Search tips
Search criteria

Results 1-18 (18)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Nebulized PPARγ Agonists: A Novel Approach to Augment Neonatal Lung Maturation and Injury Repair 
Pediatric research  2014;75(5):631-640.
By stimulating lipofibroblast maturation, parenterally administered PPARγ agonists promote lung homeostasis and injury repair in the neonatal lung. In this study, we determined whether PPARγ agonists could be delivered effectively via nebulization to neonates, and whether this approach would also protect against hyperoxia-induced lung injury.
One-day old Sprague-Dawley rat pups were administered PPARγ agonists rosiglitazone (RGZ, 3 mg/kg), pioglitazone (PGZ, 3 mg/kg), or the diluent, via nebulization every 24h; animals were exposed to 21% or 95% O2 for up to 72h. Twenty-four and 72h following initial nebulization, the pups were sacrificed for lung tissue and blood collection to determine markers of lung maturation, injury repair, and RGZ and PGZ plasma levels.
Nebulized RGZ and PGZ enhanced lung maturation in both males and females, as evidenced by the increased expression of markers of alveolar epithelial and mesenchymal maturation. This approach also protected against hyperoxia-induced lung injury, since hyperoxia-induced changes in bronchoalveolar lavage cell and protein contents and lung injury markers were all blocked by nebulized PGZ.
Nebulized PPARγ agonist administration promotes lung maturation and prevents neonatal hyperoxia-induced lung injury in both males and females.
PMCID: PMC4016987  PMID: 24488089
2.  Sex-Specific Perinatal Nicotine-Induced Asthma in Rat Offspring 
Recently, we have suggested that down-regulation of homeostatic mesenchymal peroxisome proliferator–activated receptor γ signaling after in utero nicotine exposure might contribute to asthma. Here, we have exploited an in vivo rat model of asthma to determine if the effects of perinatal nicotine exposure on offspring pulmonary function and mesenchymal markers of airway contractility in both tracheal and lung parenchymal tissue are sex specific, and whether the protection afforded by the peroxisome proliferator–activated receptor γ agonist, rosiglitazone (RGZ), against the perinatal nicotine-induced effect on offspring lung is also sex specific. Pregnant rat dams received placebo, nicotine, or nicotine plus RGZ daily from Embryonic Day 6 until Postnatal Day 21, at which time lung resistance, compliance, tracheal contractility, and the expression of structural and functional mesenchymal markers of pulmonary contractility were determined. Compared with control animals, perinatal nicotine exposure caused a significant increase in airway resistance and a decrease in airway compliance after a methacholine challenge in both male and female offspring, with more pronounced changes in the males. In contrast to this, the effects of perinatal nicotine exposure on acetylcholine-induced tracheal constriction, along with the expression of its mesenchymal markers, were observed exclusively in the male offspring. Concomitant treatment with RGZ normalized the nicotine-induced alterations in pulmonary function in both sexes, as well as the male-specific effects on acetylcholine-induced tracheal constriction, along with the affected mesenchymal markers. These data suggest that perinatal nicotine exposure causes sex-specific perinatal cigarette smoke exposure–induced asthma, providing a powerful phenotypic model for unequivocally determining the underlying nature of the cell molecular mechanism for this disease.
PMCID: PMC3547089  PMID: 23002101
nicotine; asthma; pregnancy; peroxisome proliferator–activated receptor γ; cigarette smoke
3.  Postnatal Rosiglitazone Administration to Neonatal Rat Pups Does Not Alter the Young Adult Metabolic Phenotype 
Neonatology  2011;101(3):217-224.
Rosiglitazone (RGZ), a peroxisome proliferator-activated receptor-γ (PPARγ) agonist, significantly enhances lung maturation without affecting blood biochemical and metabolic profiles in the newborn period. However, whether this exposure to RGZ in neonatal life alters the adult metabolic phenotype is not known.
To determine the effects of early postnatal administration of RGZ on the young adult metabolic phenotype.
Newborn rat pups were administered either saline or RGZ for the first 7 days of life. At 11–14 weeks, glucose and insulin tolerance tests and deuterium labeling were performed. Blood and tissues were analyzed for various metabolic parameters.
