Search tips
Search criteria

Results 1-25 (165)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Mapping the Relationship of Contributing Factors for Preclinical Alzheimer’s Disease 
Scientific Reports  2015;5:11259.
While detecting and validating correlations among the contributing factors to the preclinical phase of Alzheimer’s disease (pAD) has been a focus, a potent meta-analysis method to integrate current findings is essential. The entity-relationship diagram with nodes as entities and edges as relationships is a graphical representation that summarizes the relationships among multiple factors in an intuitive manner. Based on this concept, a new meta-analysis approach with this type of diagram is proposed to summarize research about contributing factors of pAD and their interactions. To utilize the information for enriched visualization, width and color of the edges are encoded with reporting times, number of pAD subjects, correlation coefficient, and study design (cross-sectional or longitudinal). The proposed Probabilistic Entity-Relationship Diagram (PERD) demonstrated its effectiveness in this research for studying pAD. Another kind of diagram with occurrence order for some factors was also proposed to provide sequential information of the factors. In addition, PERD could potentially develop into an online application named PERD-online, which would help researchers to pool findings on the same relationships and guide further tests to validate uncertain relationships in PERD. PERD as a generic graphical meta-analysis tool can also be applied in studying other multifactorial diseases.
PMCID: PMC4507140  PMID: 26190794
2.  Balancing the Expression and Production of a Heterodimeric Protein: Recombinant Agkisacutacin as a Novel Antithrombotic Drug Candidate 
Scientific Reports  2015;5:11730.
Agkisacucetin extracted from the venom of Agkistrodon acutus has been demonstrated to be a promising antithrombotic drug candidate in clinical studies due to its function as a novel platelet membrane glycoprotein (GP) Ib inhibitor. Agkisacucetin is a heterodimeric protein composed of α- and β-subunits with seven disulphide bonds. Both subunits form inactive homodimeric products, which cause difficulties for recombinant production. In this study, Agkisacucetin α- and β-subunits were inserted sequentially into the chromosome of Pichia pastoris at the mutant histidinol dehydrogenase gene and ribosomal DNA repeat sites, respectively. By optimizing the gene copies and productivity of each subunit by drug screening, we successfully obtained a recombinant strain with balanced expression of the two subunits. Using this strain, a yield greater than 100 mg/L recombinant Agkisacucetin in fed-batch fermentation was reached. The recombinant Agkisacucetin possessed extremely similar binding affinity to recombinant GPIb and human platelets in in vitro assays, and its ristocetin-induced platelet aggregation activity ex vivo was identical to that of the extracted native Agkisacucetin, demonstrating that the yeast-derived Agkisacucetin could be an effective alternative to native Agkisacucetin. Moreover, this study provides an effective strategy for balancing the expression and production of heterodimeric proteins in P. pastoris.
PMCID: PMC4491848  PMID: 26144864
3.  Thyroid hormone regulates muscle fiber type conversion via miR-133a1 
The Journal of Cell Biology  2014;207(6):753-766.
Thyroid hormone promotes slow-to-fast muscle fiber type conversion by inducing miR-133a1 and thereby repressing the expression of the slow muscle determinant TEAD1.
It is known that thyroid hormone (TH) is a major determinant of muscle fiber composition, but the molecular mechanism by which it does so remains unclear. Here, we demonstrated that miR-133a1 is a direct target gene of TH in muscle. Intriguingly, miR-133a, which is enriched in fast-twitch muscle, regulates slow-to-fast muscle fiber type conversion by targeting TEA domain family member 1 (TEAD1), a key regulator of slow muscle gene expression. Inhibition of miR-133a in vivo abrogated TH action on muscle fiber type conversion. Moreover, TEAD1 overexpression antagonized the effect of miR-133a as well as TH on muscle fiber type switch. Additionally, we demonstrate that TH negatively regulates the transcription of myosin heavy chain I indirectly via miR-133a/TEAD1. Collectively, we propose that TH inhibits the slow muscle phenotype through a novel epigenetic mechanism involving repression of TEAD1 expression via targeting by miR-133a1. This identification of a TH-regulated microRNA therefore sheds new light on how TH achieves its diverse biological activities.
