PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Up-regulated FHL1 Expression Maybe Involved in the Prognosis of Hirschsprung's Disease 
Background: In a subset of patients with Hirschsprung's disease (HSCR), gastrointestinal motor dysfunction persisted long after surgical correction. Gastrointestinal motility is achieved through the coordinated activity of the enteric nervous system, interstitial cells of Cajal, and smooth muscle (SMC) cells. Inhibition of four-and-a-half LIM protein-1 (Fhl1) expression by siRNA significantly decreases pulmonary artery SMCs migration and proliferation. Furthermore when up-expressing FHL1 in atrial myocytes, K (+) current density markedly increases, therefore changing myocytes' response to an electrical stimulus. However whether FHL1 in colon SMCs (the final effector organ) influences intestinal motility in HSCR patients has not been clarified. Methods: FHL1 mRNA and protein expressions were analyzed in 32 HSCR colons and 4 normal colons. Results: Smooth muscle layers were thicken and disorganized in HSCR. FHL1 was expressed in the ganglion cells of the myenteric plexus, submucosa, as well as in the longitudinal and circular muscle layer of the ganglionic colon. FHL1 mRNA relative expression level in aganglionic colons was 1.06±0.49 (ganglionic colon relative expression level was 1) (P=0.44). FHL1 protein gray level relative to GAPDH in normal colons was 0.83±0.09. FHL1 expression level in ganglionic colon (1.66±0.30) or aganglionic colon (1.81±0.35) was significantly higher than that in normal colons (P=0.045 and P=0.041, respectively). Meanwhile, we found FHL1 expression in aganglionic colon was slightly stronger than that in ganglionic colon (P=0.036). Conclusion: These data suggested that up-regulated FHL1 in smooth muscle in HSCR might be associated with intestinal wall remodeling in HSCR and might be one of the risk factors for gastrointestinal motor dysfunction.
doi:10.7150/ijms.7287
PMCID: PMC3917115  PMID: 24516350
FHL1; Hirschsprung's disease; expression; smooth muscle; prognosis
2.  Altered Expression of 14-3-3ζ Protein in Spinal Cords of Rat Fetuses with Spina Bifida Aperta 
PLoS ONE  2013;8(8):e70457.
Background
A large number of studies have confirmed that excessive apoptosis is one of the reasons for deficient neuronal function in neural tube defects (NTDs). A previous study from our laboratory used 2-D gel electrophoresis to demonstrate that 14-3-3ζ expression was low in the spinal cords of rat fetuses with spina bifida aperta at embryonic day (E) 17. As a member of the 14-3-3 protein family, 14-3-3ζ plays a crucial role in the determination of cell fate and anti-apoptotic activity. However, neither the expression of 14-3-3ζ in defective spinal cords, nor the correlation between 14-3-3ζ and excessive apoptosis in NTDs has been fully confirmed.
Methodology/Principal Findings
We used immunoblotting and quantitative real-time PCR (qRT-PCR) to quantify the expression of 14-3-3ζ and double immunofluorescence to visualize 14-3-3ζ and apoptosis. We found that, compared with controls, 14-3-3ζ was down-regulated in spina bifida between E12 and E15. Excessive apoptotic cells and low expression of 14-3-3ζ were observed in the dorsal region of spinal cords with spina bifida during the same time period. To initially explore the molecular mechanisms of apoptosis in NTDs, we investigated the expression of microRNA-7 (miR-7), microRNA-375 (miR-375) and microRNA-451 (miR-451), which are known to down-regulate 14-3-3ζ in several different cell types. We also investigated the expression of p53, a molecule that is downstream of 14-3-3ζ and can be down-regulated by it. We discovered that, in contrast to the reduction of 14-3-3ζ expression, the expression of miR-451, miR-375 and p53 increased in spina bifida rat fetuses.
Conclusions/Significance
These data suggest that the reduced expression of 14-3-3ζ plays a role in the excessive apoptosis that occurs in spina bifida and may be partly regulated by the over-expression of miR-451 and miR-375, and the consequent up-regulation of p53 might further promote apoptosis in spina bifida.
doi:10.1371/journal.pone.0070457
PMCID: PMC3735597  PMID: 23936434
3.  Mutations and Down-Regulation of CDX1 in Children with Anorectal Malformations 
Background: Anorectal malformations (ARMs) represent a variety of congenital disorders that involve abnormal termination of the anorectum. This study was to reveal relation between CDX1 and human ARMs phenotypes.
