Search tips
Search criteria

Results 1-25 (167)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Resolvin D1 promotes the interleukin-4-induced alternative activation in BV-2 microglial cells 
Microglia play key roles in innate immunity, homeostasis, and neurotropic support in the central nervous system. Similar to macrophages, microglia adopt two different activation phenotypes, the classical and alternative activation. Resolvin D1 (RvD1) is considered to display potent anti-inflammatory and pro-resolving actions in inflammatory models. In this present study, we investigate the effect of RvD1 on IL-4-induced alternative activation in murine BV-2 microglial cells.
BV-2 cells were incubated with RvD1 alone, IL-4 alone, or the combination of RvD1 and IL-4. Western blot and immunofluorescence were performed to detect protein levels of alternative activation markers arginase 1 (Arg1), chitinase 3-like 3 (Ym1). Moreover, we investigated the effects of RvD1 on IL-4-induced activation of signal transducer and activators of transcription 6 (STAT6) and peroxisome proliferator-activated receptor gamma (PPARγ).
RvD1 promoted IL-4-induced microglia alternative activation by increasing the expression of Arg1 and Ym1. RvD1 also enhanced phosphorylation of STAT6, nuclear translocation of PPARγ and the DNA binding activity of STAT6 and PPARγ. These effects were reversed by butyloxycarbonyl-Phe-Leu-Phe-Leu-Phe (a formyl peptide receptor 2 antagonist). Further, the effects of RvD1 and IL-4 on Arg1 and Ym1 were blocked by the application of leflunomide (a STAT6 inhibitor) or GW9662 (a PPARγ antagonist).
Our studies demonstrate that RvD1 promotes IL-4-induced alternative activation via STAT6 and PPARγ signaling pathways in microglia. These findings suggest that RvD1 may have therapeutic potential for neuroinflammatory diseases.
PMCID: PMC3983859  PMID: 24708771
Resolvin D1; Microglia; Alternative activation; STAT6; PPARγ
2.  Measurement of Fetal Abdominal and Subscapular Subcutaneous Tissue Thickness during Pregnancy to Predict Macrosomia: A Pilot Study 
PLoS ONE  2014;9(3):e93077.
This study assessed the growth trends and reference ranges of the ultrasound parameters, fetal abdominal subcutaneous tissue thickness (ASTT) and subscapular subcutaneous tissue thickness (SSTT), in the last two trimesters of normal pregnancy in a Chinese population. We recruited 744 healthy women with singleton pregnancies. The ASTT and SSTT were evaluated at different times between 21 and 36 weeks of gestation. The correlations between these parameters and fetal gestational weeks were assessed using linear regression analysis. Both ASTT and SSTT increased with gestation, and both parameters showed a strong correlation with gestation (ASTT vs. GA, R2 = 0.792; P<0.0001; SSTT vs. GA, R2 = 0.302; P<0.0001). Time-specific reference ranges, including 5th, 50th and 95th percentiles and means ± SD, were constructed for ASTT and SSTT. These results provide a preliminary reference range to evaluate whether fetal development and maternal metabolic health is normal or not in a Chinese population.
PMCID: PMC3968095  PMID: 24675769
3.  Kaposi's Sarcoma-Associated Herpesvirus (KSHV) vIL-6 Promotes Cell Proliferation and Migration by Upregulating DNMT1 via STAT3 Activation 
PLoS ONE  2014;9(3):e93478.
Kaposi's sarcoma-associated herpesvirus (KSHV) is etiologically associated with Kaposi's sarcoma (KS), the most common AIDS-related malignancy. KSHV vIL-6 promotes KS development, but the exact mechanisms remain unclear. Here, we reported that KSHV vIL-6 enhanced the expression of DNA methyltransferase 1 (DNMT1) in endothelial cells,increased the global genomic DNA methylation, and promoted cell proliferation and migration. And this effect could be blocked by the DNA methyltransferase inhibitor, 5-azadeoxycytidine. We also showed that vIL-6 induced up-regulation of DNMT1 was dependent on STAT3 activation. Therefore, the present study suggests that vIL-6 plays a role in KS tumorigenesis partly by activating DNMT1 and inducing aberrant DNA methylation, and it might be a potential target for KS therapy.
PMCID: PMC3968168  PMID: 24675762
4.  Generation and Characterization of Human Cryptorchid-Specific Induced Pluripotent Stem Cells from Urine 
Stem Cells and Development  2012;22(5):717-725.