PMCID: PMC4274265  PMID: 25512392
4.  Pathological features of transplanted tumor established by CD133 positive TJ905 glioblastoma stem-like cells 
This study is to explore the pathological features of transplanted tumor established by CD133 positive TJ905 glioblastoma stem-like cells.
CD133 positive TJ905 glioma cells were separated by immunomagnetic beads to isolate glioma stem-like cells. TJ905 cells and stem-like cells were inoculated subcutaneously into the mice to establish model of transplanted tumor, respectively. Mice growing condition and behavior were observed. HE staining assay, immunohistochemical assay for GFAP, Ki-67 and Olig-2, and CD34 marked microvascular density (MVD) test were performed.
The growing condition and behavior of mice in TJ905 stem cell group was more exaggerated and the models showed stronger malignant features pathologically than that in TJ905 cell group. Glial fibrillary acidic protein (GFAP) in TJ905 cell and stem-like cell group showed the transplanted tumor originated from astrocytes. Expression of Ki-67 and oligodendrocyte transcription factor-2 (Olig-2) in TJ905 stem cells was higher notably and CD34 expression in stem cell group was significantly higher than that in the other two groups.
Pathological features of transplanted tumor established by CD133 positive glioblastoma stem-like cells show more malignant. Use of TJ905 stem cells to establish transplanted tumor model in nude mice is excellent for glioma research.
PMCID: PMC4487198  PMID: 26136642
CD133; Glioblastoma; Cancer stem-like cell; Animal model; Transplanted tumor
5.  Developing a mesophilic co-culture for direct conversion of cellulose to butanol in consolidated bioprocess 
Consolidated bioprocessing (CBP) of butanol production from cellulosic biomass is a promising strategy for cost saving compared to other processes featuring dedicated cellulase production. CBP requires microbial strains capable of hydrolyzing biomass with enzymes produced on its own with high rate and high conversion and simultaneously produce a desired product at high yield. However, current reported butanol-producing candidates are unable to utilize cellulose as a sole carbon source and energy source. Consequently, developing a co-culture system using different microorganisms by taking advantage of their specific metabolic capacities to produce butanol directly from cellulose in consolidated bioprocess is of great interest.
This study was mainly undertaken to find complementary organisms to the butanol producer that allow simultaneous saccharification and fermentation of cellulose to butanol in their co-culture under mesophilic condition. Accordingly, a highly efficient and stable consortium N3 on cellulose degradation was first developed by multiple subcultures. Subsequently, the functional microorganisms with 16S rRNA sequences identical to the denaturing gradient gel electrophoresis (DGGE) profile were isolated from consortium N3. The isolate Clostridium celevecrescens N3-2 exhibited higher cellulose-degrading capability was thus chosen as the partner strain for butanol production with Clostridium acetobutylicum ATCC824. Meanwhile, the established stable consortium N3 was also investigated to produce butanol by co-culturing with C. acetobutylicum ATCC824. Butanol was produced from cellulose when C. acetobutylicum ATCC824 was co-cultured with either consortium N3 or C. celevecrescens N3-2. Co-culturing C. acetobutylicum ATCC824 with the stable consortium N3 resulted in a relatively higher butanol concentration, 3.73 g/L, and higher production yield, 0.145 g/g of glucose equivalent.
The newly isolated microbial consortium N3 and strain C. celevecrescens N3-2 displayed effective degradation of cellulose and produced considerable amounts of butanol when they were co-cultured with C. acetobutylicum ATCC824. This is the first report of application of co-culture to produce butanol directly from cellulose under mesophilic condition. Our results indicated that co-culture of mesophilic cellulolytic microbe and butanol-producing clostridia provides a technically feasible and more simplified way for producing butanol directly from cellulose.
PMCID: PMC4471926  PMID: 26089984
Cellulose; Co-culture; Biobutanol; Conversion; Consolidated bioprocessing
6.  Bioenergy and Biomass Utilization 
BioMed Research International  2015;2015:857568.