Overall, there was no effect of early postnatal RGZ administration on young adult body weight, glucose and insulin tolerance, plasma cholesterol and triglyceride profiles, insulin, glucagon, cardiac troponin, fatty acid synthesis, or tissue adipogenic differentiation.
Treatment with RGZ in early neonatal life does not alter later developmental metabolic programming or lead to an altered metabolic phenotype in the young adult, further re-enforcing the safety of PPARγ agonists as a novel lung-protective strategy.
PMCID: PMC3388271  PMID: 22076469
Rosiglitazone; Lung development; Peroxisome proliferator-activated receptor-γ; Fetal programming
Pediatric Pulmonology  2011;47(2):162-171.
Intrauterine growth restriction (IUGR) increases the risk of respiratory compromise throughout postnatal life. However, the molecular mechanism(s) underlying the respiratory compromise in offspring following IUGR is not known. We hypothesized that IUGR following maternal food restriction (MFR) would affect extracellular matrix deposition in the lung, explaining the long-term impairment in pulmonary function in the IUGR offspring. Using a well-established rat model of MFR during gestation to produce IUGR pups, we found that at postnatal day 21, and at 9 months of age the expression and abundance of elastin and alpha smooth muscle actin (αSMA), two key extracellular matrix proteins, were increased in IUGR lungs when compared to controls (p<0.05, n = 6), as determined by both Western and immunohistochemistry analyses. Compared to controls, the MFR group showed no significant change in pulmonary resistance at baseline, but did have significantly decreased pulmonary compliance at 9 months (p<0.05 vs control, n=5). In addition, MFR lungs exhibited increased responsiveness to methacholine challenge. Furthermore, exposing cultured fetal rat lung fibroblasts to serum deprivation increased the expression of elastin and elastin-related genes, which was blocked by serum albumin supplementation, suggesting protein deficiency as the predominant mechanism for increased pulmonary elastin deposition in IUGR lungs. We conclude that accompanying the changes in lung function, consistent with bronchial hyperresponsiveness, expression of the key alveolar extracellular matrix proteins elastin and αSMA increased in the IUGR lung, thus providing a potential explanation for the compromised lung function in IUGR offspring.
PMCID: PMC3258334  PMID: 22058072
intrauterine growth restriction; maternal food restriction; extracellular matrix; elastin; α smooth muscle actin; pulmonary function
5.  Mechanism of Reduced Lung Injury by High Frequency Nasal Ventilation in a Preterm Lamb Model of Neonatal Chronic Lung Disease 
Pediatric research  2011;70(5):462-466.
The mechanism underlying the potentially beneficial effects of the “gentler” modes of ventilation on chronic lung disease (CLD) of the premature infant is not known. We have previously demonstrated that alveolar Parathyroid Hormone-related Protein-Peroxisome Proliferator-Activated Receptorγ (PTHrP-PPARγ) signaling is critically important in alveolar formation, and this signaling pathway is disrupted in hyperoxia- and/or volutrauma-induced neonatal rat lung injury. Whether the same paradigm is also applicable to CLD, resulting from prolonged intermittent mandatory ventilation (IMV), and whether differential effects of the mode of ventilation on the PTHrP-PPARγ signaling pathway explain the potential benefits of the “gentler” modes of ventilation are not known. Using a well-established preterm lamb model of neonatal CLD, we tested the hypothesis that ventilatory support using high-frequency nasal ventilation (HFNV) promotes alveolar PTHrP-PPARγ signaling, whereas IMV inhibits it. Preterm lambs managed by HFNV or IMV for 21 days following preterm delivery at 132-day gestation were studied by Western hybridization and immunofluorescence labeling for key markers of alveolar homeostasis and injury/repair. In lambs managed by IMV, the abundance of key homeostatic alveolar epithelial-mesenchymal markers was reduced, whereas it was significantly increased in the HFNV group, providing a potential molecular mechanism by which “gentler” modes of ventilation reduce neonatal CLD.
PMCID: PMC3189277  PMID: 21814155
6.  Prenatal Rosiglitazone Administration to Neonatal Rat Pups Does Not Alter the Adult Metabolic Phenotype 
PPAR Research  2012;2012:604216.
