Search tips
Search criteria

Results 1-16 (16)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  High-dose single-fraction IMRT versus fractionated external beam radiotherapy for patients with spinal bone metastases: study protocol for a randomized controlled trial 
Trials  2015;16:264.
Stereotactic body radiation therapy (SBRT)using intensity-modulated radiotherapy (IMRT) can be a safe modality for treating spinal bone metastasis with enhanced targeting accuracy and an effective method for achieving good tumor control and a rigorous pain response.
This is a single-center, prospective randomized controlled trial to evaluate pain relief after RT and consists of two treatment groups with 30 patients in each group. One group will receive single-fraction intensity-modulated RT with 1×24 Gy, and the other will receive fractionated RT with 10×3 Gy. The target parameters will be measured at baseline and at 3 and 6 months after RT.
The aim of this study is to evaluate pain relief after RT in patients with spinal bone metastases by means of two different techniques: stereotactic body radiation therapy and fractionated RT. The primary endpoint is pain relief at the 3-month time-point after RT. Secondly, quality of life, fatigue, overall and bone survival, and local control will be assessed.
Trial registration identifier NCT02358720 (June 2, 2015).
PMCID: PMC4465731  PMID: 26054533
Bone metastases; Spine; SBRT; IMRT; Palliative radiotherapy
2.  Prognostic factors, patterns of recurrence and toxicity for patients with esophageal cancer undergoing definitive radiotherapy or chemo-radiotherapy 
Journal of Radiation Research  2015;56(4):742-749.
The aim of this study was to evaluate the effectiveness and tolerability of definitive chemo-radiation or radiotherapy alone in patients with esophageal cancer. We retrospectively analyzed the medical records of n = 238 patients with squamous cell carcinoma or adenocarcinoma of the esophagus treated with definitive radiotherapy with or without concomitant chemotherapy at our institution between 2000 and 2012. Patients of all stages were included to represent actual clinical routine. We performed univariate and multivariate analysis to identify prognostic factors for overall survival (OS) and progression-free survival (PFS). Moreover, treatment-related toxicity and patterns of recurrence were assessed. Patients recieved either chemo-radiation (64%), radiotherapy plus cetuximab (10%) or radiotherapy alone (26%). In 69%, a boost was applied, resulting in a median cumulative dose of 55.8 Gy; the remaining 31% received a median total dose of 50 Gy. For the entire cohort, the median OS and PFS were 15.0 and 11.0 months, respectively. In multivariate analysis, important prognostic factors for OS and PFS were T stage (OS: P = 0.005; PFS: P = 0.006), M stage (OS: P = 0.015; PFS: P = 0.003), concomitant chemotherapy (P < 0.001) and radiation doses of >55 Gy (OS: P = 0.019; PFS: P = 0.022). Recurrences occurred predominantly as local in-field relapse or distant metastases. Toxicity was dominated by nutritional impairment (12.6% with G3/4 dysphagia) and chemo-associated side effects. Definitive chemo-radiation in patients with esophageal cancer results in survival rates comparable with surgical treatment approaches. However, local and distant recurrence considerably restrict prognosis. Further advances in radio-oncological treatment strategies are necessary for improving outcome.
PMCID: PMC4497395  PMID: 25907360
esophageal cancer; radiotherapy; definitive chemo-radiation; prognostic factors; toxicity
3.  In vivo measurement of dose distribution in patients' lymphocytes: helical tomotherapy versus step-and-shoot IMRT in prostate cancer 
Journal of Radiation Research  2014;56(2):239-247.