PMCID: PMC4481092  PMID: 26171395
7.  Short-Term Sleep Deprivation Stimulates Hippocampal Neurogenesis in Rats Following Global Cerebral Ischemia/Reperfusion 
PLoS ONE  2015;10(6):e0125877.
Sleep deprivation (SD) plays a complex role in central nervous system (CNS) diseases. Recent studies indicate that short-term SD can affect the extent of ischemic damage. The aim of this study was to investigate whether short-term SD could stimulate hippocampal neurogenesis in a rat model of global cerebral ischemia/reperfusion (GCIR).
One hundred Sprague-Dawley rats were randomly divided into Sham, GCIR and short-term SD groups based on different durations of SD; the short-term SD group was randomly divided into three subgroups: the GCIR+6hSD*3d-treated, GCIR+12hSD-treated and GCIR+12hSD*3d-treated groups. The GCIR rat model was induced via the bilateral occlusion of the common carotid arteries and hemorrhagic hypotension. The rats were sleep-deprived starting at 48 h following GCIR. A Morris water maze test was used to assess learning and memory ability; cell proliferation and differentiation were analyzed via 5-bromodeoxyuridine (BrdU) and neuron-specific enolase (NSE), respectively, at 14 and 28 d; the expression of hippocampal BDNF was measured after 7 d.
The different durations of short-term SD designed in our experiment exhibited improvement in cognitive function as well as increased hippocampal BDNF expression. Additionally, the short-term SD groups also showed an increased number of BrdU- and BrdU/NSE-positive cells compared with the GCIR group. Of the three short-term SD groups, the GCIR+12hSD*3d-treated group experienced the most substantial beneficial effects.
Short-term SD, especially the GCIR+12hSD*3d-treated method, stimulates neurogenesis in the hippocampal dentate gyrus (DG) of rats that undergo GCIR, and BDNF may be an underlying mechanism in this process.
PMCID: PMC4454510  PMID: 26039740
8.  Panax notoginseng attenuates experimental colitis in AOM/DSS mouse model 
Phytotherapy research : PTR  2013;28(6):892-898.
Patients suffering from inflammatory bowel disease are at a high risk of developing colorectal cancer. To assess the anti-cancer potential of botanicals, in this study, we evaluated the effects of Panax notoginseng on azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colitis. One week after A/J mice received AOM, the animals received DSS for 8 days, or were supplemented with P. notoginseng extract, at 30 or 90 mg/kg. DSS-induced colitis was scored with the disease activity index (DAI). The severity of the inflammatory lesions was evaluated by a colon tissue histological assessment. The expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were also explored. We observed that the effects of P. notoginseng on the reduction of colon inflammation, expressed in DAI score, were in a dose-related manner (P < 0.01). P. notoginseng inhibited the reduction of the colon length and the loss of bodyweight in dose-related manner (all P < 0.05). The histological assessment of the colitis and inflammatory related immunohistochemical data also supported the pharmacological observations. Our data suggest that P. notoginseng is a promising candidate in preventing and treating colitis and inflammation-associated colon carcinogenesis.
PMCID: PMC3994185  PMID: 24142591
Panax notoginseng; notoginseng; inflammatory bowel disease; colitis; AOM/DSS model; colorectal carcinogenesis
9.  A Flight Test of the Strapdown Airborne Gravimeter SGA-WZ in Greenland 
Sensors (Basel, Switzerland)  2015;15(6):13258-13269.
An airborne gravimeter is one of the most important tools for gravity data collection over large areas with mGal accuracy and a spatial resolution of several kilometers. In August 2012, a flight test was carried out to determine the feasibility and to assess the accuracy of the new Chinese SGA-WZ strapdown airborne gravimeter in Greenland, in an area with good gravity coverage from earlier marine and airborne surveys. An overview of this new system SGA-WZ is given, including system design, sensor performance and data processing. The processing of the SGA-WZ includes a 160 s length finite impulse response filter, corresponding to a spatial resolution of 6 km. For the primary repeated line, a mean r.m.s. deviation of the differences was less than 1.5 mGal, with the error estimate confirmed from ground truth data. This implies that the SGA-WZ could meet standard geophysical survey requirements at the 1 mGal level.