Cryptorchidism is a common congenital birth defect in human beings with the possible complication of infertility. An in vitro model of cryptorchidism might be valuable due to the inaccessibility of human embryos for research purposes. In this study, we reprogrammed urine cells containing genetic variations in insulin-like factor 3, zinc finger (ZNF) 214, and ZNF215 from a cryptorchid patient by introducing human OCT4, SOX2, C-MYC, and KLF4 with lentivirus. The cells were then replated on irradiated mouse embryonic fibroblasts and cultured with the human embryonic stem (ES) cell medium. The compact colonies with well-defined borders were manually picked, and 2 induced pluripotent cell lines were fully characterized. Our results demonstrated that these 2 cell lines were similar to human ES cells in morphological appearance, marker expression, and epigenetic status of the pluripotent cell-specific gene, OCT4. These cells could be differentiated into cells of all 3 germ layers in teratomas and in vitro, including into the VASA-positive germ cell lineage. Both parental urine cells and the reprogrammed cells possessed the normal karyotype and the same short tandem repeat loci, indicating that these 2 cell population share the same genetic identity. This establishment and characterization of human urine-derived cryptorchid-specific induced pluripotent stem cells could present a good human genetic system for future studies investigating the molecular mechanism of cryptorchidism.
PMCID: PMC3578370  PMID: 23025704
5.  Betulinic acid prevents alcohol-induced liver damage by improving the antioxidant system in mice 
Journal of Veterinary Science  2014;15(1):141-148.
Betulinic acid (BA), a pentacyclic lupane-type triterpene, has a wide range of bioactivities. The main objective of this work was to evaluate the hepatoprotective activity of BA and the potential mechanism underlying the ability of this compound to prevent liver damage induced by alcohol in vivo. Mice were given oral doses of BA (0.25, 0.5, and 1.0 mg/kg) daily for 14 days, and induced liver injury by feeding 50% alcohol orally at the dosage of 10 ml/kg after 1 h last administration of BA. BA pretreatment significantly reduced the serum levels of alanine transaminase, aspartate transaminase, total cholesterol, and triacylglycerides in a dose-dependent manner in the mice administered alcohol. Hepatic levels of glutathione, superoxide dismutase, glutathione peroxidase, and catalase were remarkably increased, while malondialdehyde contents and microvesicular steatosis in the liver were decreased by BA in a dose-dependent manner after alcohol-induced liver injury. These findings suggest that the mechanism underlying the hepatoprotective effects of BA might be due to increased antioxidant capacity, mainly through improvement of the tissue redox system, maintenance of the antioxidant system, and decreased lipid peroxidation in the liver.
PMCID: PMC3973757  PMID: 24378582
alcohol; antioxidant capacity; betulinic acid; lipid peroxidation; liver damage
6.  Variations in Lead Isotopic Abundances in Sprague-Dawley Rat Tissues: Possible Reason of Formation 
PLoS ONE  2014;9(2):e89805.
It has been reported in previous research that the lead isotopic composition of blood, urine and feces samples statistically differed from the given lead sources in Sprague-Dawley (SD) rats. However, the reason for this phenomenon is still unclear. An animal experiment was performed to investigate the lead isotope fractionation in diverse biological samples (i.e., lungs, liver, kidneys, bone) and to explore the possible reasons. SD rats were intratracheally instilled with lead acetate at the concentrations of 0, 0.02, 0.2, and 2 mg/kg body weight. Biological samples were collected for lead isotope analysis using an inductively coupled plasma mass spectrometry (ICP-MS). Significant differences are observed in lead isotope abundances among the diverse biological samples. The lead isotope abundances (206Pb, 207Pb and 208Pb) in diverse biological samples show different degrees and directions of departure from the given lead source. The results suggest that differences in enrichment or depletion capacity for each lead isotope in the various tissues might lead to the variation in lead isotopic abundances in tissues. Moreover, a nonlinear relationship between the blood lead level and the lead isotope abundances in liver and bone is observed. When the whole-blood level is higher than 50 ng/mL, the lead isotopic compositions of biological samples tend to be the same. Thus, the data support the speculation of a fractionation functional threshold.
PMCID: PMC3934954  PMID: 24587048
7.  Spatial Segregation of Virulence Gene Expression during Acute Enteric Infection with Salmonella enterica serovar Typhimurium 
mBio  2014;5(1):e00946-13.
To establish a replicative niche during its infectious cycle between the intestinal lumen and tissue, the enteric pathogen Salmonella enterica serovar Typhimurium requires numerous virulence genes, including genes for two type III secretion systems (T3SS) and their cognate effectors. To better understand the host-pathogen relationship, including early infection dynamics and induction kinetics of the bacterial virulence program in the context of a natural host, we monitored the subcellular localization and temporal expression of T3SS-1 and T3SS-2 using fluorescent single-cell reporters in a bovine, ligated ileal loop model of infection. We observed that the majority of bacteria at 2 h postinfection are flagellated, express T3SS-1 but not T3SS-2, and are associated with the epithelium or with extruding enterocytes. In epithelial cells, S. Typhimurium cells were surrounded by intact vacuolar membranes or present within membrane-compromised vacuoles that typically contained numerous vesicular structures. By 8 h postinfection, T3SS-2-expressing bacteria were detected in the lamina propria and in the underlying mucosa, while T3SS-1-expressing bacteria were in the lumen. Our work identifies for the first time the temporal and spatial regulation of T3SS-1 and -2 expression during an enteric infection in a natural host and provides further support for the concept of cytosolic S. Typhimurium in extruding epithelium as a mechanism for reseeding the lumen.