Prenatally administered rosiglitazone (RGZ) is effective in enhancing lung maturity; however, its long-term safety remains unknown. This study aimed to determine the effects of prenatally administered RGZ on the metabolic phenotype of adult rats. Methods. Pregnant Sprague-Dawley rat dams were administered either placebo or RGZ at embryonic days 18 and 19. Between 12 and 20 weeks of age, the rats underwent glucose and insulin tolerance tests and de novo fatty acid synthesis assays. The lungs, liver, skeletal muscle, and fat tissue were processed by Western hybridization for peroxisome proliferator-activated receptor (PPAR)γ, adipose differentiation-related protein (ADRP), and surfactant proteins B (SPB) and C (SPC). Plasma was assayed for triglycerides, cholesterol, insulin, glucagon, and troponin-I levels. Lungs were also morphometrically analyzed. Results. Insulin and glucose challenges, de novo fatty acid synthesis, and all serum assays revealed no differences among all groups. Western hybridization for PPARγ, ADRP, SPB, and SPC in lung, liver, muscle, and fat tissue showed equal levels. Histologic analyses showed a similar number of alveoli and septal thickness in all experimental groups. Conclusions. When administered prenatally, RGZ does not affect long-term fetal programming and may be safe for enhancing fetal lung maturation.
PMCID: PMC3398645  PMID: 22829803
7.  PPARγ Signaling Mediates the Evolution, Development, Homeostasis, and Repair of the Lung 
PPAR Research  2012;2012:289867.
Epithelial-mesenchymal interactions mediated by soluble growth factors determine the evolution of vertebrate lung physiology, including development, homeostasis, and repair. The final common pathway for all of these positively adaptive properties of the lung is the expression of epithelial parathyroid-hormone-related protein, and its binding to its receptor on the mesenchyme, inducing PPARγ expression by lipofibroblasts. Lipofibroblasts then produce leptin, which binds to alveolar type II cells, stimulating their production of surfactant, which is necessary for both evolutionary and physiologic adaptation to atmospheric oxygen from fish to man. A wide variety of molecular insults disrupt such highly evolved physiologic cell-cell interactions, ranging from overdistention to oxidants, infection, and nicotine, all of which predictably cause loss of mesenchymal peroxisome-proliferator-activated receptor gamma (PPARγ) expression and the transdifferentiation of lipofibroblasts to myofibroblasts, the signature cell type for lung fibrosis. By exploiting such deep cell-molecular functional homologies as targets for leveraging lung homeostasis, we have discovered that we can effectively prevent and/or reverse the deleterious effects of these pathogenic agents, demonstrating the utility of evolutionary biology for the prevention and treatment of chronic lung disease. By understanding mechanisms of health and disease as an evolutionary continuum rather than as dissociated processes, we can evolve predictive medicine.
PMCID: PMC3390135  PMID: 22792087
Experimental lung research  2010;37(3):144-154.
Nicotine exposure alters normal homeostatic pulmonary epithelial-mesenchymal paracrine signaling pathways, resulting in alveolar interstitial fibroblast (AIF)-to-myofibroblast (MYF) transdifferentiation. Since the AIF vs MYF phenotype is determined by the expression of Peroxisome Proliferator-Activated Receptor (PPAR)γ and Wingless/Int (Wnt) signaling, respectively, we hypothesized that nicotine-induced AIF-to-MYF transdifferentiation is characterized by the down-regulation of PPARγ, and the up-regulation of the Wnt signaling pathway. As nicotine is known to activate PKC signaling, we also hypothesized that in AIFs, nicotine-induced up-regulation of Wnt signaling might be due to PKC activation. Embryonic human lung fibroblasts (WI38 cells) were treated with nicotine (1 × 10−6M) for either 30 minutes or 24 hours, with or without 30 minute pretreatment with calphostin C (1 × 10−7), a pan-PKC inhibitor. Then we examined the activation of PKC (p-PKC) and Wnt signaling (p-GSK-3β, β-catenin, LEF-1, and fibronectin). Furthermore, activation of nicotinic acetylcholine receptors (nAChR)-α3 and −α7, and whether a PPARγ agonist, Rosiglitazone, blocks nicotine-mediated Wnt activation were examined. Following nicotine stimulation, there was clear evidence for nAChR-α3 and −α7 up-regulation, accompanied by the activation of PKC and Wnt signaling, which was further accompanied by significant changes in the expression of the down-stream targets of Wnt signaling at 24h. Nicotine-mediated Wnt activation was almost completely blocked by pretreatment with either calphostin C or RGZ, indicating the central involvement of PKC activation and Wnt/PPARγ interaction in nicotine-induced up-regulation of Wnt signaling, and hence AIF-to-MYF transdifferentiation, providing novel preventive/therapeutic targets for nicotine-induced lung injury.