PMCID: PMC4507644  PMID: 26057039
gravity data; strapdown airborne gravimeter; inertial navigation system; finite impulse response filter; global positioning system
10.  Chronic inflammation aggravates metabolic disorders of hepatic fatty acids in high-fat diet-induced obese mice 
Scientific Reports  2015;5:10222.
The prevalence of nonalcoholic fatty liver disease (NAFLD) increases with increasing body mass index (BMI). However, approximately 40–50% of obese adults do not develop hepatic steatosis. The level of inflammatory biomarkers is higher in obese subjects with NAFLD compared to BMI-matched subjects without hepatic steatosis. We used a casein injection in high-fat diet (HFD)-fed C57BL/6J mice to induce inflammatory stress. Although mice on a HFD exhibited apparent phenotypes of obesity and hyperlipidemia regardless of exposure to casein injection, only the HFD+Casein mice showed increased hepatic vacuolar degeneration accompanied with elevated inflammatory cytokines in the liver and serum, compared to mice on a normal chow diet. The expression of genes related to hepatic fatty acid synthesis and oxidation were upregulated in the HFD-only mice. The casein injection further increased baseline levels of lipogenic genes and decreased the levels of oxidative genes in HFD-only mice. Inflammatory stress induced both oxidative stress and endoplasmic reticulum stress in HFD-fed mice livers. We conclude that chronic inflammation precedes hepatic steatosis by disrupting the balance between fatty acid synthesis and oxidation in the livers of HFD-fed obese mice. This mechanism may operate in obese individuals with chronic inflammation, thus making them more prone to NAFLD.
PMCID: PMC4431481  PMID: 25974206
11.  microRNA-217 inhibits tumor progression and metastasis by downregulating EZH2 and predicts favorable prognosis in gastric cancer 
Oncotarget  2015;6(13):10868-10879.
microRNA-217 (miR-217) is frequently dysregulated in cancer. Here, we report that miR-217 levels were lower in tumor tissue compared with the adjacent normal tissue. Low levels of miR-217 were associated with aggressive tumor phenotypes and poor overall survival in gastric cancer patients. The ectopic expression of miR-217 inhibited cell proliferation, migration and invasion in vitro and tumor growth and metastasis in vivo, whereas knockdown of endogenous miR-217 increased cell proliferation and invasion. Further experiments revealed that Polycomb group protein enhancer of zeste homolog 2 (EZH2) was a direct target of miR-217 in gastric cancer cells. Knockdown of EZH2 mimicked the tumor-suppressive effects of miR-217 in gastric cancer cells, whereas the reintroduction of EZH2 abolished its effects. Taken together, these results demonstrated that miR-217 may be used as a prognostic marker, and the newly identified miR-217-EZH2 axis may be a potential target in the development of therapeutic strategies for gastric cancer patients.
PMCID: PMC4484425  PMID: 25869101
microRNA; microRNA-217; EZH2; gastric cancer; metastasis
12.  Combating non-Hodgkin lymphoma by targeting both CD20 and HLA-DR through CD20–243 CrossMab 
mAbs  2014;6(3):739-747.
Although rituximab has revolutionized the treatment of hematological malignancies, the acquired resistance is one of the prime obstacles for cancer treatment, and development of novel CD20-targeting antibodies with potent anti-tumor activities and specificities is urgently needed. Emerging evidence has indicated that lysosomes can be considered as an “Achilles heel” for cancer cells, and might serve as an effective way to kill resistant cancer cells. HLA-DR antibody L243 has been recently reported to elicit potent lysosome-mediated cell death in lymphoma and leukemia cells, suggesting that HLA-DR could be used as a potential target against lymphoma. In this study, we generated a bispecific immunoglobulin G-like antibody targeting both CD20 and HLA-DR (CD20–243 CrossMab) through CrossMab technology. We found that the CrossMab could induce remarkably high levels of complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity and anti-proliferative activity. Notably, although HLA-DR is expressed on normal and malignant cells, the CrossMab exhibited highly anti-tumor specificity, showing efficient eradication of hematological malignancies both in vitro and in vivo. Our data indicated that combined targeting of CD20 and HLA-DR could be an effective approach against malignancies, suggesting that CD20–243 CrossMab would be a promising therapeutic agent against lymphoma.
