PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (45)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Disease Specific Therapies in Leukodystrophies and Leukoencephalopathies 
Molecular genetics and metabolism  2015;114(4):527-536.
The leukodystrophies are a heterogeneous, often progressive group of disorders manifesting a wide range of symptoms and complications. Most of these disorders have historically had no etiologic or disease specific therapeutic approaches. Recently, a greater understanding of the pathologic mechanisms associated with leukodystrophies has allowed clinicians and researchers to prioritize treatment strategies and advance research in therapies for specific disorders, some of which are on the verge of pilot or phase I/II clinical trials. This shifts the care of leukodystrophy patients from the management of the complex array of symptoms and sequelae alone to targeted therapeutics. The unmet needs of leukodystrophy patients still remain an overwhelming burden. While the overwhelming consensus is that these disorders collectively are symptomatically treatable, leukodystrophy patients are in need of advanced therapies and if possible, a cure.
doi:10.1016/j.ymgme.2015.01.014
PMCID: PMC4390468  PMID: 25684057
leukodystrophy; consensus; therapy; care; outcomes; preventive; prevention
2.  Dual regulatory switch through interactions of Tcf7l2/Tcf4 with stage-specific partners propels oligodendroglial maturation 
Nature Communications  2016;7:10883.
Constitutive activation of Wnt/β-catenin inhibits oligodendrocyte myelination. Tcf7l2/Tcf4, a β-catenin transcriptional partner, is required for oligodendrocyte differentiation. How Tcf7l2 modifies β-catenin signalling and controls myelination remains elusive. Here we define a stage-specific Tcf7l2-regulated transcriptional circuitry in initiating and sustaining oligodendrocyte differentiation. Multistage genome occupancy analyses reveal that Tcf7l2 serially cooperates with distinct co-regulators to control oligodendrocyte lineage progression. At the differentiation onset, Tcf7l2 interacts with a transcriptional co-repressor Kaiso/Zbtb33 to block β-catenin signalling. During oligodendrocyte maturation, Tcf7l2 recruits and cooperates with Sox10 to promote myelination. In that context, Tcf7l2 directly activates cholesterol biosynthesis genes and cholesterol supplementation partially rescues oligodendrocyte differentiation defects in Tcf712 mutants. Together, we identify stage-specific co-regulators Kaiso and Sox10 that sequentially interact with Tcf7l2 to coordinate the switch at the transitions of differentiation initiation and maturation during oligodendrocyte development, and point to a previously unrecognized role of Tcf7l2 in control of cholesterol biosynthesis for CNS myelinogenesis.
Wnt/β-catenin signaling regulates oligodendrocyte (OL) development. Here the authors show that Tcf7l2, a β-catenin transcriptional partner,sequentially interacts with stage-specific partners to coordinate the transitions of differentiation initiation and maturation during OL development.
doi:10.1038/ncomms10883
PMCID: PMC4786870  PMID: 26955760
3.  A Distinct Population of Microglia Supports Adult Neurogenesis in the Subventricular Zone 
The Journal of Neuroscience  2015;35(34):11848-11861.
Microglia are involved in synaptic pruning both in development and in the mature CNS. In this study, we investigated whether microglia might further contribute to circuit plasticity by modulating neuronal recruitment from the neurogenic subventricular zone (SVZ) of the adult mouse striatum. We found that microglia residing in the SVZ and adjacent rostral migratory stream (RMS) comprise a morphologically and antigenically distinct phenotype of immune effectors. Whereas exhibiting characteristics of alternatively activated microglia, the SVZ/RMS microglia were clearly distinguished by their low expression of purinoceptors and lack of ATP-elicitable chemotaxis. Furthermore, the in vivo depletion of these microglia hampered the survival and migration of newly generated neuroblasts through the RMS to the olfactory bulb. SVZ and RMS microglia thus appear to comprise a functionally distinct class that is selectively adapted to the support and direction of neuronal integration into the olfactory circuitry. Therefore, this unique microglial subpopulation may serve as a novel target with which to modulate cellular addition from endogenous neural stem and progenitor cells of the adult brain.
