophils in the lungs following intratracheal administration of LPS; this response required TLR4 on bone marrow–derived immune cells. Therefore, endothelial TLR4 functions as the primary intravascular sentinel system for detection of bacteria, whereas bone marrow–derived immune cells are critical for pathogen detection at barrier sites. Nonendothelial TLR4 contributes to failure to accumulate neutrophils at primary infection sites in a disseminated systemic infection.
doi:10.1172/JCI36411
PMCID: PMC2701859  PMID: 19603547
3.  Lipoteichoic Acid Induces Unique Inflammatory Responses when Compared to Other Toll-Like Receptor 2 Ligands 
PLoS ONE  2009;4(5):e5601.
Toll-like receptors (TLRs) recognize evolutionarily-conserved molecular patterns originating from invading microbes. In this study, we were interested in determining if microbial ligands, which use distinct TLR2-containing receptor complexes, represent unique signals to the cell and can thereby stimulate unique cellular responses. Using the TLR2 ligands, R-FSL1, S-FSL1, Pam2CSK4, Pam3CSK4, and lipoteichoic acid (LTA), we demonstrate that these ligands activate NF-κB and MAP Kinase pathways with ligand-specific differential kinetics in murine macrophages. Most strikingly, LTA stimulation of these pathways was substantially delayed when compared with the other TLR2 ligands. These kinetics differences were associated with a delay in the LTA-induced expression of a subset of genes as compared with another TLR2 ligand, R-FSL1. However, this did not translate to overall differences in gene expression patterns four hours following stimulation with different TLR2 ligands. We extended this study to evaluate the in vivo responses to distinct TLR2 ligands using a murine model of acute inflammation, which employs intravital microscopy to monitor leukocyte recruitment into the cremaster muscle. We found that, although R-FSL1, S-FSL1, Pam2CSK4, and Pam3CSK4 were all able to stimulate robust leukocyte recruitment in vivo, LTA remained functionally inert in this in vivo model. Therefore distinct TLR2 ligands elicit unique cellular responses, as evidenced by differences in the kinetic profiles of signaling and gene expression responses in vitro, as well as the physiologically relevant differences in the in vivo responses to these ligands.
doi:10.1371/journal.pone.0005601
PMCID: PMC2680621  PMID: 19440307
4.  Gamma-Secretase Represents a Therapeutic Target for the Treatment of Invasive Glioma Mediated by the p75 Neurotrophin Receptor 
PLoS Biology  2008;6(11):e289.
The multifunctional signaling protein p75 neurotrophin receptor (p75NTR) is a central regulator and major contributor to the highly invasive nature of malignant gliomas. Here, we show that neurotrophin-dependent regulated intramembrane proteolysis (RIP) of p75NTR is required for p75NTR-mediated glioma invasion, and identify a previously unnamed process for targeted glioma therapy. Expression of cleavage-resistant chimeras of p75NTR or treatment of animals bearing p75NTR-positive intracranial tumors with clinically applicable γ-secretase inhibitors resulted in dramatically decreased glioma invasion and prolonged survival. Importantly, proteolytic processing of p75NTR was observed in p75NTR-positive patient tumor specimens and brain tumor initiating cells. This work highlights the importance of p75NTR as a therapeutic target, suggesting that γ-secretase inhibitors may have direct clinical application for the treatment of malignant glioma.
Author Summary
Despite technical advances, clinical prognosis of patients with malignant glioma, with an average survival of less than one year, has not changed. The highly invasive nature of these tumors, together with the recently identified brain tumor-initiating cells, provide disease reservoirs that render these tumors incurable by conventional therapies. Here, we present the first evidence to our knowledge that regulated intramembrane proteolysis of the neurotrophin receptor p75NTR is a critical regulator of glioma invasion. Inhibition of this process by clinically relevant γ-secretase inhibitors dramatically impairs the highly invasive nature of genetically distinct glioblastomas and brain tumor-initiating cells and prolongs survival. These data highlight regulated intramembrane proteolysis as a therapeutic target of malignant glioma and implicate the application of γ-secretase inhibitors in the treatment of these devastating tumors.
Gamma-secretase inhibitors in clinical trials for patients with Alzheimer disease can be used to block the highly invasive behavior of malignant glioma and prolong survival.
doi:10.1371/journal.pbio.0060289
PMCID: PMC2586378  PMID: 19067488
5.  Ectophosphorylation of CD36 Regulates Cytoadherence of Plasmodium falciparum to Microvascular Endothelium under Flow Conditions  
Infection and Immunity  2005;73(12):8179-8187.