PMCID: PMC4011918  PMID: 24670986
CD20 antibody; rituximab; HLA-DR; lysosome-mediated cell death; CrossMab; resistant cancer cell
13.  Association between E-cadherin (CDH1) polymorphisms and pancreatic cancer risk in Han Chinese population 
This study was designed to investigate the associations between E-cadherin (CDH1) gene polymorphisms and pancreatic cancer (PC) risk predisposition. We undertook a case-control study to analyze three E-cadherin polymorphisms (+54T>C, -160C>A and -347G→GA) in an Han Chinese population, by extraction of genomic DNA from the peripheral blood of 368 patients with PC and 376 control participants and performed E-cadherin genotyping using DNA sequencing. Overall, no statistically significant association was observed in +54T>C. Nevertheless, -347G→GA genotype was at increased risk of PC (P=0.022; odds ratio (OR) =1.128, CI 95%: 1.017-1.251). Furthermore, -347GA/GA genotype pancreatic cancers were more significantly common in cases of advanced T stage, lymph node metastasis and clinical pathological stage than G or G/GA genotypes PC. However, -160C>A genotype demonstrated a protective effect in PCs (P=0.017; OR=0.883, CI 95%: 0.798-0.977). In conclusion, polymorphism in -347G→GA was observed to be associated with susceptibility of PC. However, -160C>A polymorphism indicated to play a protective role in susceptibility to PC. Nevertheless, further investigation with a larger sample size is needed to support our results.
PMCID: PMC4503164  PMID: 26191293
Pancreatic cancer; E-cadherin; allele; polymorphism
14.  Integrated RNA-Seq and sRNA-Seq Analysis Identifies Chilling and Freezing Responsive Key Molecular Players and Pathways in Tea Plant (Camellia sinensis) 
PLoS ONE  2015;10(4):e0125031.
Tea [Camellia sinensis (L) O. Kuntze, Theaceae] is one of the most popular non-alcoholic beverages worldwide. Cold stress is one of the most severe abiotic stresses that limit tea plants’ growth, survival and geographical distribution. However, the genetic regulatory network and signaling pathways involved in cold stress responses in tea plants remain unearthed. Using RNA-Seq, DGE and sRNA-Seq technologies, we performed an integrative analysis of miRNA and mRNA expression profiling and their regulatory network of tea plants under chilling (4℃) and freezing (-5℃) stress. Differentially expressed (DE) miRNA and mRNA profiles were obtained based on fold change analysis, miRNAs and target mRNAs were found to show both coherent and incoherent relationships in the regulatory network. Furthermore, we compared several key pathways (e.g., ‘Photosynthesis’), GO terms (e.g., ‘response to karrikin’) and transcriptional factors (TFs, e.g., DREB1b/CBF1) which were identified as involved in the early chilling and/or freezing response of tea plants. Intriguingly, we found that karrikins, a new group of plant growth regulators, and β-primeverosidase (BPR), a key enzyme functionally relevant with the formation of tea aroma might play an important role in both early chilling and freezing response of tea plants. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis further confirmed the results from RNA-Seq and sRNA-Seq analysis. This is the first study to simultaneously profile the expression patterns of both miRNAs and mRNAs on a genome-wide scale to elucidate the molecular mechanisms of early responses of tea plants to cold stress. In addition to gaining a deeper insight into the cold resistant characteristics of tea plants, we provide a good case study to analyse mRNA/miRNA expression and profiling of non-model plant species using next-generation sequencing technology.