SIGNIFICANCE STATEMENT Microglial cells are a specialized population of macrophages in the CNS, playing key roles as immune mediators. As integral components in the CNS, the microglia stand out for using the same mechanisms, phagocytosis and cytochemokine release, to promote homeostasis, synaptic pruning, and neural circuitry sculpture. Here, we addressed microglial functions in the subventricular zone (SVZ), the major postnatal neurogenic niche. Our results depict microglia as a conspicuous component of SVZ and its anterior extension, the rostral migratory stream, a pathway used by neuroblasts during their transit toward olfactory bulb layers. In addition to other unique populations residing in the SVZ niche, microglia display distinct morphofunctional properties that boost neuronal progenitor survival and migration in the mammalian brain.
doi:10.1523/JNEUROSCI.1217-15.2015
PMCID: PMC4549398  PMID: 26311768
microglia; neuroblasts; neurogenesis; purinergic signaling; subventricular zone
4.  Fine-tuning the central nervous system: microglial modelling of cells and synapses 
Microglia constitute as much as 10–15% of all cells in the mammalian central nervous system (CNS) and are the only glial cells that do not arise from the neuroectoderm. As the principal CNS immune cells, microglial cells represent the first line of defence in response to exogenous threats. Past studies have largely been dedicated to defining the complex immune functions of microglial cells. However, our understanding of the roles of microglia has expanded radically over the past years. It is now clear that microglia are critically involved in shaping neural circuits in both the developing and adult CNS, and in modulating synaptic transmission in the adult brain. Intriguingly, microglial cells appear to use the same sets of tools, including cytokine and chemokine release as well as phagocytosis, whether modulating neural function or mediating the brain's innate immune responses. This review will discuss recent developments that have broadened our views of neuro-glial signalling to include the contribution of microglial cells.
doi:10.1098/rstb.2013.0593
PMCID: PMC4173279  PMID: 25225087
microglia; cerebral cortex; neurons; synapse; neurogenesis; neuroblasts
5.  A Competitive Advantage by Neonatally Engrafted Human Glial Progenitors Yields Mice Whose Brains Are Chimeric for Human Glia 
The Journal of Neuroscience  2014;34(48):16153-16161.
Neonatally transplanted human glial progenitor cells (hGPCs) densely engraft and myelinate the hypomyelinated shiverer mouse. We found that, in hGPC-xenografted mice, the human donor cells continue to expand throughout the forebrain, systematically replacing the host murine glia. The differentiation of the donor cells is influenced by the host environment, such that more donor cells differentiated as oligodendrocytes in the hypomyelinated shiverer brain than in myelin wild-types, in which hGPCs were more likely to remain as progenitors. Yet in each recipient, both the number and relative proportion of mouse GPCs fell as a function of time, concomitant with the mitotic expansion and spread of donor hGPCs. By a year after neonatal xenograft, the forebrain GPC populations of implanted mice were largely, and often entirely, of human origin. Thus, neonatally implanted hGPCs outcompeted and ultimately replaced the host population of mouse GPCs, ultimately generating mice with a humanized glial progenitor population. These human glial chimeric mice should permit us to define the specific contributions of glia to a broad variety of neurological disorders, using human cells in vivo.
doi:10.1523/JNEUROSCI.1510-14.2014
PMCID: PMC4244478  PMID: 25429155
cell transplant; chimera; demyelinating disease; glial progenitor; neural stem cell; oligodendrocytic progenitor
6.  An Electrically Coupled Tissue Engineered Cardiomyocyte Scaffold Improves Cardiac Function in Rats with Chronic Heart Failure 
Background
Varying strategies are currently being evaluated to develop tissue-engineered constructs for the treatment of ischemic heart disease. This study examines an angiogenic and biodegradable cardiac construct seeded with neonatal cardiomyocytes for the treatment of chronic heart failure (CHF).
Methods
We evaluated a neonatal cardiomyocyte (NCM)-seeded three-dimensional fibroblast construct (3DFC) in vitro for the presence of functional gap junctions and the potential of the NCM-3DFC to restore left ventricular (LV) function in an in vivo rat model of CHF at 3 weeks after permanent left coronary artery ligation.
Results
The NCM-3DFC demonstrated extensive cell-to-cell connectivity following dye injection. At 5 days in culture, the patch contracted spontaneously in a rhythmic and directional fashion, at 43±3 beats/min with a mean displacement of 1.3±0.3 mm and contraction velocity of 0.8±0.2 mm/sec. The seeded patch could be electrically paced at near physiological rates (270±30 beats/min) while maintaining coordinated, directional contractions. Three weeks after implantation, the NCM-3DFC improved LV function by increasing (p<0.05) ejection fraction 26%, cardiac index 33%, dP/dt(+) 25%, dP/dt(−) 23%, and peak developed pressure (PDP) 30%, while decreasing (p<0.05) LV end diastolic pressure 38% and the time constant of relaxation (Tau) 16%. Eighteen weeks post implantation, the NCM-3DFC improved LV function by increasing (p<0.05) ejection fraction 54%, mean arterial pressure 20%, dP/dt(+) 16%, dP/dt(−) 34% and PDP 39%.