In radiotherapy, in vivo measurement of dose distribution within patients' lymphocytes can be performed by detecting gamma-H2AX foci in lymphocyte nuclei. This method can help in determining the whole-body dose. Options for risk estimations for toxicities in normal tissue and for the incidence of secondary malignancy are still under debate. In this investigation, helical tomotherapy (TOMO) is compared with step-and-shoot IMRT (SSIMRT) of the prostate gland by measuring the dose distribution within patients' lymphocytes. In this prospective study, blood was taken from 20 patients before and 10 min after their first irradiation fraction for each technique. The isolated leukocytes were fixed 2 h after radiation. DNA double-stranded breaks in lymphocyte nuclei were stained immunocytochemically using anti-gamma-H2AX antibodies. Gamma-H2AX foci distribution in lymphocytes was determined for each patient. Using a calibration line, dose distributions in patients' lymphocytes were determined by studying the gamma-H2AX foci distribution, and these data were used to generate a cumulative dose–lymphocyte histogram (DLH). Measured in vivo (DLH), significantly fewer lymphocytes indicated low-dose exposure (<40% of the applied dose) during TOMO compared with SSIMRT. The dose exposure range, between 45 and 100%, was equal with both radiation techniques. The mean number of gamma-H2AX foci per lymphocyte was significantly lower in the TOMO group compared with the SSIMRT group. In radiotherapy of the prostate gland, TOMO generates a smaller fraction of patients' lymphocytes with low-dose exposure relative to the whole body compared with SSIMRT. Differences in the constructional buildup of the different linear accelerator systems, e.g. the flattening filter, may be the cause thereof. The influence of these methods on the incidence of secondary malignancy should be investigated in further studies.
PMCID: PMC4380044  PMID: 25361548
dose distribution; helical IMRT; lymphocytes; in vivo dosimetry; gamma-H2AX; tomotherapy; step-and-shoot IMRT; prostate cancer
4.  Efficacy and toxicity of chemoradiation in patients with anal cancer - a retrospective analysis 
Concurrent chemotherapy and radiation therapy is the preferred standard of care for patients with anal cancer. Several studies have suggested a benefit of intensity-modulated radiation therapy (IMRT) compared with 3D-conformal radiation (3D-CRT) regarding acute toxicity. This study evaluates outcome and toxicity of patients undergoing IMRT/Tomotherapy or 3D-CRT at our institution.
A cohort of 105 anal cancer patients was treated with chemoradiation or radiation alone (16.2%) between January 2000 and December 2011. 37 patients received 3D-CRT while 68 patients were treated with IMRT. Follow-up exams were performed every 3 to 6 months for a minimum of 3 years and then annually.
Median follow-up was 41.4 months (2.8 – 158.4). Overall survival (OS), Progression-free survival (PFS) and local control (LC) at 3 years was 70.3%, 66.5%, 78.3% in the 3D-CRT group and 82.9%, 66.5%, 75.3% in the IMRT group without statistically significant difference. 3-year Colostomy-free survival (CFS) was 85.7% in the IMRT/Tomotherapy group and 91.8% in the 3D-CRT group (p = 0.48). No grade 4 toxicity was found in both groups. Severe (G2/3) acute skin toxicity (94.6% vs. 63.2%; p < 0.001) and acute gastrointestinal toxicity rate (67.6% vs. 47.1%; p = 0.03) was significantly higher with 3D-CRT compared to IMRT/Tomotherapy.
The use of IMRT can reduce acute severe side effects of the skin and gastrointestinal tract but did not demonstrate improved results regarding OS, PFS, LC and CFS.
PMCID: PMC4030022  PMID: 24886574
Anal [canal] cancer; Radiochemotherapy; Toxicity; IMRT; 3D-CRT; Radiation
5.  Helical intensity-modulated Radiotherapy of the Pelvic Lymph Nodes with Integrated Boost to the Prostate Bed - Initial Results of the PLATIN 3 Trial 
BMC Cancer  2014;14:20.
Adjuvant and salvage radiotherapy of the prostate bed are established treatment options for prostate cancer. While the benefit of an additional radiotherapy of the pelvic lymph nodes is still under debate, the PLATIN 3 prospective phase II clinical trial was initiated to substantiate toxicity data on postoperative IMRT of the pelvic lymph nodes and the prostate bed.
From 2009 to 2011, 40 patients with high-risk prostate cancer after prostatectomy with pT3 R0/1 M0 or pT2 R1 M0 or a PSA recurrence and either > 20% risk of lymph node involvement and inadequate lymphadenectomy or pN + were enrolled. Patients received two months of antihormonal treatment (AT) before radiotherapy. AT continuation was mandatory during radiotherapy and was recommended for another two years. IMRT of the pelvic lymph nodes (51.0 Gy) with a simultaneous integrated boost to the prostate bed (68.0 Gy) was performed in 34 fractions. PSA level, prostate-related symptoms and quality of life were assessed at regular intervals for 24 months.