PMCID: PMC3062662  PMID: 21133803
Chronic lung disease; Lipofibroblast; Myofibroblast; Nicotine; Peroxisome Proliferator-Activated Receptorγ; Wnt Signaling
Pediatric research  2009;65(2):150-155.
The nuclear transcription factor Peroxisome Proliferator-Activated Receptor (PPAR) γ plays a central role in normal lung development. However, the effects of modulating PPARγ expression by exogenously administered PPARγ agonists on lung development and basic blood biochemical and metabolic profiles in a developing animal are not known. To determine these effects, newborn Sprague-Dawley rat pups were administered either diluent or rosiglitazone (RGZ), a potent PPARγ agonist, for either 1 or 7 days. Then the pups were sacrificed and the lungs were examined for specific markers of alveolar epithelial, mesenchymal, and vascular maturation, and lung morphometry. The effect of RGZ on a limited number of blood biochemical and metabolic parameters was also determined. Overall, systemically administered RGZ significantly enhanced lung maturation without affecting serum electrolytes, blood glucose, blood gases, plasma cholesterol, triglycerides, and serum cardiac troponin levels. The lung maturation effect of PPARγ agonists was also confirmed by another PPARγ agonist, the naturally occurring PPARγ ligand prostaglandin J2. We conclude that systemically administered RGZ significantly enhances lung maturation without significantly affecting the acute blood biochemical and metabolic profiles, providing rationale for further studying PPARγ agonists for enhancing lung maturation, and for promoting lung injury/repair in neonates.
PMCID: PMC2921215  PMID: 19262292
Bronchopulmonary Dysplasia; Chronic Lung Injury; Lung maturity; PPARγ; Rosiglitazone
10.  Effect of Maternal Food Restriction on Fetal Lung Lipid Differentiation Program 
Pediatric pulmonology  2009;44(7):635-644.
Although “fetal programming” has been extensively studied in many organs, there is only limited information on pulmonary effects in the offspring following intrauterine growth restriction (IUGR). We aimed to determine the effects of nutrient restriction on the lung structure and lung lipid differentiation programs in offspring using an animal mode of maternal food restriction (MFR). We utilized a rodent model of 50% MFR from day 10 of gestation to term and then using lung morphology, Western blotting, Real Time- RT-PCR and oil red O staining, lung structure and development of the offspring were examined at postnatal days (p) 1, p21, and 9 months (9M). At postnatal day 1, MFR pups weighed significantly less compared to control pups, but at p21 and 9M, they weighed significantly more. However, lung weight, expressed as a percentage of body weight between the two groups was not different at all time-points examined. The MFR group had significantly decreased alveolar number and significantly increased septal thickness at p1 and 9M, indicating significantly altered lung structure in the MFR offspring. Furthermore, although at p1, compared to the control group, lung lipid accumulation was significantly decreased in the MFR group, at 9M, it was significantly increased. There were significant temporal changes in the Parathyroid Hormone-related Protein/Peroxisome Proliferator-Activated Receptor gamma signaling pathway and surfactant synthesis. We conclude that MFR alters fetal lung lipid differentiation programming and lung morphometry by affecting specific epithelial-mesenchymal signaling pathways, offering the possibility for specific interventions to overcome these effects.
PMCID: PMC2919756  PMID: 19514059
Maternal food restriction; fetal lung development; lipid differentiation program; fetal programming; PTHrP; PPARγ
11.  Thirdhand smoke causes DNA damage in human cells 
Mutagenesis  2013;28(4):381-391.