Conclusion
This study demonstrates that a multicellular, electromechanically organized, cardiomyocyte scaffold, constructed in vitro by seeding NCM onto 3DFC, can improve LV function long-term when implanted in rats with CHF.
doi:10.1016/j.healun.2013.12.004
PMCID: PMC3966928  PMID: 24560982
Chronic heart failure; ventricular function ventricles; ejection fraction; cardiomyocytes; cell therapy
7.  Human glial chimeric mice reveal astrocytic dependence of JC virus infection 
The Journal of Clinical Investigation  2014;124(12):5323-5336.
Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease triggered by infection with the human gliotropic JC virus (JCV). Due to the human-selective nature of the virus, there are no animal models available to investigate JCV pathogenesis. To address this issue, we developed mice with humanized white matter by engrafting human glial progenitor cells (GPCs) into neonatal immunodeficient and myelin-deficient mice. Intracerebral delivery of JCV resulted in infection and subsequent demyelination of these chimeric mice. Human GPCs and astrocytes were infected more readily than oligodendrocytes, and viral replication was noted primarily in human astrocytes and GPCs rather than oligodendrocytes, which instead expressed early viral T antigens and exhibited apoptotic death. Engraftment of human GPCs in normally myelinated and immunodeficient mice resulted in humanized white matter that was chimeric for human astrocytes and GPCs. JCV effectively propagated in these mice, which indicates that astroglial infection is sufficient for JCV spread. Sequencing revealed progressive mutation of the JCV capsid protein VP1 after infection, suggesting that PML may evolve with active infection. These results indicate that the principal CNS targets for JCV infection are astrocytes and GPCs and that infection is associated with progressive mutation, while demyelination is a secondary occurrence, following T antigen–triggered oligodendroglial apoptosis. More broadly, this study provides a model by which to further assess the biology and treatment of human-specific gliotropic viruses.
doi:10.1172/JCI76629
PMCID: PMC4348956  PMID: 25401469
8.  Use of Differentiated Pluripotent Stem Cells in Replacement Therapy for Treating Disease 
Science (New York, N.Y.)  2014;345(6199):1247391.
Patient-derived pluripotent stem cells (PSC) directed to various cell fates holds promise as source material for treating numerous disorders. The availability of precisely differentiated PSC-derived cells will dramatically impact blood component and hematopoietic stem cell therapies, and should facilitate treatment of diabetes, some forms of liver disease and neurologic disorders, retinal diseases, and possibly heart disease. Although an unlimited supply of specific cell types are needed, other barriers must be overcome. This review of the state of cell therapies highlights important challenges. Successful cell transplantation will require optimizing the best cell type and site for engraftment, overcoming limitations to cell migration and tissue integration, and occasionally needing to control immunologic reactivity. Collaboration among scientists, clinicians, and industry is critical for generating new stem cell-based therapies.
doi:10.1126/science.1247391
PMCID: PMC4329726  PMID: 25146295
9.  Identification of Novel Tumor-Associated Cell Surface Sialoglycoproteins in Human Glioblastoma Tumors Using Quantitative Proteomics 
PLoS ONE  2014;9(10):e110316.
Glioblastoma multiform (GBM) remains clinical indication with significant “unmet medical need”. Innovative new therapy to eliminate residual tumor cells and prevent tumor recurrences is critically needed for this deadly disease. A major challenge of GBM research has been the identification of novel molecular therapeutic targets and accurate diagnostic/prognostic biomarkers. Many of the current clinical therapeutic targets of immunotoxins and ligand-directed toxins for high-grade glioma (HGG) cells are surface sialylated glycoproteins. Therefore, methods that systematically and quantitatively analyze cell surface sialoglycoproteins in human clinical tumor samples would be useful for the identification of potential diagnostic markers and therapeutic targets for malignant gliomas. In this study, we used the bioorthogonal chemical reporter strategy (BOCR) in combination with label-free quantitative mass spectrometry (LFQ-MS) to characterize and accurately quantify the individual cell surface sialoproteome in human GBM tissues, in fetal, adult human astrocytes, and in human neural progenitor cells (NPCs). We identified and quantified a total of 843 proteins, including 801 glycoproteins. Among the 843 proteins, 606 (72%) are known cell surface or secreted glycoproteins, including 156 CD-antigens, all major classes of cell surface receptor proteins, transporters, and adhesion proteins. Our findings identified several known as well as new cell surface antigens whose expression is predominantly restricted to human GBM tumors as confirmed by microarray transcription profiling, quantitative RT-PCR and immunohistochemical staining. This report presents the comprehensive identification of new biomarkers and therapeutic targets for the treatment of malignant gliomas using quantitative sialoglycoproteomics with clinically relevant, patient derived primary glioma cells.