Of the 40 patients enrolled, 39 finished treatment as planned. Overall acute toxicity rates were low and no acute grade 3/4 toxicity occurred. Only 22.5% of patients experienced acute grade 2 gastrointestinal (GI) and genitourinary (GU) toxicity. During follow-up, 10.0% late grade 2 GI and 5.0% late grade 2 GU toxicity occurred, and one patient developed late grade 3 proctitis and enteritis. After a median observation time of 24 months the PLATIN 3 trial has shown in 97.5% of all patients sufficient safety and thus met its prospectively defined aims. After a median of 24 months, 34/38 patients were free of a PSA recurrence.
Postoperative whole-pelvis IMRT with an integrated boost to the prostate bed can be performed safely and without excessive toxicity.
Trial registration
Trial Numbers: ARO 2009–05, NCT01903408.
PMCID: PMC3893457  PMID: 24422782
Prostate; Postoperative Radiotherapy; Antihormonal treatment; Pelvic lymph nodes; IMRT; Tomotherapy
6.  MR-guidance – a clinical study to evaluate a shuttle- based MR-linac connection to provide MR-guided radiotherapy 
The purpose of this clinical study is to investigate the clinical feasibility and safety of a shuttle-based MR-linac connection to provide MR-guided radiotherapy.
A total of 40 patients with an indication for a neoadjuvant, adjuvant or definitive radiation treatment will be recruited including tumors of the head and neck region, thorax, upper gastrointestinal tract and pelvic region. All study patients will receive standard therapy, i.e. highly conformal radiation techniques like CT-guided intensity-modulated radiotherapy (IMRT) with or without concomitant chemotherapy or other antitumor medication, and additionally daily short MR scans in treatment position with the same immobilisation equipment used for irradiation for position verification and imaging of the anatomical and functional changes during the course of radiotherapy. For daily position control, skin marks and a stereotactic frame will be used for both imaging modalities. Patient transfer between the MR device and the linear accelerator will be performed with a shuttle system which uses an air-bearing patient platform for both procedures. The daily acquired MR and CT data sets will be digitally registrated, correlated with the planning CT and compared with each other regarding translational and rotational errors. Aim of this clinical study is to establish a shuttle-based approach for realising MR-guided radiotherapy for certain clinical situations. Second objectives are to compare MR-guided radiotherapy with the gold standard of CT image guidance for quality assurance of radiotherapy, to establish an appropiate MR protocol therefore, and to assess the possibility of using MR-based image guidance not only for position verification but also for adaptive strategies in radiotherapy.
Compared to CT, MRI might offer the advantage of providing IGRT without delivering an additional radiation dose to the patients and the possibility of optimisation of adaptive therapy strategies due to its superior soft tissue contrast. However, up to now, hybrid MR-linac devices are still under construction and not clinically applicable. For the near future, a shuttle-based approach would be a promising alternative for providing MR-guided radiotherapy, so that the present study was initiated to determine feasibility and safety of such an approach. Besides positioning information, daily MR data under treatment offer the possibility to assess tumor regression and functional parameters, with a potential impact not only on adaptive therapy strategies but also on early assessment of treatment response.
PMCID: PMC3904210  PMID: 24401489
IGRT; MR-guided radiotherapy; Dose reduction; Shuttle
7.  Neurological outcome after emergency radiotherapy in MSCC of patients with non-small cell lung cancer - a prospective trial 
The aim of this trial was to investigate neurological outcome after emergency RT in MSCC of NSCLC patients with acute neurological deficit.
This pilot trial was prospective, non-randomized, and monocentre, ten patients were treated from July 2012 until June 2013. After onset of neurological symptoms RT was started within 12 hours. The neurological outcome was assessed at baseline, and six weeks after RT using the ASIA Impairment Scale (AIS).
The results showed an improved neurological outcome in one patient (10%), one patient (10%) had a decreased, and five patients (50%) a constant outcome after six weeks. Three patients (30%) died within the first six weeks following RT, additional 4 patients (40%) died within 4 month due to tumor progression.
In this group of NSCLC patients we were able to show that emergency RT in MSCC with acute neurological deficit had no considerable benefit in neurological outcome. Therefore, short-course regime or best supportive care due to poor survival should be considered for these patients with additional distant metastases. Patients with favorable prognosis may be candidates for long-course RT.
Trial Registration
Clinical trial identifier NCT 02000518.