Exposure to thirdhand smoke (THS) is a newly described health risk. Evidence supports its widespread presence in indoor environments. However, its genotoxic potential, a critical aspect in risk assessment, is virtually untested. An important characteristic of THS is its ability to undergo chemical transformations during aging periods, as demonstrated in a recent study showing that sorbed nicotine reacts with the indoor pollutant nitrous acid (HONO) to form tobacco-specific nitrosamines (TSNAs) such as 4-(methylnitrosamino)-4-(3-pyridyl)butanal (NNA) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). The goal of this study was to assess the genotoxicity of THS in human cell lines using two in vitro assays. THS was generated in laboratory systems that simulated short (acute)- and long (chronic)-term exposures. Analysis by liquid chromatography–tandem mass spectrometry quantified TSNAs and common tobacco alkaloids in extracts of THS that had sorbed onto cellulose substrates. Exposure of human HepG2 cells to either acute or chronic THS for 24h resulted in significant increases in DNA strand breaks in the alkaline Comet assay. Cell cultures exposed to NNA alone showed significantly higher levels of DNA damage in the same assay. NNA is absent in freshly emitted secondhand smoke, but it is the main TSNA formed in THS when nicotine reacts with HONO long after smoking takes place. The long amplicon–quantitative PCR assay quantified significantly higher levels of oxidative DNA damage in hypoxanthine phosphoribosyltransferase 1 (HPRT) and polymerase β (POLB) genes of cultured human cells exposed to chronic THS for 24h compared with untreated cells, suggesting that THS exposure is related to increased oxidative stress and could be an important contributing factor in THS-mediated toxicity. The findings of this study demonstrate for the first time that exposure to THS is genotoxic in human cell lines.
PMCID: PMC3681537  PMID: 23462851
12.  Perfluorooctane Sulfonate Disturbs Nanog Expression through miR-490-3p in Mouse Embryonic Stem Cells 
PLoS ONE  2013;8(10):e74968.
Perfluorooctane sulfonate (PFOS) poses potential risks to reproduction and development. Mouse embryonic stem cells (mESCs) are ideal models for developmental toxicity testing of environmental contaminants in vitro. However, the mechanism by which PFOS affects early embryonic development is still unclear. In this study, mESCs were exposed to PFOS for 24 h, and then general cytotoxicity and pluripotency were evaluated. MTT assay showed that neither PFOS (0.2 µM, 2 µM, 20 µM, and 200 µM) nor control medium (0.1% DMSO) treatments affected cell viability. Furthermore, there were no significant differences in cell cycle and apoptosis between the PFOS treatment and control groups. However, we found that the mRNA and protein levels of pluripotency markers (Sox2, Nanog) in mESCs were significantly decreased following exposure to PFOS for 24 h, while there were no significant changes in the mRNA and protein levels of Oct4. Accordingly, the expression levels of miR-145 and miR-490-3p, which can regulate Sox2 and Nanog expressions were significantly increased. Chrm2, the host gene of miR-490-3p, was positively associated with miR-490-3p expression after PFOS exposure. Dual luciferase reporter assay suggests that miR-490-3p directly targets Nanog. These results suggest that PFOS can disturb the expression of pluripotency factors in mESCs, while miR-145 and miR-490-3p play key roles in modulating this effect.
PMCID: PMC3788095  PMID: 24098361
13.  PPARs: Regulators and Translational Targets in the Lung 
PPAR Research  2012;2012:342924.
PMCID: PMC3503434  PMID: 23213318
14.  Perinatal nicotine exposure induces asthma in second generation offspring 
BMC Medicine  2012;10:129.
By altering specific developmental signaling pathways that are necessary for fetal lung development, perinatal nicotine exposure affects lung growth and differentiation, resulting in the offsprings' predisposition to childhood asthma; peroxisome proliferator-activated receptor gamma (PPARγ) agonists can inhibit this effect. However, whether the perinatal nicotine-induced asthma risk is restricted to nicotine-exposed offspring only; whether it can be transmitted to the next generation; and whether PPARγ agonists would have any effect on this process are not known.
Time-mated Sprague Dawley rat dams received either placebo or nicotine (1 mg/kg, s.c.), once daily from day 6 of gestation to postnatal day (PND) 21. Following delivery, at PND21, generation 1 (F1) pups were either subjected to pulmonary function tests, or killed to obtain their lungs, tracheas, and gonads to determine the relevant protein markers (mesenchymal contractile proteins), global DNA methylation, histone 3 and 4 acetylation, and for tracheal tension studies. Some F1 animals were used as breeders to generate F2 pups, but without any exposure to nicotine in the F1 pregnancy. At PND21, F2 pups underwent studies similar to those performed on F1 pups.