doi:10.1371/journal.pone.0110316
PMCID: PMC4216004  PMID: 25360666
10.  Defective Glial Maturation in Vanishing White Matter Disease 
Vanishing white matter disease (VWM) is a genetic leukoencephalopathy linked to mutations in the eukaryotic translation initiation factor 2B (eIF2B). It is a disease of infants, children and adults, who experience a slowly progressive neurological deterioration with episodes of rapid clinical worsening triggered by stress and eventually leading to death. Characteristic neuropathological findings include cystic degeneration of the white matter with scarce reactive gliosis, dysmorphic astrocytes, and paucity of myelin despite an increase in oligodendrocytic density. To assess whether a defective maturation of macroglia may be responsible for the feeble gliosis and lack of myelin, we investigated the maturation status of astrocytes and oligodendrocytes in the brains of 8 VWM patients, 4 patients with other white matter disorders and 6 age-matched controls with a combination of immunocytochemistry, histochemistry, scratch-wound assays, Western blot and quantitative PCR. We observed increased proliferation and a defect in the maturation of VWM astrocytes. They show an anomalous composition of their intermediate filament network with predominance of the δ-isoform of the glial fibrillary acidic protein and an increase in the heat shock protein αB-crystallin, supporting the possibility that a deficiency in astrocyte function may contribute to the loss of white matter in VWM. We also demonstrated a significant increase in numbers of pre-myelinating oligodendrocyte progenitors in VWM, which may explain the co-existence of oligodendrocytosis and myelin paucity in the patients’ white matter.
doi:10.1097/NEN.0b013e318203ae74
PMCID: PMC4135437  PMID: 21157376
Astrocytes; GFAPδ; Glia maturation; Olig2 cytoplasmic translocation; Oligodendrocyte progenitor cells; Vanishing white matter
11.  White matter from fibroblasts 
Nature biotechnology  2013;31(5):412-413.
Myelinating oligodendrocytes are induced from mouse embryonic fibroblasts by transcription factor–mediated reprogramming.
doi:10.1038/nbt.2570
PMCID: PMC4121857  PMID: 23657393
12.  Failure to Launch: So many progenitors, so little myelin 
Nature neuroscience  2014;17(4):483-485.
doi:10.1038/nn.3685
PMCID: PMC4121858  PMID: 24671061
13.  Testosterone modulation of angiogenesis and neurogenesis in the adult songbird brain 
Neuroscience  2013;239:139-148.
Throughout life, new neurons arise from the ventricular zone of the adult songbird brain and are recruited to the song control nucleus HVC, from which they extend projections to its target, nucleus robustus of the arcopallium (RA). This process of ongoing parenchymal neuronal addition and circuit integration is both triggered and modulated by seasonal surges in systemic testosterone. Brain aromatase converts circulating testosterone to estradiol, so that HVC is concurrently exposed to both androgenic and estrogenic stimulation. These two signals cooperate to trigger HVC endothelial cell division and angiogenesis, by inducing the regionally-restricted expression of vascular endothelial growth factor (VEGF), its matrix-releasing protease MMP9, and its endothelial receptor VEGFR2. The expanded HVC microvascular network then secretes the neurotrophic factor BDNF, which in turn supports the recruitment of newly generated neurons. This process is striking for its spatial restriction and hence functional specificity. While androgen receptors are broadly expressed by the nuclei of the vocal control system, estrogen receptor (ERα) expression is largely restricted to HVC and its adjacent mediocaudal neopallium. The geographic overlap of these receptor phenotypes in HVC provides the basis for a regionally-defined set of paracrine interactions between the vascular bed and neuronal progenitor pool, that both characterize and distinguish this nucleus. These interactions culminate in the focal attraction of new neurons to the adult HVC, the integration of those neurons into the extant vocal control circuits, and ultimately the acquisition and elaboration of song.
doi:10.1016/j.neuroscience.2012.12.043
PMCID: PMC4113966  PMID: 23291451
androgen; estrogen; testosterone; angiogenesis; neurogenesis; adult neurogenesis; VEGF; BDNF; neuroethology; songbird
14.  Sustained mobilization of endogenous neural progenitors delays disease progression in a transgenic model of Huntington's Disease 
Cell stem cell  2013;12(6):787-799.