PMCID: PMC4406609  PMID: 25901577
15.  Pericytes Contribute to the Disruption of the Cerebral Endothelial Barrier via Increasing VEGF Expression: Implications for Stroke 
PLoS ONE  2015;10(4):e0124362.
Disruption of the blood-brain barrier (BBB) integrity occurring during the early onset of stroke is not only a consequence of, but also contributes to the further progression of stroke. Although it has been well documented that brain microvascular endothelial cells and astrocytes play a critical role in the maintenance of BBB integrity, pericytes, sandwiched between endothelial cells and astrocytes, remain poorly studied in the pathogenesis of stroke. Our findings demonstrated that treatment of human brain microvascular pericytes with sodium cyanide (NaCN) and glucose deprivation resulted in increased expression of vascular endothelial growth factor (VEGF) via the activation of tyrosine kinase Src, with downstream activation of mitogen activated protein kinase and PI3K/Akt pathways and subsequent translocation of NF-κB into the nucleus. Conditioned medium from NaCN-treated pericytes led to increased permeability of endothelial cells, and this effect was significantly inhibited by VEGF-neutralizing antibody. The in vivo relevance of these findings was further corroborated in the stroke model of mice wherein the mice, demonstrated disruption of the BBB integrity and concomitant increase in the expression of VEGF in the brain tissue as well as in the isolated microvessel. These findings thus suggest the role of pericyte-derived VEGF in modulating increased permeability of BBB during stroke. Understanding the regulation of VEGF expression could open new avenues for the development of potential therapeutic targets for stroke and other neurological disease.
PMCID: PMC4401453  PMID: 25884837
17.  Attenuation of atherosclerotic lesions in diabetic apolipoprotein E-deficient mice using gene silencing of macrophage migration inhibitory factor 
Macrophage migration inhibitory factor (MIF) involves the pathogenesis of atherosclerosis (AS) and increased plasma MIF levels in diabetes mellitus (DM) patients are associated with AS. Here, we have been suggested that MIF could be a critical contributor for the pathological process of diabetes-associated AS by using adenovirus-mediated RNA interference. First, streptozotocin (STZ)-induced diabetic animal model was constructed in 114 apolipoprotein E-deficient mice (apoE−/− mice) fed on a regular chow diet. Then, the animals were randomly divided into three groups: Adenovirus-mediated MIF interference (Ad-MIFi), Ad-enhanced green fluorescent protein (EGFP) and normal saline (NS) group (n ≈ 33/group). Non-diabetic apoE−/− mice (n = 35) were served as controls. Ad-MIFi, Ad-EGFP and NS were, respectively, injected into the tail vein of mice from Ad-MIFi, Ad-EGFP and NS group, which were injected repeatedly 4 weeks later. Physical, biochemical, morphological and molecular parameters were measured. The results showed that diabetic apoE−/− mice had significantly aggravated atherosclerotic lesions. MIF gene interference attenuated atherosclerotic lesions and stabilized atheromatous plaque, accompanied by the decreased macrophages and lipids deposition and inflammatory cytokines production, improved glucose intolerance and plasma cholesterol level, the decreased ratio of matrix matalloproteinase-2/tissue inhibitor of metalloproteinase-1 and plaque instability index. An increased expression of MIF and its ligand CD74 was also detected in the diabetic patients with coronary artery disease. The results suggest that MIF gene interference is able to inhibit atherosclerotic lesions and increase plaque stability in diabetic apoE−/−mice. MIF inhibition could be a novel and promising approach to the treatment of DM-associated AS.
PMCID: PMC4395198  PMID: 25661015
macrophage migration inhibitory factor; diabetes mellitus; atherosclerosis; apolipoprotein E-deficient mice; inflammation
18.  Improved non-calcified plaque delineation on coronary CT angiography by sonogram-affirmed iterative reconstruction with different filter strength and relationship with BMI 
To prospectively compare non-calcified plaque delineation and image quality of coronary computed tomography angiography (CCTA) obtained with sinogram-affirmed iterative reconstruction (IR) with different filter strengths and filtered back projection (FBP).