Consistent with the asthma phenotype, nicotine affected lung function in both male and female F1 and F2 offspring (maximal 250% increase in total respiratory system resistance, and 84% maximal decrease in dynamic compliance following methacholine challenge; P < 0.01, nicotine versus control; P < 0.05, males versus females; and P > 0.05, F1 versus F2), but only affected tracheal constriction in males (51% maximal increase in tracheal constriction following acetylcholine challenge, P < 0.01, nicotine versus control; P < 0.0001, males versus females; P > 0.05, F1 versus F2); nicotine also increased the contractile protein content of whole lung (180% increase in fibronectin protein levels, P < 0.01, nicotine versus control, and P < 0.05, males versus females) and isolated lung fibroblasts (for example, 45% increase in fibronectin protein levels, P < 0.05, nicotine versus control), along with decreased PPARγ expression (30% decrease, P < 0.05, nicotine versus control), but only affected contractile proteins in the male trachea (P < 0.05, nicotine versus control, and P < 0.0001, males versus females). All of the nicotine-induced changes in the lung and gonad DNA methylation and histone 3 and 4 acetylation were normalized by the PPARγ agonist rosiglitazone except for the histone 4 acetylation in the lung.
Germline epigenetic marks imposed by exposure to nicotine during pregnancy can become permanently programmed and transferred through the germline to subsequent generations, a ground-breaking finding that shifts the current asthma paradigm, opening up many new avenues to explore.
PMCID: PMC3568737  PMID: 23106849
nicotine; lung; epigenetic; asthma; multigenerational; gender difference
15.  Characterization of a Novel Fibroblast Growth Factor 10 (Fgf10) Knock-In Mouse Line to Target Mesenchymal Progenitors during Embryonic Development 
PLoS ONE  2012;7(6):e38452.
Fibroblast growth factor 10 (Fgf10) is a key regulator of diverse organogenetic programs during mouse development, particularly branching morphogenesis. Fgf10-null mice suffer from lung and limb agenesis as well as cecal and colonic atresia and are thus not viable. To date, the Mlcv1v-nLacZ-24 transgenic mouse strain (referred to as Fgf10LacZ), which carries a LacZ insertion 114 kb upstream of exon 1 of Fgf10 gene, has been the only strain to allow transient lineage tracing of Fgf10-positive cells. Here, we describe a novel Fgf10Cre-ERT2 knock-in line (Fgf10iCre) in which a Cre-ERT2-IRES-YFP cassette has been introduced in frame with the ATG of exon 1 of Fgf10 gene. Our studies show that Cre-ERT2 insertion disrupts Fgf10 function. However, administration of tamoxifen to Fgf10iCre; Tomatoflox double transgenic embryos or adult mice results in specific labeling of Fgf10-positive cells, which can be lineage-traced temporally and spatially. Moreover, we show that the Fgf10iCre line can be used for conditional gene inactivation in an inducible fashion during early developmental stages. We also provide evidence that transcription factors located in the first intron of Fgf10 gene are critical for maintaining Fgf10 expression over time. Thus, the Fgf10iCre line should serve as a powerful tool to explore the functions of Fgf10 in a controlled and stage-specific manner.
PMCID: PMC3374781  PMID: 22719891
16.  A potential role of the JNK pathway in hyperoxia-induced cell death, myofibroblast transdifferentiation and TGF-β1-mediated injury in the developing murine lung 
BMC Cell Biology  2011;12:54.
Transforming growth factor-beta 1 (TGF-β1) has been implicated in hyperoxia-induced cell death and impaired alveolarization in the developing lung. In addition, the c-JunNH2-terminal kinase (JNK) pathway has been shown to have a role for TGF-β1-mediated effects. We hypothesized that the JNK pathway is an important regulator of hyperoxia-induced pulmonary responses in the developing murine lung.