Huntington's disease (HD) is a neurodegenerative disease characterized in part by the loss of striatopallidal medium spiny projection neurons (MSNs). Expression of BDNF and noggin via intracerebroventricular (ICV) delivery in an adenoviral vector triggers the addition of new neurons to the neostriatum. In this study, we found that a single ICV injection of the adeno-associated viruses AAV4-BDNF and AAV4-noggin triggered the sustained recruitment of new MSNs in both wild-type and R6/2 mice, a model of HD. Mice treated with AAV4-BDNF/noggin, or with BDNF and noggin proteins, actively recruited subependymal progenitor cells to form new MSNs that matured and achieved circuit integration. Importantly, the AAV4-BDNF/noggin-treated R6/2 mice showed delayed deterioration of motor function and substantially increased survival. In addition, squirrel monkeys given ICV injections of AAV4-BDNF/noggin showed similar addition of striatal neurons. Induced neuronal addition may therefore represent a promising avenue for disease amelioration in HD.
doi:10.1016/j.stem.2013.04.014
PMCID: PMC4051319  PMID: 23746982
Adult neurogenesis; AAV4; subependyma; gene therapy; Huntington's disease
15.  Clenbuterol Plus Granulocyte Colony-Stimulating Factor Regulates Stem/Progenitor Cell Mobilization and Exerts Beneficial Effect by Increasing Neovascularization in Rats With Heart Failure 
Journal of cardiac failure  2013;19(7):503-508.
Background
Treatment of beta2-adrenergic receptor agonists with myeloid cytokines, such as granulocyte colony-stimulating factor (G-CSF) has been reported to enhance stem/progenitor cell mobilization and proliferation in ischemic myocardium. However, whether the combination therapy of G-CSF and clenbuterol (Clen) contributes to improved left ventricular (LV) function remains uncertain. We investigated whether this combination therapy induced bone marrow–derived stem/progenitor cell mobilization, neovascularization, and altered LV function after acute myocardial infarction (MI).
Methods and Results
Following MI, rats were treated with single Clen, high-dose Clen, and G-CSF + Clen. We evaluated LV function and remodeling with the use of echocardiography in addition to hemodynamics 3 weeks after MI. Treatment with G-CSF + Clen increased (P < .05), compared with no treatment, LV ejection fraction 46 ± 3% vs 34 ± 2%, LV dP/dt 5,789 ± 394 mm Hg vs 4,503 ± 283 mm Hg, and the percentage of circulating CD34+ cells, appearing to correlate with improvements in LV function.
Conclusions
Combination therapy improved LV function 3 weeks after MI, suggesting that G-CSF + Clen might augment stem/progenitor cell migration, contributing to tissue healing. These data raise the possibility that enhancing endogenous bone marrow–derived stem/progenitor cell mobilization may be a new treatment for ischemic heart failure after MI.
doi:10.1016/j.cardfail.2013.05.010
PMCID: PMC3957478  PMID: 23834926
Neovascularization; beta2-adrenergic receptor agonist
16.  Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice 
Cell stem cell  2013;12(3):342-353.
Human astrocytes are larger and more complex than those of infraprimate mammals, suggesting that their role in neural processing has expanded with evolution. To assess the cell-autonomous and species-selective properties of human glia, we engrafted human glial progenitor cells (GPCs) into neonatal immunodeficient mice. Upon maturation, the recipient brains exhibited large numbers and high proportions of both human glial progenitors and astrocytes. The engrafted human glia were gap junction-coupled to host astroglia, yet retained the size and pleomorphism of hominid astroglia, and propagated Ca2+ signals 3-fold faster than their hosts. Long term potentiation (LTP) was sharply enhanced in the human glial chimeric mice, as was their learning, as assessed by Barnes maze navigation, object-location memory, and both contextual and tone fear conditioning. Mice allografted with murine GPCs showed no enhancement of either LTP or learning. These findings indicate that human glia differentially enhance both activity-dependent plasticity and learning in mice.
doi:10.1016/j.stem.2012.12.015
PMCID: PMC3700554  PMID: 23472873
glial progenitor cell; chimera; astrocyte; long-term potentiation; learning
17.  Human iPSC-derived oligodendrocyte progenitors can myelinate and rescue a mouse model of congenital hypomyelination 
Cell stem cell  2013;12(2):252-264.