PMCID: PMC3904469  PMID: 24373638
Emergency radiotherapy; MSCC; Spine; Neurological outcome
8.  Whole brain helical Tomotherapy with integrated boost for brain metastases in patients with malignant melanoma–a randomized trial 
Patients with malignant melanoma may develop brain metastases during the course of the disease, requiring radiotherapeutic treatment. In patients with 1–3 brain metastases, radiosurgery has been established as a treatment option besides surgery. For patients with 4 or more brain metastases, whole brain radiotherapy is considered the standard treatment. In certain patients with brain metastases, radiation treatment using whole brain helical Tomotherapy with integrated boost and hippocampal-sparing may improve prognosis of these patients.
The present prospective, randomized two-armed trial aims to exploratory investigate the treatment response to conventional whole brain radiotherapy applying 30 Gy in 10 fractions versus whole brain helical Tomotherapy applying 30 Gy in 10 fractions with an integrated boost of 50 Gy to the brain metastases as well as hippocampal-sparing in patients with brain metastases from malignant melanoma. The main inclusion criteria include magnetic resonance imaging confirmed brain metastases from a histopathologically confirmed malignant melanoma in patients with a minimum age of 18 years. The main exclusion criteria include a previous radiotherapy of the brain and not having recovered from acute high-grade toxicities of prior therapies. The primary endpoint is treatment-related toxicity. Secondary endpoints include imaging response, local and loco-regional progression-free survival, overall survival and quality of life.
Trial registration Trial ID: DRKS00005127
PMCID: PMC3816313  PMID: 24112545
Malignant melanoma; Brain metastases; Radiotherapy; Tomotherapy; Integrated boost
9.  Accelerated large volume irradiation with dynamic Jaw/Dynamic Couch Helical Tomotherapy 
Helical Tomotherapy (HT) has unique capacities for the radiotherapy of large and complicated target volumes. Next generation Dynamic Jaw/Dynamic Couch HT delivery promises faster treatments and reduced exposure of organs at risk due to a reduced dose penumbra.
Three challenging clinical situations were chosen for comparison between Regular HT delivery with a field width of 2.5 cm (Reg 2.5) and 5.0 cm (Reg 5.0) and DJDC delivery with a maximum field width of 5.0 cm (DJDC 5.0): Hemithoracic Irradiation, Whole Abdominal Irradiation (WAI) and Total Marrow Irradiation (TMI). For each setting, five CT data sets were chosen, and target coverage, conformity, integral dose, dose exposure of organs at risk (OAR) and treatment time were calculated.
Both Reg 5.0 and DJDC 5.0 achieved a substantial reduction in treatment time while maintaining similar dose coverage. Treatment time could be reduced from 10:57 min to 3:42 min / 5:10 min (Reg 5.0 / DJDC 5.0) for Hemithoracic Irradiation, from 18:03 min to 8:02 min / 8:03 min for WAI and to 18:25 min / 18:03 min for TMI. In Hemithoracic Irradiation, OAR exposure was identical in all modalities. For WAI, Reg 2.5 resulted in lower exposure of liver and bone. DJDC plans showed a small but significant increase of ∼ 1 Gy to the kidneys, the parotid glans and the thyroid gland. While Reg 5.0 and DJDC were identical in terms of OAR exposure, integral dose was substantially lower with DJDC, caused by a smaller dose penumbra.
Although not clinically available yet, next generation DJDC HT technique is efficient in improving the treatment time while maintaining comparable plan quality.
PMCID: PMC3544594  PMID: 23146914
Dynamic jaw/dynamic couch; Helical tomotherapy; Large volumes; Hemithoracic irradiation; Whole abdominal irradiation; Total marrow irradiation
10.  Hypofractionated helical intensity-modulated radiotherapy of the prostate bed after prostatectomy with or without the pelvic lymph nodes - the PRIAMOS trial 
BMC Cancer  2012;12:504.
While evidence on safety and efficacy of primary hypofractionated radiotherapy in prostate cancer is accumulating, data on postoperative hypofractionated treatment of the prostate bed and of the pelvic lymph nodes is still scarce. This phase II trial was initiated to investigate safety and feasibility of hypofractionated treatment of the prostate bed alone or with the pelvic lymph nodes.