The pathogenic bacterium Salmonella enterica serovar Typhimurium invades and persists within host cells using distinct sets of virulence genes. Genes from Salmonella pathogenicity island 1 (SPI-1) are used to initiate contact and facilitate uptake into nonphagocytic host cells, while genes within SPI-2 allow the pathogen to colonize host cells. While many studies have identified bacterial virulence determinants in animal models of infection, very few have focused on virulence gene expression at the single-cell level during an in vivo infection. To better understand when and where bacterial virulence factors are expressed during an acute enteric infection of a natural host, we infected bovine jejunal-ileal loops with S. Typhimurium cells harboring fluorescent transcriptional reporters for SPI-1 and -2 (PinvF and PssaG, respectively). After a prescribed time of infection, tissue and luminal fluid were collected and analyzed by microscopy. During early infection (≤2 h), bacteria within both intact and compromised membrane-bound vacuoles were observed within the epithelium, with the majority expressing SPI-1. As the infection progressed, S. Typhimurium displayed differential expression of the SPI-1 and SPI-2 regulons, with the majority of tissue-associated bacteria expressing SPI-2 and the majority of lumen-associated bacteria expressing SPI-1. This underscores the finding that Salmonella virulence gene expression changes as the pathogen transitions from one anatomical location to the next.
PMCID: PMC3950517  PMID: 24496791
8.  In vitro antioxidant activity and potential inhibitory action against α-glucosidase of polysaccharides from fruit peel of tea (Camellia sinensis L.)* #  
The conditions for extracting polysaccharides from tea (Camellia sinensis L.) fruit peel (TFPPs) were studied. Three parameters (temperature, time, and liquid/solid ratio) affecting the extraction of TFPP were optimized using response surface methodology (RSM). Under the optimized conditions, the yield of TFPP was predicted to be 4.98%. The physicochemical properties, in vitro antioxidant activities, and inhibitory effects on α-glucosidase of fractionated TFPPs (TFPP-0, TFPP-20, TFPP-40, and TFPP-60) were investigated. We found that the TFPPs were all acid protein-bound heteropolysaccharides, although with different chemical compositions. They had not only remarkable scavenging activity on 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and reducing activity, but also excellent inhibitory potential against α-glucosidase in vitro. Our results suggest that tea fruit peel could be treated as a potential bioresource for the development of polysaccharide antioxidants.
PMCID: PMC3924393  PMID: 24510710
Polysaccharides; Tea (Camellia sinensis L.) fruit peel; Physicochemical properties; Antioxidant activity; α-Glucosidase inhibition
9.  Integrated optical gyroscope using active Long-range surface plasmon-polariton waveguide resonator 
Scientific Reports  2014;4:3855.
Optical gyroscopes with high sensitivity are important rotation sensors for inertial navigation systems. Here, we present the concept of integrated resonant optical gyroscope constructed by active long-range surface plasmon-polariton (LRSPP) waveguide resonator. In this gyroscope, LRSPP waveguide doped gain medium is pumped to compensate the propagation loss, which has lower pump noise than that of conventional optical waveguide. Peculiar properties of single-polarization of LRSPP waveguide have been found to significantly reduce the polarization error. The metal layer of LRSPP waveguide is electro-optical multiplexed for suppression of reciprocal noises. It shows a limited sensitivity of ~10−4 deg/h, and a maximum zero drift which is 4 orders of magnitude lower than that constructed by conventional single-mode waveguide.
PMCID: PMC3900930  PMID: 24458281
10.  Propolis and its Active Component, Caffeic Acid Phenethyl Ester (CAPE), Modulate Breast Cancer Therapeutic Targets via an Epigenetically Mediated Mechanism of Action 
Alternative remedies for cancer treatment is a multi-billion dollar industry. In particular, breast cancer (BC) patients use alternative and natural remedies more frequently than patients with other malignancies. Propolis is an example of a honeybee-produced naturopathic formulation, contents of which differ by geographic location. It is readily available, affordable, and in use safely since ancient times globally. Caffeic acid phenethyl ester (CAPE) is a major active component in propolis and is thought to be responsible for its varied properties, including antibacterial, antiviral, antifungal, antioxidant, anti-inflammatory and anticancer. CAPE is effective in many models of human cancer, including BC as we have previously shown. CAPE affects genes associated with tumor cell growth and survival, angiogenesis and chemoresistance. We demonstrate that these are related in part to CAPE's role as a histone deacetylase inhibitor, a class of drugs designated as epigenetic agents that modulate the activities of oncogenes and tumor suppressor genes. CAPE and propolis, cause an accumulation of acetylated histone proteins in MCF-7 (ER+) and MDA-MB-231 (ER−/PR−/Her2-) cells with associated decreases in ER and PR in MCF-7 cells, and upregulation of ER and decrease in EGFR in MDA-231 cells. In addition, these products reduced activated phosphorylated Her2 protein in SKBR3 (Her2 +) cells. Interestingly, propolis, when normalized for CAPE content, appears to be more potent than CAPE alone similarly to the greater effects of complete foods than isolated components. These data provide a potential mechanistic basis for one of the oldest naturopathic agents used in medicine and cancer treatment.