Neonatal engraftment by oligodendrocyte progenitor cells (OPCs) permits the myelination of congenitally dysmyelinated brain. To establish a potential autologous source of these cells, we developed a strategy by which to differentiate human induced pluripotential stem cells (hiPSCs) into OPCs. From 3 hiPSC lines, as well as from human embryonic stem cells (hESCs), we generated highly enriched OLIG2+/PDGFRα+/NKX2.2+/SOX10+ hOPCs, which could be further purified using fluorescence-activated cell sorting. hiPSC OPCs efficiently differentiated into both myelinogenic oligodendrocytes and astrocytes, in vitro and in vivo. Neonatally engrafted hiPSC OPCs robustly myelinated the brains of myelin-deficient shiverer mice, and substantially increased the survival of these mice. The speed and efficiency of myelination by hiPSC OPCs was higher than that previously observed using fetal tissue-derived OPCs, and no tumors from these grafts were noted as long as 9 months after transplant. These results suggest the utility of hiPSC-derived OPCs in treating disorders of myelin loss.
doi:10.1016/j.stem.2012.12.002
PMCID: PMC3700553  PMID: 23395447
glial progenitor cell; iPS cell; embryonic stem cell; neural stem cell; remyelination
18.  An activated protein C analog stimulates neuronal production by human neural progenitor cells via a PAR1-PAR3-S1PR1-Akt pathway 
Activated protein C (APC) is a protease with anticoagulant and cell-signaling activities. In the central nervous system, APC and its analogs with reduced anticoagulant activity but preserved cell signaling activities, such as 3K3A-APC, exert neuroprotective, vasculoprotective and anti-inflammatory effects. Murine APC promotes subependymal neurogenesis in rodents in vivo after ischemic and traumatic brain injury. Whether human APC can influence neuronal production from resident progenitor cells in humans is unknown. Here we show that 3K3A-APC, but not S360A-APC (an enzymatically inactive analog of APC), stimulated neuronal mitogenesis and differentiation from fetal human neural stem and progenitor cells (NPCs). 3K3A-APC’s effects on proliferation and differentiation were comparable to those respectively obtained with fibroblast growth factor and brain-derived growth factor. Its promoting effect on neuronal differentiation was accompanied by inhibition of astroglial differentiation. In addition, 3K3A-APC exerted modest anti-apoptotic effects during neuronal production. These effects appeared mediated through specific protease activated (PAR) and sphingosine-1-phosphate (S1PR) receptors, in that siRNA-mediated inhibition of PARs 1–4 and S1PRs 1–5 revealed that PAR1, PAR3 and S1PR1 are required for the neurogenic effects of 3K3A-APC. 3K3A-APC activated Akt, a downstream target of S1PR1, which was inhibited by S1PR1, PAR1 and PAR3 silencing. Adenoviral transduction of NPCs with a kinase-defective Akt mutant abolished the effects of 3K3A-APC on NPCs, confirming a key role of Akt activation in 3K3A-APC-mediated neurogenesis. Thus, APC and its pharmacological analogues, by influencing PAR and S1PR signals in resident neural progenitor cells, may be potent modulators of both development and repair in the human CNS.
doi:10.1523/JNEUROSCI.4491-12.2013
PMCID: PMC3707621  PMID: 23554499
19.  Long-Term Outcomes of Hospitalized Patients with a Non-Acute Coronary Syndrome Diagnosis and an Elevated Cardiac Troponin Level 
The American journal of medicine  2011;124(7):630-635.
Background
Cardiac troponin levels help risk-stratify patients presenting with an acute coronary syndrome (ACS). Although they may be elevated in patients presenting with Non-ACS conditions, specific diagnoses and long-term outcomes within that cohort are unclear.
Methods and Results
Using the Veterans Affairs (VA) centralized databases, we identified all hospitalized patients in 2006 who had a troponin assay obtained during their initial reference hospitalization. Based on ICD-9 diagnostic codes, primary diagnoses were categorized as either ACS or Non-ACS conditions. Of a total of 21,668 patients with an elevated troponin level who were discharged from the hospital, 12,400 (57.2%) had a Non-ACS condition. Among that cohort, the most common diagnostic category involved the cardiovascular system and congestive heart failure (N=1661) and chronic coronary artery disease (N=1648) accounted for the major classifications. At one-year following hospital discharge, mortality in patients with a Non-ACS condition was 22.8% and was higher than the ACS cohort (Odds Ratio=1.39; 95%CI: 1.30–1.49). Despite the high prevalence of cardiovascular diseases in patients with a Non-ACS diagnosis, utilization of cardiac imaging within 90 days of hospitalization was low compared with ACS patients (Odds Ratio=0.25; 95%CI: 0.23–0.27).