The adhesion of Plasmodium falciparum-infected erythrocytes (IRBCs) to human dermal microvascular endothelial cells (HDMECs) under flow conditions is regulated by a Src family kinase- and alkaline phosphatase (AP)-dependent mechanism. In this study, we showed that the target of the phosphatase activity is the ectodomain of CD36 at threonine-92 (Thr92). Mouse fibroblasts (NIH 3T3 cells) transfected with wild-type CD36 or a mutant protein in which Thr92 was substituted by Ala supported the rolling and adhesion of IRBCs. However, while the Src family kinase inhibitors PP1 and PP2 and the specific AP inhibitor levamisole significantly reduced IRBC adhesion to wild-type CD36 transfectants as with HDMECs, the inhibitors had no effect on IRBC adhesion to the mutant cells. Using a phosphospecific antibody directed at a 12-amino-acid peptide spanning Thr92, we demonstrated directly that CD36 was constitutively phosphorylated and could be dephosphorylated by exogenous AP. Endothelial CD36 was likewise constitutively phosphorylated. The phosphospecific antibody inhibited IRBC adhesion to HDMECs that could be reversed by preincubating the antibody with the phosphorylated but not the nonphosphorylated peptide. Pretreatment of HDMECs with AP abrogated the effect of PP1 on IRBC adhesion. Collectively, these results are consistent with a critical role for CD36 dephosphorylation through Src family kinase activation in regulating IRBC adhesion to vascular endothelium.
doi:10.1128/IAI.73.12.8179-8187.2005
PMCID: PMC1307088  PMID: 16299313
6.  Activation of p38 and ERK Signaling during Adenovirus Vector Cell Entry Lead to Expression of the C-X-C Chemokine IP-10 
Journal of Virology  2002;76(4):1559-1568.
The use of adenovirus vectors for human gene therapy is limited by potent inflammatory responses that result in significant morbidity. In kidney-derived epithelial cells (REC), activation of extracellular signal-regulated kinase 1/2 (ERK) and p38 kinase (p38) pathways occurred within 20 min of transduction with the serotype 5 adenovirus vector AdCMVβgal. Inhibition of ERK and p38 with U0126 and SB203580, respectively, reduced the expression of IP-10 mRNA following transduction with AdCMVβgal. To determine the role of the coxsackievirus-adenovirus receptor (CAR) or αv integrins in the activation of ERK and p38 and the expression of IP-10, REC cells were transduced with the fiber-modified and RGD-deleted adenovirus vectors AdL.F(RAEK-HA) and AdL.PB(HA), respectively. Compared with the wild-type capsid vector Ad5Luc, transduction with AdL.F(RAEK-HA) and AdL.PB(HA) resulted in reduced ERK-p38 activation and less IP-10 mRNA expression. The decreased IP-10 expression induced by the tropism-modified vectors was due to diminished transduction, since increasing multiplicity of infection resulted in increased IP-10 expression. Inhibition of adenovirus penetration with bafilomycin A1 or ammonium chloride attenuated the activation of ERK-p38 and IP-10 mRNA expression following infection, suggesting that endosomal escape was required to trigger these pathways. In vivo, direct inhibition of ERK and p38 signaling pathways inhibited adenovirus vector-induced IP-10 expression in mouse liver 1 h following transduction. These results demonstrate the importance of signaling via ERK and p38 in the early host response to adenovirus vectors and will permit the development of novel strategies to improve the safety and efficacy of these agents in human gene therapy.
doi:10.1128/JVI.76.4.1559-1568.2002
PMCID: PMC135878  PMID: 11799150
7.  The p75 Neurotrophin Receptor Is a Central Regulator of Glioma Invasion  
PLoS Biology  2007;5(8):e212.
The invasive nature of cancers in general, and malignant gliomas in particular, is a major clinical problem rendering tumors incurable by conventional therapies. Using a novel invasive glioma mouse model established by serial in vivo selection, we identified the p75 neurotrophin receptor (p75NTR) as a critical regulator of glioma invasion. Through a series of functional, biochemical, and clinical studies, we found that p75NTR dramatically enhanced migration and invasion of genetically distinct glioma and frequently exhibited robust expression in highly invasive glioblastoma patient specimens. Moreover, we found that p75NTR-mediated invasion was neurotrophin dependent, resulting in the activation of downstream pathways and producing striking cytoskeletal changes of the invading cells. These results provide the first evidence for p75NTR as a major contributor to the highly invasive nature of malignant gliomas and identify a novel therapeutic target.
Author Summary
Gliomas are highly malignant and invasive tumors with tendrils that extend far from the primary tumor site, rendering conventional therapies ineffective and leading to an invariably poor prognosis. To understand the molecular mechanisms underlying this invasive behavior, we injected immunocompromised mice with human gliomas and compared invasive cells, which left the primary tumor site, to noninvasive cells, which remained at the site of injection. We identified the neurotrophin receptor p75NTR—which normally functions during development to induce neurite outgrowth and promote neuronal cell death—as an important regulator of glioma invasion. We present the first evidence that this neurotrophin receptor can also be a potent mediator of glioma invasion, and we show that the expression of this receptor is sufficient to impart a dramatic invasive behavior on genetically distinct tumors. These data highlight a previously unknown function of this receptor and suggest it may be a novel therapeutic target in the treatment of this devastating cancer.
By in vivo selection of a human glioma, the authors identify the p75NTR neuotrophin receptor as a critical molecule regulating increased invasiveness.
doi:10.1371/journal.pbio.0050212
PMCID: PMC1939884  PMID: 17696644

Results 1-7 (7)