A total of 80 prostate cancer patients with the indication for adjuvant radiotherapy will be enrolled, where 40 patients with a low risk of lymph node involvement (arm 1) and another 40 patients with a high risk of lymph node involvement (arm 2) will each receive 54 Gy in 18 fractions to the prostate bed. Arm 2 will be given 45 Gy to the pelvic lymph nodes additionally. Helical Tomotherapy and daily image guidance will be used.
This trial was initiated to substantiate data on hypofractionated treatment of the prostate bed and generate first data on adjuvant hypofractionated radiotherapy of the pelvic lymph nodes.
Trial registration; NCT01620710
PMCID: PMC3495015  PMID: 23114055
Prostate cancer; Radiotherapy; Hypofractionation; Helical tomotherapy; Prostate bed; Pelvic lymph nodes
11.  Efficacy and toxicity of whole brain radiotherapy in patients with multiple cerebral metastases from malignant melanoma 
To retrospectively access outcome and toxicity of whole brain radiotherapy (WBRT) in patients with multiple brain metastases (BM) from malignant melanoma (MM).
Patients and methods
Results of 87 patients (median age 58 years; 35 female, 52 male) treated by WBRT for BM of MM between 2000 and 2011 were reviewed. Total dose applied was either 30 Gy in 10 fractions (n = 56) or 40 Gy in 20 fractions (n = 31). All but 9 patients suffered from extra-cerebral metastases. Prior surgical resection of BM was performed in 18 patients, salvage stereotactic radiosurgery in 13 patients.
Mean follow-up was 8 months (range, 0–57 months), the 6- and 12-months overall-(OS) survival rates were 29.2% and 16.5%, respectively. The median OS was 3.5 months. In cerebral follow-up imaging 6 (11) patients showed a complete (partial) remission, while 11 (17) patients had stable disease (intra-cerebral tumor progression). In comparison of total dose, the group treated with 40 Gy in 20 fractions achieved a significant longer OS (p = 0.003, median 3.1 vs. 5.6 months). Furthermore, DS-GPA score (p < 0.001) as well as RPA class (p < 0.001) influenced significantly on OS and patients had a significantly longer OS after surgical resection (p = 0.001, median 3.0 vs. 5.8 months, multivariate p = 0.007). Having extra-cerebral metastases didn't significantly impact on OS (p = 0.21).
Treatment of BM from MM with WBRT is tolerated well and some remissions of BM could be achieved. An advantage for higher treatment total doses was seen. However, outcome is non-satisfying, and further improvements in treatment of BM from MM are warranted.
PMCID: PMC3444385  PMID: 22857154
Malignant melanoma; Brain metastases; Irradiation; Radiotherapy; WBRT; Whole brain radiotherapy
12.  Simultaneous integrated boost for adjuvant treatment of breast cancer- intensity modulated vs. conventional radiotherapy: The IMRT-MC2 trial 
BMC Cancer  2011;11:249.
Radiation therapy is an essential modality in the treatment of breast cancer. Addition of radiotherapy to surgery has significantly increased local control and survival rates of the disease. However, radiotherapy is also associated with side effects, such as tissue fibrosis or enhanced vascular morbidity. Modern radiotherapy strategies, such as intensity modulated radiotherapy (IMRT), can shorten the overall treatment time by integration of the additional tumor bed boost significantly. To what extent this might be possible without impairing treatment outcome and cosmetic results remains to be clarified.
The IMRT-MC2 study is a prospective, two armed, multicenter, randomized phase-III-trial comparing intensity modulated radiotherapy with integrated boost to conventional radiotherapy with consecutive boost in patients with breast cancer after breast conserving surgery. 502 patients will be recruited and randomized into two arms: patients in arm A will receive IMRT in 28 fractions delivering 50.4 Gy to the breast and 64.4 Gy to the tumor bed by integrated boost, while patients in arm B will receive conventional radiotherapy of the breast in 28 fractions to a dose of 50.4 Gy and consecutive boost in 8 fractions to a total dose of 66.4 Gy.
Primary objectives of the study are the evaluation of the cosmetic results 6 weeks and 2 years post treatment and the 2- and 5-year local recurrence rates for the two different radiotherapy strategies. Secondary objectives are long term overall survival, disease free survival and quality of life.
Trial Registration Protocol ID: NCT01322854.