Conclusions
Hospitalized patients with an elevated troponin level most often have a primary diagnosis that is not an acute coronary syndrome. Their long-term survival is poor and justifies novel diagnostic or therapeutic strategy-based studies to target the highest risk subsets prior to hospital discharge.
doi:10.1016/j.amjmed.2011.02.024
PMCID: PMC3771399  PMID: 21601821
outcomes; troponins; non-ACS diagnosis; cardiac imaging; coronary artery disease
20.  A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid β 
Science translational medicine  2012;4(147):147ra111.
Because it lacks a lymphatic circulation, the brain must clear extracellular proteins by an alternative mechanism. The cerebrospinal fluid (CSF) functions as a sink for brain extracellular solutes, but it is not clear how solutes from the brain interstitium move from the parenchyma to the CSF. We demonstrate that a substantial portion of subarachnoid CSF cycles through the brain interstitial space. On the basis of in vivo two-photon imaging of small fluorescent tracers, we showed that CSF enters the parenchyma along paravascular spaces that surround penetrating arteries and that brain interstitial fluid is cleared along paravenous drainage pathways. Animals lacking the water channel aquaporin-4 (AQP4) in astrocytes exhibit slowed CSF influx through this system and a ~70% reduction in interstitial solute clearance, suggesting that the bulk fluid flow between these anatomical influx and efflux routes is supported by astrocytic water transport. Fluorescent-tagged amyloid β, a peptide thought to be pathogenic in Alzheimer’s disease, was transported along this route, and deletion of the Aqp4 gene suppressed the clearance of soluble amyloid β, suggesting that this pathway may remove amyloid β from the central nervous system. Clearance through paravenous flow may also regulate extracellular levels of proteins involved with neurodegenerative conditions, its impairment perhaps contributing to the mis-accumulation of soluble proteins.
doi:10.1126/scitranslmed.3003748
PMCID: PMC3551275  PMID: 22896675
21.  Pleiotrophin suppression of receptor protein tyrosine phosphatase–β/ζ maintains the self-renewal competence of fetal human oligodendrocyte progenitor cells 
Oligodendrocyte progenitor cells (OPCs) persist in human white matter, yet the mechanisms by which they are maintained in an undifferentiated state are unknown. Human OPCs differentially express protein tyrosine phosphatase receptor β/ζ (PTPRZ1), and its inhibitory ligand, pleiotrophin, suggesting the maintenance of an autocrine loop by which PTPRZ1 activity is tonically suppressed. PTPRZ1 constitutively promotes the tyrosine dephosphorylation of β-catenin, and thus β-catenin participation in TCF-mediated transcription. Using CD140a/PDGFRα-based FACS to isolate fetal OPCs from the fetal brain at gestational ages 16-22 weeks, we asked if pleiotrophin modulated the expansion of OPCs, and if so, whether this was effected through the serial engagement of PTPRZ1 and β-catenin-dependent signals, such as TCF-mediated transcription. Lentiviral shRNAi knockdown of PTPRZ1 induced TCF-mediated transcription, and substantially augmented GSK3β inhibition-induced TCF-reporter luciferase expression, suggesting dual regulation of β-catenin and the importance of PTPRZ1 as a tonic brake upon TCF-dependent transcription. Pharmacological inhibition of GSK3β triggered substrate detachment and initiated sphere formation, yet had no effect on either proliferation or net cell number. In contrast, pleiotrophin strongly potentiated the proliferation of CD140a+-sorted OPCs, as did PTPRZ1 knockdown, which significantly increased the total number of population doublings exhibited by OPCs before mitotic senescence. These observations suggest that pleiotrophin inhibition of PTPRZ1 contributes to the homeostatic self-renewal of OPCs, and that this process is mediated by the tonic activation of β-catenin/TCF-dependent transcription.
doi:10.1523/JNEUROSCI.1320-12.2012
PMCID: PMC3700539  PMID: 23100427
progenitor cells; β-catenin; Wnt signaling; pleiotrophin; PTPRZ1; PDGFRA; RPTPβ/ζ; CD140a; human; oligodendrocyte progenitor
22.  Perivascular instruction of cell genesis and fate in the adult brain 
Nature neuroscience  2011;14(11):1382-1389.