A total of 57 patients [28.1% females; body mass index (BMI) 29.2±6.5 kg/m2] were investigated. CCTA was performed using 128-slice dual-source CT. Images were reconstructed with standard FBP and sinogram-affirmed IR using different filter strength (IR-2, IR-3, IR-4) (SAFIRE, Siemens, Germany). Image quality of CCTA and a non-calcified plaque outer border delineation score were evaluated by using a 5-scale score: from 1= poor to 5= excellent. Image noise, contrast-to-noise ratio (CNR) of aortic root, left main (LM) and right coronary artery, and the non-calcified plaque delineation were quantified and compared among the 4 image reconstructions, and were compared between different BMI groups (BMI <28 and ≥28). Statistical analyses included one-way analysis of variance (ANOVA), least significant difference (LSD) and Kruskal-Wallis test.
There were 71.9% patients in FBP, 96.5% in IR-2, 96.5% in IR-3 and 98.2% in IR-4 who had overall CCTA image quality ≥3, and there were statistical differences in CCTA exam image quality score among those groups, respectively (P<0.001). Sixty-one non-calcified plaques were detected by IR-2 to IR-4, out of those 11 (18%) were missed by FBP. Plaque delineation score increased constantly from FBP (2.7±0.4) to IR-2 (3.2±0.3), to IR-3 (3.5±0.3) up to IR-4 (4.0±0.4), while CNRs of the non-calcifying plaque increased and image noise decreased, respectively. Similarly, CNR of aortic root, LM and right coronary artery improved and image noise declined from FBP to IR-2, IR-3 and IR-4. There were no significant differences of image quality and plaque delineation score between low and high BMI groups within same reconstruction (all P>0.05). Significant differences in image quality and plaque delineation scores among different image reconstructions both in low and high BMI groups (all P<0.001) were found. I4f revealed the highest image quality and plaque delineation score.
IR offers improved image quality and non-calcified plaque delineation as compared with FBP, especially if BMI is increasing. Importantly, 18% of non-calcified plaques were missed with FBP. IR-4 shows the best image quality score and plaque delineation score among the different IR-filter strength.
PMCID: PMC4420677  PMID: 25984450
Non-calcified plaque; sinogram-affirmed iterative reconstruction (sinogram-affirmed IR); coronary computed tomography angiography (CCTA)
19.  Analysis of accumulation patterns and preliminary study on the condensation mechanism of proanthocyanidins in the tea plant [Camellia sinensis] 
Scientific Reports  2015;5:8742.
In the present study, proanthocyanidins were qualitatively and quantitatively identified using hydrolysis and thiolysis assays, NP-HPLC, HPLC-ESI-MS, MALDI-TOF-MS, 1H-NMR, and 13C-NMR techniques in different organs of tea plants. The results showed that in leaves, the tri-hydroxyl, cis- and galloylated flavan-3-ols were the main monomeric catechins units, and (epi)catechin was found to be the major unit of polymeric flavan-3-ols when the degree of polymerization was greater than five. In roots, the PAs were found to be abundant, and epicatechin formed the predominant extension unit of oligomeric and polymeric PAs. In order to understand the mechanism of proanthocyanidins polymerization, auto-condensation of the flavan-3-ols was investigated. The results showed that the same trimers (m/z 865) were detected in the extracts of tea plants and in the non-enzymatic in vitro assay, in weak acid as well as weak alkaline solutions at room temperature, when the substrates used were either procyanidin B2 and monomeric flavan-3-ols (epicatechin or catechin), or only procyanidin B2. This suggested that procyanidin B2 not only released carbocation as electrophilic upper units, but also could be used as nucleophilic lower units directly itself, to form the procyanidin trimer in vitro or in vivo.
PMCID: PMC4348662  PMID: 25735226
20.  High-Affinity Recombinant Antibody Fragments (Fabs) Can Be Applied in Peptide Enrichment Immuno-MRM Assays 
Journal of Proteome Research  2014;13(4):2187-2196.