We used cultured human lung epithelial cells, fetal rat lung fibroblasts and a neonatal TGF-β1 transgenic mouse model. We demonstrate that hyperoxia inhibits cell proliferation, activates cell death mediators and causes cell death, and promotes myofibroblast transdifferentiation, in a dose-dependent manner. Except for fibroblast proliferation, the effects were mediated via the JNK pathway. In addition, since we observed increased expression of TGF-β1 by epithelial cells on exposure to hyperoxia, we used a TGF-β1 transgenic mouse model to determine the role of JNK activation in TGF-β1 induced effects on lung development and on exposure to hyperoxia. We noted that, in this model, inhibition of JNK signaling significantly improved the spontaneously impaired alveolarization in room air and decreased mortality on exposure to hyperoxia.
When viewed in combination, these studies demonstrate that hyperoxia-induced cell death, myofibroblast transdifferentiation, TGF-β1- and hyperoxia-mediated pulmonary responses are mediated, at least in part, via signaling through the JNK pathway.
PMCID: PMC3266206  PMID: 22172122
17.  The Effects of Smoking on the Developing Lung: Insights from a Biologic Model for Lung Development, Homeostasis, and Repair 
Lung  2009;187(5):281-289.
There is extensive epidemiologic and experimental evidence from both animal and human studies that demonstrates detrimental long-term pulmonary outcomes in the offspring of mothers who smoke during pregnancy. However, the molecular mechanisms underlying these associations are not understood. Therefore, it is not surprising that that there is no effective intervention to prevent the damaging effects of perinatal smoke exposure. Using a biologic model of lung development, homeostasis, and repair, we have determined that in utero nicotine exposure disrupts specific molecular paracrine communications between epithelium and interstitium that are driven by parathyroid hormone-related protein and peroxisome proliferator-activated receptor (PPAR)γ, resulting in transdifferentiation of lung lipofibroblasts to myofibroblasts, i.e., the conversion of the lipofibroblast phenotype to a cell type that is not conducive to alveolar homeostasis, and is the cellular hallmark of chronic lung disease, including asthma. Furthermore, we have shown that by molecularly targeting PPARγ expression, nicotine-induced lung injury can not only be significantly averted, it can also be reverted. The concept outlined by us differs from the traditional paradigm of teratogenic and toxicological effects of tobacco smoke that has been proposed in the past. We have argued that since nicotine alters the normal homeostatic epithelial-mesenchymal paracrine signaling in the developing alveolus, rather than causing totally disruptive structural changes, it offers a unique opportunity to prevent, halt, and/or reverse this process through targeted molecular manipulations.
PMCID: PMC2928656  PMID: 19641967
Nicotine; Lung development; Tobacco; Smoking; Chronic obstructive pulmonary disease; Chronic lung disease
18.  Deconvoluting lung evolution: from phenotypes to gene regulatory networks 
Speakers in this symposium presented examples of respiratory regulation that broadly illustrate principles of evolution from whole organ to genes. The swim bladder and lungs of aquatic and terrestrial organisms arose independently from a common primordial “respiratory pharynx” but not from each other. Pathways of lung evolution are similar between crocodiles and birds but a low compliance of mammalian lung may have driven the development of the diaphragm to permit lung inflation during inspiration. To meet the high oxygen demands of flight, bird lungs have evolved separate gas exchange and pump components to achieve unidirectional ventilation and minimize dead space. The process of “screening” (removal of oxygen from inspired air prior to entering the terminal units) reduces effective alveolar oxygen tension and potentially explains why nonathletic large mammals possess greater pulmonary diffusing capacities than required by their oxygen consumption. The “primitive” central admixture of oxygenated and deoxygenated blood in the incompletely divided reptilian heart is actually co-regulated with other autonomic cardiopulmonary responses to provide flexible control of arterial oxygen tension independent of ventilation as well as a unique mechanism for adjusting metabolic rate. Some of the most ancient oxygen-sensing molecules, i.e., hypoxia-inducible factor-1alpha and erythropoietin, are up-regulated during mammalian lung development and growth under apparently normoxic conditions, suggesting functional evolution. Normal alveolarization requires pleiotropic growth factors acting via highly conserved cell–cell signal transduction, e.g., parathyroid hormone-related protein transducing at least partly through the Wingless/int pathway. The latter regulates morphogenesis from nematode to mammal. If there is commonality among these diverse respiratory processes, it is that all levels of organization, from molecular signaling to structure to function, co-evolve progressively, and optimize an existing gas-exchange framework.
PMCID: PMC2895359  PMID: 20607138

Results 1-18 (18)