PMCID: PMC3898618  PMID: 24466386
Propolis; CAPE; Breast cancer; HDAC inhibitor
11.  Blood pressure tables for Chinese adolescents: justification for incorporation of important influencing factors of height, age and sex in the tables 
BMC Pediatrics  2014;14:10.
Elevated blood pressure (BP) in childhood was a predictor of hypertension in adulthood and contributes to the current epidemic of cardiovascular disease. It is necessary to identify abnormal BP in children and adolescents with accurate BP tables based on several crucial factors. The purpose of this study was to identify the important influencing factors of BP of Chinese adolescents.
BP, height, and body weight were assessed in 32221 normal-weight Chinese adolescents aged 12–17 years. An equal number of 6815 subjects from boys and girls were individually matched by height and age to assess the independent effect of sex on BP; and an equal number of 1422 subjects from each of the age groups (12, 13, 14, 15, 16 and 17 years) were individually matched by sex and height to estimate the independent effect of age on BP. Height of each sex and age was divided into eight height groups - ~5th, ~10th, ~25th, ~50th, ~75th, ~90th, ~95th, and 95th ~ percentiles- and the Spearman’s correlation between height percentiles and BP was used to examine the independent effect of height on BP.
Boys had higher systolic BP (SBP) and diastolic BP (DBP) than girls after controlling for age and height. BP increased with age after controlling for sex and height. In each age group, both SBP and DBP increased alongside increasing height in boys and girls.
Sex, age and height are all independent determinants for BP levels in Chinese adolescents. It is essential to incorporate these three factors for the establishment of the BP reference tables.
PMCID: PMC3903007  PMID: 24433550
Adolescent; Hypertension; Blood pressure table
12.  Investigation on the role of the molecular weight of polyvinyl pyrrolidone in the shape control of high-yield silver nanospheres and nanowires 
Serving as shape control agent, polyvinyl pyrrolidone (PVP) has been widely used in chemical synthesis of metal nanoparticles. However, the role of molecular weight (MW) of PVP has been rarely concerned. In this study, we show a facile method to control the shapes of silver nanocrystals using PVP with different MWs. PVPMW=8,000, PVPMW=29,000, PVPMW=40,000, and PVPMW=1,300,000 are compared in the present study. Surprisingly, high-yield silver rodlike nanostructures, nanospheres, and nanowires can be obtained under the same growth environment and reactant concentrations by simply changing the MW of PVP. The mechanism studies of the role of PVP with different MWs in the growth process were carried out systemically using the morphology and spectroscopic measurement, FT-IR spectrum analysis, and seed crystallization monitoring. The results indicate that the MW of PVP plays a determinant role in the morphology and optical property control of the silver nanocrystals. Meantime, the concentration of PVP was found to be an assistant factor to further improve the shape and the yield of the synthesized nanocrystals.
PMCID: PMC3922195  PMID: 24418460
Polyvinyl pyrrolidone; Molecular weight; Nanowire; Nanosphere
13.  Biobutanol production in a Clostridium acetobutylicum biofilm reactor integrated with simultaneous product recovery by adsorption 
Clostridium acetobutylicum can propagate on fibrous matrices and form biofilms that have improved butanol tolerance and a high fermentation rate and can be repeatedly used. Previously, a novel macroporous resin, KA-I, was synthesized in our laboratory and was demonstrated to be a good adsorbent with high selectivity and capacity for butanol recovery from a model solution. Based on these results, we aimed to develop a process integrating a biofilm reactor with simultaneous product recovery using the KA-I resin to maximize the production efficiency of biobutanol.
KA-I showed great affinity for butanol and butyrate and could selectively enhance acetoin production at the expense of acetone during the fermentation. The biofilm reactor exhibited high productivity with considerably low broth turbidity during repeated batch fermentations. By maintaining the butanol level above 6.5 g/L in the biofilm reactor, butyrate adsorption by the KA-I resin was effectively reduced. Co-adsorption of acetone by the resin improved the fermentation performance. By redox modulation with methyl viologen (MV), the butanol-acetone ratio and the total product yield increased. An equivalent solvent titer of 96.5 to 130.7 g/L was achieved with a productivity of 1.0 to 1.5 g · L-1 · h-1. The solvent concentration and productivity increased by 4 to 6-fold and 3 to 5-fold, respectively, compared to traditional batch fermentation using planktonic culture.
Compared to the conventional process, the integrated process dramatically improved the productivity and reduced the energy consumption as well as water usage in biobutanol production. While genetic engineering focuses on strain improvement to enhance butanol production, process development can fully exploit the productivity of a strain and maximize the production efficiency.
PMCID: PMC3891980  PMID: 24401161
Biofilm reactor; Clostridium acetobutylicum; Simultaneous product recovery; Acetoin; Adsorption; Redox modulation
14.  Polymorphisms of C242T and A640G in CYBA Gene and the Risk of Coronary Artery Disease: A Meta-Analysis 
PLoS ONE  2014;9(1):e84251.