High-affinity antibodies binding to linear peptides in solution are a prerequisite for performing immuno-MRM, an emerging technology for protein quantitation with high precision and specificity using peptide immunoaffinity enrichment coupled to stable isotope dilution and targeted mass spectrometry. Recombinant antibodies can be generated from appropriate libraries in high-throughput in an automated laboratory and thus may offer advantages over conventional monoclonal antibodies. However, recombinant antibodies are typically obtained as fragments (Fab or scFv) expressed from E. coli, and it is not known whether these antibody formats are compatible with the established protocols and whether the affinities necessary for immunocapture of small linear peptides can be achieved with this technology. Hence, we performed a feasibility study to ask: (a) whether it is feasible to isolate high-affinity Fabs to small linear antigens and (b) whether it is feasible to incorporate antibody fragments into robust, quantitative immuno-MRM assays. We describe successful isolation of high-affinity Fab fragments against short (tryptic) peptides from a human combinatorial Fab library. We analytically characterize three immuno-MRM assays using recombinant Fabs, full-length IgGs constructed from these Fabs, or traditional monoclonals. We show that the antibody fragments show similar performance compared with traditional mouse- or rabbit-derived monoclonal antibodies. The data establish feasibility of isolating and incorporating high-affinity Fabs into peptide immuno-MRM assays.
PMCID: PMC3993957  PMID: 24568200
multiple reaction monitoring; immunoglobulin; monoclonal antibody; scFv; immunoaffinity; targeted proteomics
21.  First Discovery of Acetone Extract from Cottonseed Oil Sludge as a Novel Antiviral Agent against Plant Viruses 
PLoS ONE  2015;10(2):e0117496.
A novel acetone extract from cottonseed oil sludge was firstly discovered against plant viruses including Tobacco mosaic virus (TMV), Rice stripe virus (RSV) and Southern rice black streaked dwarf virus (SRBSDV). Gossypol and β-sitosterol separated from the acetone extract were tested for their effects on anti-TMV and analysed by nuclear magnetic resonance (NMR) assay. In vivo and field trials in different geographic distributions and different host varieties declared that this extract mixture was more efficient than the commercial agent Ningnanmycin with a broad spectrum of anti-plant-viruses activity. No phytotoxic activity was observed in the treated plants and environmental toxicology showed that this new acetone extract was environmentally friendly, indicating that this acetone extract has potential application in the control of plant virus in the future.
PMCID: PMC4337905  PMID: 25705894
22.  Pterostilbene attenuates inflammation in rat heart subjected to ischemia-reperfusion: role of TLR4/NF-κB signaling pathway 
Objective: The aim of the present study was to investigate whether pterostilbene could modulate the TLR4/NF-κB signaling, reduce neutrophil accumulation and TNF-α induction in an ischemia/reperfusion injured rat heart model. Materials and Methods: Rats were randomly exposed to sham operation, myocardial ischemia and reperfusion (MI/R), MI/R + pterostilbene, MI/R + pterostilbene + L-NAME. And myocardial infarct size, apoptosis, TLR4 expression, NF-κB expression, MPO level and TNF-α level were detected. Results: The results demonstrated that after MI/R, the expressions of myocardial TLR4, NF-κB and caspase-3 increased significantly in ischemia area. Compared with MI/R, pterostilbene significantly attenuated the expressions of TLR4, NF-κB and caspase-3. In addition, it also reduced myeloperoxidase (MPO) levels, both serum and myocardial TNF-α production, myocardial infarct sizes (INF/AAR%) and myocardial apoptosis induced by MI/R. All the effects of pterostilbene were abolished by L-NAME, a nitric oxide synthase inhibitor. Conclusion: These data provide evidence that pterostilbene inhibits TLR4/NF-κB signaling and apoptosis in the rat heart subjected to MI/R, which is associated with NO production.
PMCID: PMC4402749  PMID: 25932102
Pterostilbene; ischemia/reperfusion injury; apoptosis; TLR4/NF-κB signaling; neutrophil; TNF-α

Results 1-25 (165)