The perivascular niche for neurogenesis was first reported as the co-association of newly generated neurons and their progenitors with both dividing and mitotically quiescent endothelial cells in restricted regions of the brain in adult birds and mammals alike. This review attempts to summarize our present understanding of the interaction of blood vessels with neural stem and progenitor cells, addressing both glial and neuronal progenitor cell interactions in the perivascular niche. We review the molecular interactions that are most critical to the endothelial control of stem and progenitor cell mobilization and differentiation. The focus throughout will be on defining those perivascular ligand-receptor interactions shared among these systems, as well as those that clearly differ as a function of cell type and setting, by which specificity may be achieved in the development of targeted therapeutics.
doi:10.1038/nn.2963
PMCID: PMC3655803  PMID: 22030549
23.  Pleiotrophin Suppression of Receptor Protein Tyrosine Phosphatase-β/ζ Maintains the Self-Renewal Competence of Fetal Human Oligodendrocyte Progenitor Cells 
The Journal of Neuroscience  2012;32(43):15066-15075.
Oligodendrocyte progenitor cells (OPCs) persist in human white matter, yet the mechanisms by which they are maintained in an undifferentiated state are unknown. Human OPCs differentially express protein tyrosine phosphatase receptor β/ζ (PTPRZ1) and its inhibitory ligand, pleiotrophin, suggesting the maintenance of an autocrine loop by which PTPRZ1 activity is tonically suppressed. PTPRZ1 constitutively promotes the tyrosine dephosphorylation of β-catenin and, thus, β-catenin participation in T cell factor (TCF)-mediated transcription. Using CD140a/PDGFRα-based fluorescence-activated cell sorting to isolate fetal OPCs from the fetal brain at gestational ages 16–22 weeks, we asked whether pleiotrophin modulated the expansion of OPCs and, if so, whether this was effected through the serial engagement of PTPRZ1 and β-catenin-dependent signals, such as TCF-mediated transcription. Lentiviral shRNAi knockdown of PTPRZ1 induced TCF-mediated transcription and substantially augmented GSK3β inhibition-induced TCF-reporter luciferase expression, suggesting dual regulation of β-catenin and the importance of PTPRZ1 as a tonic brake upon TCF-dependent transcription. Pharmacological inhibition of GSK3β triggered substrate detachment and initiated sphere formation, yet had no effect on either proliferation or net cell number. In contrast, pleiotrophin strongly potentiated the proliferation of CD140a+-sorted OPCs, as did PTPRZ1 knockdown, which significantly increased the total number of population doublings exhibited by OPCs before mitotic senescence. These observations suggest that pleiotrophin inhibition of PTPRZ1 contributes to the homeostatic self-renewal of OPCs and that this process is mediated by the tonic activation of β-catenin/TCF-dependent transcription.
doi:10.1523/JNEUROSCI.1320-12.2012
PMCID: PMC3700539  PMID: 23100427
24.  Glial Progenitor Cell–Based Treatment and Modeling of Neurological Disease 
Science (New York, N.Y.)  2012;338(6106):491-495.
The diseases of myelin are among the most prevalent and disabling conditions in neurology. These diseases include both the vascular and inflammatory demyelinating disorders of adulthood, as well as the childhood leukodystrophies and cerebral palsy. These fundamentally glial disorders may be amenable to treatment by glial progenitor cells (GPCs), which give rise to astroglia and myelin-producing oligodendrocytes. Given the development of new methods for generating and isolating human GPCs, the myelin disorders may now be compelling targets for cell-based therapy. In addition, the efficient engraftment and expansion of human GPCs in murine hosts has led to the development of human glial chimeric mouse brains, which provides new opportunities for studying the species-specific roles of human glia in cognition, as well as in disease pathogenesis.
doi:10.1126/science.1218071
PMCID: PMC3548656  PMID: 23112326
25.  Heterogeneity of Astrocytic Form and Function 
Astrocytes participate in all essential CNS functions, including blood flow regulation, energy metabolism, ion and water homeostasis, immune defence, neurotransmission, and adult neurogenesis. It is thus not surprising that astrocytic morphology and function differ between regions, and that different subclasses of astrocytes exist within the same brain region. Recent lines of work also show that the complexity of protoplasmic astrocytes increases during evolution. Human astrocytes are structurally more complex, larger, and propagate calcium signals significantly faster than rodent astrocytes. In this chapter, we review the diversity of astrocytic form and function, while considering the markedly expanded roles of astrocytes with phylogenetic evolution. We also define major challenges for the future, which include determining how astrocytic functions are locally specified, defining the molecular controls upon astrocytic fate and physiology and establishing how evolutionary changes in astrocytes contribute to higher cognitive functions.
doi:10.1007/978-1-61779-452-0_3
PMCID: PMC3506190  PMID: 22144298
Astrocyte; NG2 cell; Glia; Glia progenitor; Potassium buffering; Epilepsy; Calcium signaling; Purinergic receptors

Results 1-25 (45)