Coronary artery disease (CAD) is a leading cause of mortality in many countries. Considerable studies have been carried out to investigate the relationship between the C242T and A640G polymorphisms of CYBA gene and CAD, but the results were still inconsistent. Hence we conducted a meta-analysis to clarify the association.
Methods and Results
A total of 21 eligible literatures were included in the meta-analysis. We observed a significant decreased risk of CAD for C242T polymorphism in Asian population under an allelic model (OR 0.75; 95% CI 0.67–0.84) and a dominant model (OR 0.69; 95% CI 0.61–0.79), however, in overall population and other population no significant association was revealed. We also found A640G polymorphism may contribute to reducing CAD risk under an allelic model (OR 0.84; 95% CI 0.75–0.93), dominant model (OR0.77; 95% CI 0.64–0.92) and recessive model (OR0.82; 95% CI 0.69–0.97). No publication bias was found.
Our meta-analysis confirmed a protective effect of C242Tpolymorphism on CAD in Asian population and indicated that A640G polymorphism was significantly associated with decreased risk of CAD.
PMCID: PMC3879292  PMID: 24392120
15.  Extracellular Location of Thermobifida fusca Cutinase Expressed in Escherichia coli BL21(DE3) without Mediation of a Signal Peptide 
Applied and Environmental Microbiology  2013;79(14):4192-4198.
Cutinase is a multifunctional esterase with potential industrial applications. In the present study, a truncated version of the extracellular Thermobifida fusca cutinase without a signal peptide (referred to as cutinaseNS) was heterologously expressed in Escherichia coli BL21(DE3). The results showed that the majority of the cutinase activity was located in the culture medium. In a 3-liter fermentor, the cutinase activity in the culture medium reached 1,063.5 U/ml (2,380.8 mg/liter), and the productivity was 40.9 U/ml/h. Biochemical characterization of the purified cutinaseNS showed that it has enzymatic properties similar to those of the wild-type enzyme. In addition, E. coli cells producing inactive cutinaseNSS130A were constructed, and it was found that the majority of the inactive enzyme was located in the cytoplasm. Furthermore, T. fusca cutinase was confirmed to have hydrolytic activity toward phospholipids, an important component of the cell membrane. Compared to the cells expressing the inactive cutinaseNSS130A, the cells expressing cutinaseNS showed increased membrane permeability and irregular morphology. Based on these results, a hypothesis of “cell leakage induced by the limited phospholipid hydrolysis of cutinaseNS” was proposed to explain the underlying mechanism for the extracellular release of cutinaseNS.
PMCID: PMC3697513  PMID: 23603671
16.  Improving the Thermostability and Catalytic Efficiency of Bacillus deramificans Pullulanase by Site-Directed Mutagenesis 
Applied and Environmental Microbiology  2013;79(13):4072-4077.
Pullulanase (EC is a well-known starch-debranching enzyme. Its instability and low catalytic efficiency are the major factors preventing its widespread application. To address these issues, Asp437 and Asp503 of the pullulanase from Bacillus deramificans were selected in this study as targets for site-directed mutagenesis based on a structure-guided consensus approach. Four mutants (carrying the mutations D503F, D437H, D503Y, and D437H/D503Y) were generated and characterized in detail. The results showed that the D503F, D437H, and D503Y mutants had an optimum temperature of 55°C and a pH optimum of 4.5, similar to that of the wild-type enzyme. However, the half-lives of the mutants at 60°C were twice as long as that of the wild-type enzyme. In addition, the D437H/D503Y double mutant displayed a larger shift in thermostability, with an optimal temperature of 60°C and a half-life at 60°C of more than 4.3-fold that of the wild-type enzyme. Kinetic studies showed that the Km values for the D503F, D437H, D503Y, and D437H/D503Y mutants decreased by 7.1%, 11.4%, 41.4%, and 45.7% and the Kcat/Km values increased by 10%, 20%, 140%, and 100%, respectively, compared to those of the wild-type enzyme. Mechanisms that could account for these enhancements were explored. Moreover, in conjunction with the enzyme glucoamylase, the D503Y and D437H/D503Y mutants exhibited an improved reaction rate and glucose yield during starch hydrolysis compared to those of the wild-type enzyme, confirming the enhanced properties of the mutants. The mutants generated in this study have potential applications in the starch industry.