Methods: 108 Chinese patients and 120 Chinese controls were included in this study. We analyzed the relation between two by PCR, qRT-PCR, western blot and immunofluorescence.
Results: Four heterozygous mutations in CDX1 gene were identified in ARMs patients (3.7%, 4/108), no found in controls. CDX1 protein expression was significantly decreased in the ARMs compared with the control anorectum. All samples analyzed in ARMs group exhibited down-regulated CDX1 mRNA expression in comparison to matched normal group, demonstrated significant differences statistically.
Conclusion: The findings represented the relation between CDX1 mutations and CDX1 genotype. Furthermore, it was suggested that the downregulation of CDX1 might be related to the development of ARMs.
doi:10.7150/ijms.4929
PMCID: PMC3547218  PMID: 23329892
Anorectal malformations; CDX1; mutation; children
4.  Engineered measles virus Edmonston strain used as a novel oncolytic viral system against human hepatoblastoma 
BMC Cancer  2012;12:427.
Background
Hepatoblastoma (HB) is the most common primary, malignant pediatric liver tumor in children. The treatment results for affected children have markedly improved in recent decades. However, the prognosis for high-risk patients who have extrahepatic extensions, invasion of the large hepatic veins, distant metastases and very high alpha-fetoprotein (AFP) serum levels remains poor. There is an urgent need for the development of novel therapeutic approaches.
Methods
An attenuated strain of measles virus, derived from the Edmonston vaccine lineage, was genetically engineered to produce carcinoembryonic antigen (CEA). We investigated the antitumor potential of this novel viral agent against human HB both in vitro and in vivo.
Results
Infection of the Hep2G and HUH6 HB cell lines, at multiplicities of infection (MOIs) ranging from 0.01 to 1, resulted in a significant cytopathic effect consisting of extensive syncytia formation and massive cell death at 72–96 h after infection. Both of the HB lines overexpressed the measles virus receptor CD46 and supported robust viral replication, which correlated with CEA production. The efficacy of this approach in vivo was examined in murine Hep2G xenograft models. Flow cytometry assays indicated an apoptotic mechanism of cell death. Intratumoral administration of MV-CEA resulted in statistically significant delay of tumor growth and prolongation of survival.
Conclusions
The engineered measles virus Edmonston strain MV-CEA has potent therapeutic efficacy against HB cell lines and xenografts. Trackable measles virus derivatives merit further exploration in HB treatment.
doi:10.1186/1471-2407-12-427
PMCID: PMC3488522  PMID: 23009685
Hepatoblastoma; Oncolytic; Measles virus Edmonston strain; CD46
5.  RET Mutational Spectrum in Hirschsprung Disease: Evaluation of 601 Chinese Patients 
PLoS ONE  2011;6(12):e28986.
Rare (RVs) and common variants of the RET gene contribute to Hirschsprung disease (HSCR; congenital aganglionosis). While RET common variants are strongly associated with the commonest manifestation of the disease (males; short-segment aganglionosis; sporadic), rare coding sequence (CDS) variants are more frequently found in the lesser common and more severe forms of the disease (females; long/total colonic aganglionosis; familial).
Here we present the screening for RVs in the RET CDS and intron/exon boundaries of 601 Chinese HSCR patients, the largest number of patients ever reported. We identified 61 different heterozygous RVs (50 novel) distributed among 100 patients (16.64%). Those include 14 silent, 29 missense, 5 nonsense, 4 frame-shifts, and one in-frame amino-acid deletion in the CDS, two splice-site deletions, 4 nucleotide substitutions and a 22-bp deletion in the intron/exon boundaries and 1 single-nucleotide substitution in the 5′ untranslated region. Exonic variants were mainly clustered in RET the extracellular domain. RET RVs were more frequent among patients with the most severe phenotype (24% vs. 15% in short-HSCR). Phasing RVs with the RET HSCR-associated haplotype suggests that RVs do not underlie the undisputable association of RET common variants with HSCR. None of the variants were found in 250 Chinese controls.
doi:10.1371/journal.pone.0028986
PMCID: PMC3235168  PMID: 22174939

Results 1-5 (5)