PMCID: PMC3150341  PMID: 21676232
13.  Biological in-vivo measurement of dose distribution in patients' lymphocytes by gamma-H2AX immunofluorescence staining: 3D conformal- vs. step-and-shoot IMRT of the prostate gland 
Different radiation-techniques in treating local staged prostate cancer differ in their dose- distribution. Physical phantom measurements indicate that for 3D, less healthy tissue is exposed to a relatively higher dose compared to SSIMRT. The purpose is to substantiate a dose distribution in lymphocytes in-vivo and to discuss the possibility of comparing it to the physical model of total body dose distribution.
For each technique (3D and SSIMRT), blood was taken from 20 patients before and 10 min after their first fraction of radiotherapy. The isolated leukocytes were fixed 2 hours after radiation. DNA double-strand breaks (DSB) in lymphocytes' nuclei were stained immunocytochemically using the gamma-H2AX protein. Gamma-H2AX foci inside each nucleus were counted in 300 irradiated as well as 50 non-irradiated lymphocytes per patient. In addition, lymphocytes of 5 volunteer subjects were irradiated externally at different doses and processed under same conditions as the patients' lymphocytes in order to generate a calibration-line. This calibration-line assigns dose-value to mean number of gamma-H2AX foci/ nucleus. So the dose distributions in patients' lymphocytes were determined regarding to the gamma-H2AX foci distribution. With this information a cumulative dose-lymphocyte-histogram (DLH) was generated. Visualized distribution of gamma-H2AX foci, correspondingly dose per nucleus, was compared to the technical dose-volume-histogram (DVH), related to the whole body-volume.
Measured in-vivo (DLH) and according to the physical treatment-planning (DVH), more lymphocytes resulted with low-dose exposure (< 20% of the applied dose) and significantly fewer lymphocytes with middle-dose exposure (30%-60%) during Step-and-Shoot-IMRT, compared to conventional 3D conformal radiotherapy. The high-dose exposure (> 80%) was equal in both radiation techniques. The mean number of gamma-H2AX foci per lymphocyte was 0.49 (3D) and 0.47 (SSIMRT) without significant difference.
In-vivo measurement of the dose distribution within patients' lymphocytes can be performed by detecting gamma-H2AX foci. In case of 3D and SSIMRT, the results of this method correlate with the physical calculated total body dose-distribution, but cannot be interpreted unrestrictedly due to the blood circulation. One possible application of the present method could be in radiation-protection for in-vivo dose estimation after accidental exposure to radiation.
PMCID: PMC3121605  PMID: 21649920
14.  Phase II study evaluating consolidation whole abdominal intensity-modulated radiotherapy (IMRT) in patients with advanced ovarian cancer stage FIGO III - The OVAR-IMRT-02 Study 
BMC Cancer  2011;11:41.
The prognosis for patients with advanced FIGO stage III epithelial ovarian cancer remains poor despite the aggressive standard treatment, consisting of maximal cytoreductive surgery and platinum-based chemotherapy. The median time to recurrence is less than 2 years, with a 5-years survival rate of -20-25%. Recurrences of the disease occur mostly intraperitoneally.
Ovarian cancer is a radiosensitive tumor, so that the use of whole abdominal radiotherapy (WAR) as a consolidation therapy would appear to be a logical strategy. WAR used to be the standard treatment after surgery before the chemotherapy era; however, it has been almost totally excluded from the treatment of ovarian cancer during the past decade because of its high toxicity. Modern intensity-modulated radiation therapy (IMRT) has the potential of sparing organs at risk like kidneys, liver, and bone marrow while still adequately covering the peritoneal cavity with a homogenous dose.
Our previous phase I study showed for the first time the clinical feasibility of intensity-modulated WAR and pointed out promising results concerning treatment tolerance. The current phase-II study succeeds to the phase-I study to further evaluate the toxicity of this new treatment.
The OVAR-IMRT-02 study is a single-center one arm phase-II trial. Thirty seven patients with optimally debulked ovarian cancer stage FIGO III having a complete remission after chemotherapy will be treated with intensity-modulated WAR as a consolidation therapy.
A total dose of 30 Gy in 20 fractions of 1.5 Gy will be applied to the entire peritoneal cavity including the liver surface and the pelvic and para-aortic node regions. Organ at risk are kidneys, liver (except the 1 cm-outer border), heart, vertebral bodies and pelvic bones.