PMCID: PMC3697558  PMID: 23624477
17.  Serum Hyperglycemia Might Be Not Related to Fat Composition of Diet and Vegetable Composition of Diet Might Improve Sugar Control in Taiwanese Diabetic Subjects 
Objective: This is an Asian study, which was designed to examine the correlations between biochemical data and food composition of diabetic patients in Taiwan. Methods: One hundred and seventy Taiwanese diabetic patients were enrolled. The correlations between biochemical data and diet composition (from 24-hour recall of intake food) of these patients were explored (Spearman correlation, p < 0.05). Diet components were also correlated with each other to show diet characteristics of diabetic patients in Taiwan. Linear regression was also performed for the significantly correlated groups to estimate possible impacts from diet composition to biochemical data. Results: Postprandial serum glucose level was negatively correlated with fat percentage of diet, intake amount of polyunsaturated fatty acid and fiber diet composition. Hemoglobin A1c was negatively correlated with fat diet, polyunsaturated fatty acid and vegetable diet. Fat composition, calorie percentage accounted by polyunsaturated fatty acid and monounsaturated fatty acid in diet seemed to be negatively correlated with sugar percentage of diet and positively correlated with vegetable and fiber composition of diet. Linear regression showed that intake amount of polyunsaturated fatty acid, calorie percentage accounted by polyunsaturated fatty acid, fat percentage of diet, vegetable composition of diet would predict lower hemoglobin A1c and postprandial blood sugar. Besides, higher percentage of fat diet composition could predict higher percentage of vegetable diet composition in Taiwanese diabetic patients. Conclusion: Fat diet might not elevate serum glucose. Vegetable diet and polyunsaturated fatty acid diet composition might be correlated with better sugar control in Taiwanese diabetic patients.
PMCID: PMC3970106
fat; vegetable; polyunsaturated fatty acid; hemoglobin A1c; Type II diabetes mellitus.
18.  Transcriptome analysis of primary monocytes from HIV-positive patients with differential responses to antiretroviral therapy 
Virology Journal  2013;10:361.
Despite the significant contributions of monocytes to HIV persistence, the HIV-monocyte interaction remains elusive. For patients on antiretroviral therapy, previous studies observed a virological suppression rate of >70% and suggested complete viral suppression as the primary goal. Although some studies have reported genetic dysregulations associated with HIV disease progression, research on ex vivo-derived monocytic transcriptomes from HIV+ patients with differential responses to therapy is limited. This study investigated the monocytic transcriptome distinctions between patients with sustained virus suppression and those with virological failure during highly active antiretroviral therapy (HAART).
Genome-wide transcriptomes of primary monocytes from five HIV+ patients on HAART who sustainably controlled HIV to below detection level (BDL), five HIV+ patients on HAART who consecutively experienced viremia, and four healthy HIV sero-negative controls were analyzed using Illumina microarray. Pairwise comparisons were performed to identify differentially expressed genes followed by quantitative PCR validation. Gene set enrichment analysis was used to check the consistency of our dataset with previous studies, as well as to detect the global dysregulations of the biological pathways in monocytes between viremic patients and BDLs.
Pairwise comparisons including viremic patients versus controls, BDL versus controls, and viremic patients versus BDLs identified 473, 76, and 59 differentially expressed genes (fold change > 2 and FDR < 0.05), respectively. The reliability of our dataset was confirmed by gene set enrichment analysis showing that 6 out of 10 published gene lists were significantly enriched (FDR < 0.01) in at least one of the three pairwise comparisons. In the comparison of viremic patients versus BDLs, gene set enrichment analysis revealed that the pathways characterizing the primary functions of monocytes including antigen processing and presentation, FcγR mediated phagocytosis, and chemokine signaling were significantly up-regulated in viremic patients.
This study revealed the first transcriptome distinctions in monocytes between viremic patients and BDLs on HAART. Our results reflected the outcome balanced between the subversion of the monocyte transcriptome by HIV and the compensatory effect adapted by host cells. The up-regulation of antigen presentation pathway in viremic patients particularly highlighted the role of the interface between innate and adaptive immunity in HIV disease progression.
PMCID: PMC3877975  PMID: 24370116
HIV; Monocyte; Transcriptome; HAART; Virological failure; Antigen presentation
19.  Sputum Microbiota Associated with New, Recurrent and Treatment Failure Tuberculosis 
PLoS ONE  2013;8(12):e83445.
Microbiota have recently been shown to be associated with many disease conditions. However, the microbiota associated with tuberculosis (TB) infection, recurrence and treatment outcome have not been systematically characterized. Here, we used high throughput 16S RNA sequencing to analyze the sputum microbiota associated with Mycobacterium tuberculosis infection and also to identify the microorganisms associated with different outcomes of TB treatment. We recruited 25 new TB patients, 30 recurrent TB patients and 20 TB patients with treatment failure, as well as 20 healthy controls. Streptococcus, Gramulicatella and Pseudomonas were more abundant in TB patients while Prevotella, Leptotrichia, Treponema, Catonella and Coprococcus were less abundant in TB patients than in the healthy controls. We found reduced frequency and abundance of some genera such as Bulleidia and Atopobium in recurrent TB patients compared with those in new TB patients. In addition, the ratio of Pseudomonas / Mycobacterium in recurrent TB was higher than that in new TB while the ratio of Treponema / Mycobacterium in recurrent TB was lower than that in new TB, indicating that disruption of these bacteria may be a risk factor of TB recurrence. Furthermore, Pseudomonas was more abundant and more frequently present in treatment failure patients than in cured new patients, and the ratio of Pseudomonas / Mycobacterium in treatment failure was higher than that in new TB. Our data suggest that the presence of certain bacteria and the disorder of lung microbiota may be associated with not only onset of TB but also its recurrence and treatment failure. These findings indicate that lung microbiota may play a role in pathogenesis and treatment outcome of TB and may need to be taken into consideration for improved treatment and control of TB in the future.
PMCID: PMC3862690  PMID: 24349510
20.  Vascular binding of a pathogen under shear force through mechanistically distinct sequential interactions with host macromolecules 
Molecular microbiology  2012;86(5):1116-1131.
Systemic dissemination of microbial pathogens permits microbes to spread from the initial site of infection to secondary target tissues and is responsible for most mortality due to bacterial infections. Dissemination is a critical stage of disease progression by the Lyme spirochete, Borrelia burgdorferi. However, many mechanistic features of the process are not yet understood. A key step is adhesion of circulating microbes to vascular surfaces in the face of the shear forces present in flowing blood. Using real-time microscopic imaging of the Lyme spirochete in living mice we previously identified the first bacterial protein (B. burgdorferi BBK32) shown to mediate vascular adhesion in vivo. Vascular adhesion is also dependent on host fibronectin (Fn) and glycosaminoglycans (GAGs). In the present study, we investigated the mechanisms of BBK32-dependent vascular adhesion in vivo. We determined that BBK32-Fn interactions (tethering) function as a molecular braking mechanism that permits the formation of more stable BBK32-GAG interactions (dragging) between circulating bacteria and vascular surfaces. Since BBK32-like proteins are expressed in a variety of pathogens we believe that the vascular adhesion mechanisms we have deciphered here may be critical for understanding the dissemination mechanisms of other bacterial pathogens.
PMCID: PMC3508296  PMID: 23095033
Lyme disease; Borrelia; spirochete; hematogenous dissemination; intravital microscopy; vascular adhesion; fibronectin; glycosaminoglycans; confocal microscopy; shear force; BBK32
21.  The collection of NFATc1-dependent transcripts in the osteoclast includes numerous genes non-essential to physiologic bone resorption 
Bone  2012;51(5):902-912.
Osteoclasts are specialized secretory cells of the myeloid lineage important for normal skeletal homeostasis as well as pathologic conditions of bone including osteoporosis, inflammatory arthritis and cancer metastasis. Differentiation of these multinucleated giant cells from precursors is controlled by the cytokine RANKL, which through its receptor RANK initiates a signaling cascade culminating in the activation of transcriptional regulators which induce the expression of the bone degradation machinery. The transcription factor nuclear factor of activated T-cells c1 (NFATc1) is the master regulator of this process and in its absence osteoclast differentiation is aborted both in vitro and in vivo. Differential mRNA expression analysis by microarray is used to identify genes of potential physiologic relevance across nearly all biologic systems. We compared the gene expression profile of murine wild-type and NFATc1-deficient osteoclast precursors stimulated with RANKL and identified that the majority of the known genes important for osteoclastic bone resorption require NFATc1 for induction. Here, five novel RANKL-induced, NFATc1-dependent transcripts in the osteoclast are described: Nhedc2, Rhoc, Serpind1, Adcy3 and Rab38. Despite reasonable hypotheses for the importance of these molecules in the bone resorption pathway and their dramatic induction during differentiation, the analysis of mice with mutations in these genes failed to reveal a function in osteoclast biology. Compared to littermate controls, none of these mutants demonstrated a skeletal phenotype in vivo or alterations in osteoclast differentiation or function in vitro. These data highlight the need for rigorous validation studies to complement expression profiling results before functional importance can be assigned to highly regulated genes in any biologic process.
PMCID: PMC3457000  PMID: 22985540
Osteoclast; Gene array; NFATc1; Bone resorption; NHEDC2
22.  Comparison of Endoscopic Ultrasonography and Multislice Spiral Computed Tomography for the Preoperative Staging of Gastric Cancer - Results of a Single Institution Study of 610 Chinese Patients 
PLoS ONE  2013;8(11):e78846.
This study compared the performance of endoscopic ultrasonography (EUS) and multislice spiral computed tomography (MSCT) in the preoperative staging of gastric cancer.
Methodology/Principal Findings
A total of 610 patients participated in this study, all of whom had undergone surgical resection, had confirmed gastric cancer and were evaluated with EUS and MSCT. Tumor staging was evaluated using the Tumor-Node-Metastasis (TNM) staging and Japanese classification. The results from the imaging modalities were compared with the postoperative histopathological outcomes. The overall accuracies of EUS and MSCT for the T staging category were 76.7% and 78.2% (P=0.537), respectively. Stratified analysis revealed that the accuracy of EUS for T1 and T2 staging was significantly higher than that of MSCT (P<0.001 for both) and that the accuracy of MSCT in T3 and T4 staging was significantly higher than that of EUS (P<0.001 and 0.037, respectively). The overall accuracy of MSCT was 67.2% when using the 13th edition Japanese classification, and this percentage was significantly higher than the accuracy of EUS (49.3%) and MSCT (44.6%) when using the 6th edition UICC classification (P<0.001 for both values).
Our results demonstrated that the overall accuracies of EUS and MSCT for preoperative staging were not significantly different. We suggest that a combination of EUS and MSCT is required for preoperative evaluation of TNM staging.