Primary endpoint is tolerability; secondary objectives are toxicity, quality of life, progression-free and overall survival.
Intensity-modulated WAR provides a new promising option in the consolidation treatment of ovarian carcinoma in patients with a complete pathologic remission after adjuvant chemotherapy. Further consequent studies will be needed to enable firm conclusions regarding the value of consolidation radiotherapy within the multimodal treatment of advanced ovarian cancer.
Trial registration NCT01180504
PMCID: PMC3045983  PMID: 21276234
15.  Intensity modulated radiotherapy (IMRT) in the treatment of children and Adolescents - a single institution's experience and a review of the literature 
While IMRT is widely used in treating complex oncological cases in adults, it is not commonly used in pediatric radiation oncology for a variety of reasons. This report evaluates our 9 year experience using stereotactic-guided, inverse planned intensity-modulated radiotherapy (IMRT) in children and adolescents in the context of the current literature.
Between 1999 and 2008 thirty-one children and adolescents with a mean age of 14.2 years (1.5 - 20.5) were treated with IMRT in our department. This heterogeneous group of patients consisted of 20 different tumor entities, with Ewing's sarcoma being the largest (5 patients), followed by juvenile nasopharyngeal fibroma, esthesioneuroblastoma and rhabdomyosarcoma (3 patients each). In addition a review of the available literature reporting on technology, quality, toxicity, outcome and concerns of IMRT was performed.
With IMRT individualized dose distributions and excellent sparing of organs at risk were obtained in the most challenging cases. This was achieved at the cost of an increased volume of normal tissue receiving low radiation doses. Local control was achieved in 21 patients. 5 patients died due to progressive distant metastases. No severe acute or chronic toxicity was observed.
IMRT in the treatment of children and adolescents is feasible and was applied safely within the last 9 years at our institution. Several reports in literature show the excellent possibilities of IMRT in selective sparing of organs at risk and achieving local control. In selected cases the quality of IMRT plans increases the therapeutic ratio and outweighs the risk of potentially increased rates of secondary malignancies by the augmented low dose exposure.
PMCID: PMC2760561  PMID: 19775449
16.  Adjuvant whole abdominal intensity modulated radiotherapy (IMRT) for high risk stage FIGO III patients with ovarian cancer (OVAR-IMRT-01) – Pilot trial of a phase I/II study: study protocol 
BMC Cancer  2007;7:227.
The prognosis for patients with advanced epithelial ovarian cancer remains poor despite aggressive surgical resection and platinum-based chemotherapy. More than 60% of patients will develop recurrent disease, principally intraperitoneal, and die within 5 years. The use of whole abdominal irradiation (WAI) as consolidation therapy would appear to be a logical strategy given its ability to sterilize small tumour volumes. Despite the clinically proven efficacy of whole abdominal irradiation, the use of radiotherapy in ovarian cancer has profoundly decreased mainly due to high treatment-related toxicity. Modern intensity-modulated radiation therapy (IMRT) could allow to spare kidneys, liver, and bone marrow while still adequately covering the peritoneal cavity with a homogenous dose.
The OVAR-IMRT-01 study is a single center pilot trial of a phase I/II study. Patients with advanced ovarian cancer stage FIGO III (R1 or R2< 1 cm) after surgical resection and platinum-based chemotherapy will be treated with whole abdomen irradiation as consolidation therapy using intensity modulated radiation therapy (IMRT) to a total dose of 30 Gy in 1.5 Gy fractions. A total of 8 patients will be included in this trial. For treatment planning bone marrow, kidneys, liver, spinal cord, vertebral bodies and pelvic bones are defined as organs at risk. The planning target volume includes the entire peritoneal cavity plus pelvic and para-aortic node regions.
The primary endpoint of the study is the evaluation of the feasibility of intensity-modulated WAI and the evaluation of the study protocol. Secondary endpoint is evaluation of the toxicity of intensity modulated WAI before continuing with the phase I/II study. The aim is to explore the potential of IMRT as a new method for WAI to decrease the dose to kidneys, liver, bone marrow while covering the peritoneal cavity with a homogenous dose, and to implement whole abdominal intensity-modulated radiotherapy into the adjuvant multimodal treatment concept of advanced ovarian cancer FIGO stage III.
PMCID: PMC2212657  PMID: 18093313

Results 1-16 (16)