PMCID: PMC3815220  PMID: 24223855
23.  Interaction between cyclooxygenase-2, Snail, and E-cadherin in gastric cancer cells 
AIM: To investigate the mechanisms of how cyclooxygenase-2 (COX-2) regulates E-cadherin in gastric cancer cells.
METHODS: COX-2 expression in human gastric cancer cell lines SGC-7901, BGC-823, MGC-803 and AGS were measured at the mRNA and protein level. COX-2 rich cell line SGC-7901 was chosen for subsequent experiments. siRNA mediated gene knockdown was used to investigate the impact of COX-2 on nuclear factor-κB (NF-κB), Snail, and E-cadherin in gastric cancer cells. Gene expression was determined by Western blot and real-time polymerase chain reaction. To analyze whether NF-κB inhibition could interrupt the modulatory effect of COX-2 or prostaglandin E2 (PGE2) on E-cadherin, gastric cancer cells were treated with celecoxib or PGE2, in the presence of NF-κB specific siRNA.
RESULTS: Highest expression level of COX-2 was found in SGC-7901 cells, both at mRNA and protein levels. siRNA mediated down-regulation of COX-2 led to a reduced expression of NF-κB and Snail, but an increased expression of E-cadherin in SGC-7901 cells. siRNA mediated down-regulation of NF-κB also led to a reduced expression of E-cadherin and Snail in SGC-7901 cells. However, COX-2 expression did not alter after cells were treated with NF-κB specific siRNA in SGC-7901 cells. Treatment of SGC-7901 cells with celecoxib led to a reduced expression of Snail but an increased expression of E-cadherin. In contrast, treatment of SGC-7901 cells with PGE2 led to an increased Snail and a decreased E-cadherin. However, siRNA-mediated knockdown of NF-κB partially abolished the effect of celecoxib and PGE2 on the regulation of E-cadherin and Snail in SGC-7901 cells.
CONCLUSION: COX-2 likely functions upstream of NF-κB and regulates the expression of E-cadherin via NF-κB/Snail signaling pathway in gastric cancer cells.
PMCID: PMC3787358  PMID: 24115825
Cyclooxygenase-2; E-cadherin; celecoxib; Prostaglandin E2; Gastric cancer
24.  Efficient Gene Delivery to Pig Airway Epithelia and Submucosal Glands Using Helper-Dependent Adenoviral Vectors 
Airway gene delivery is a promising strategy to treat patients with life-threatening lung diseases such as cystic fibrosis (CF). However, this strategy has to be evaluated in large animal preclinical studies in order to translate it to human applications. Because of anatomic and physiological similarities between the human and pig lungs, we utilized pig as a large animal model to examine the safety and efficiency of airway gene delivery with helper-dependent adenoviral vectors. Helper-dependent vectors carrying human CFTR or reporter gene LacZ were aerosolized intratracheally into pigs under bronchoscopic guidance. We found that the LacZ reporter and hCFTR transgene products were efficiently expressed in lung airway epithelial cells. The transgene vectors with this delivery can also reach to submucosal glands. Moreover, the hCFTR transgene protein localized to the apical membrane of both ciliated and nonciliated epithelial cells, mirroring the location of wild-type CF transmembrane conductance regulator (CFTR). Aerosol delivery procedure was well tolerated by pigs without showing systemic toxicity based on the limited number of pigs tested. These results provide important insights into developing clinical strategies for human CF lung gene therapy.
PMCID: PMC3890457  PMID: 24104599
cystic fibrosis; lung gene delivery; pig
25.  Dynamic Evolution of Rht-1 Homologous Regions in Grass Genomes 
PLoS ONE  2013;8(9):e75544.
Hexaploid bread wheat contains A, B, and D three subgenomes with its well-characterized ancestral genomes existed at diploid and tetraploid levels, making the wheat act as a good model species for studying evolutionary genomic dynamics. Here, we performed intra- and inter-species comparative analyses of wheat and related grass genomes to examine the dynamics of homologous regions surrounding Rht-1, a well-known “green revolution” gene. Our results showed that the divergence of the two A genomes in the Rht-1 region from the diploid and tetraploid species is greater than that from the tetraploid and hexaploid wheat. The divergence of D genome between diploid and hexaploid is lower than those of A genome, suggesting that D genome diverged latter than others. The divergence among the A, B and D subgenomes was larger than that among different ploidy levels for each subgenome which mainly resulted from genomic structural variation of insertions and, perhaps deletions, of the repetitive sequences. Meanwhile, the repetitive sequences caused genome expansion further after the divergence of the three subgenomes. However, several conserved non-coding sequences were identified to be shared among the three subgenomes of wheat, suggesting that they may have played an important role to maintain the homolog of three subgenomes. This is a pilot study on evolutionary dynamics across the wheat ploids, subgenomes and differently related grasses. Our results gained new insights into evolutionary dynamics of Rht-1 region at sequence level as well as the evolution of wheat during the plolyploidization process.
PMCID: PMC3782514  PMID: 24086561

Results 1-25 (167)