PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  MicroRNA signatures in chemotherapy resistant esophageal cancer cell lines 
World Journal of Gastroenterology : WJG  2014;20(40):14904-14912.
AIM: To investigate expression of microRNA (miRNA) and potential targets in chemotherapy resistant esophageal cancer cell lines.
METHODS: An in-vitro model of acquired chemotherapy resistance in esophageal adeno- (EAC) and squamous cell carcinoma (ESCC) cells was used, and microRNA expression profiles for cisplatin or 5-fluorouracil (5-FU) resistant variants vs chemotherapy sensitive controls were compared using microarray and quantitative real-time polymerase chain reaction (PCR). The expression of chemotherapy-relevant genes potentially targeted by the dysregulated microRNAs in the chemotherapy resistant variants was also evaluated.
RESULTS: Chemotherapy resistant sublines were found to have specific miRNA signatures, and these miRNA signatures were different for the cisplatin vs 5-FU resistant cells from the same tumor cell line, and also for EAC vs ESCC cells with resistance to the same specific chemotherapy agent. Amongst others, miR-27b-3p, miR-193b-3p, miR-192-5p, miR-378 a-3p, miR-125a-5p and miR-18a-3p were dysregulated, consistent with negative posttranscriptional control of KRAS, TYMS, ABCC3, CBL-B and ERBB2 expression via these miRNAs.
CONCLUSION: The current study supports the hypothesis that microRNA expression has an impact on chemotherapy resistance in esophageal cancer.
doi:10.3748/wjg.v20.i40.14904
PMCID: PMC4209553  PMID: 25356050
Esophageal cancer; MicroRNA; Chemotherapy; Resistance; Target
2.  miR-18a Inhibits CDC42 and Plays a Tumour Suppressor Role in Colorectal Cancer Cells 
PLoS ONE  2014;9(11):e112288.
The miR-17-92 cluster of microRNAs is elevated in colorectal cancer, and has a causative role in cancer development. Of the six miR-17-92 cluster members, miR-19a and b in particular are key promoters of cancer development and cell proliferation, while preliminary evidence suggests that miR-18a may act in opposition to other cluster members to decrease cell proliferation. It was hypothesised that miR-18a may have a homeostatic function in helping to contain the oncogenic effect of the entire miR-17-92 cluster, and that elevated miR-17-92 cluster activity without a corresponding increase in miR-18a may promote colorectal tumour progression. In colorectal cancer samples and corresponding normal colorectal mucosa, miR-18a displayed lower overall expression than other miR-17-92 cluster members. miR-18a was shown to have an opposing role to other miR-17-92 cluster members, in particular the key oncogenic miRNAs, miR-19a and b. Transfection of HCT116 and LIM1215 colorectal cancer cell lines with miR-18a mimics decreased proliferation, while a miR-18a inhibitor increased proliferation. miR-18a was also responsible for decreasing cell migration, altering cell morphology, inducing G1/S phase cell cycle arrest, increasing apoptosis, and enhancing the action of a pro-apoptotic agent. CDC42, a mediator of the PI3K pathway, was identified as a novel miR-18a target. Overexpression of miR-18a reduced CDC42 expression, and a luciferase assay confirmed that miR-18a directly targets the 3′UTR of CDC42. miR-18a mimics had a similar effect on proliferation as a small molecule inhibitor of CDC42. Inhibition of CDC42 expression is likely to be a key mechanism by which miR-18a impairs cancer cell growth, with a target protector experiment revealing miR-18a influences proliferation via direct inhibition of CDC42. Inhibition of CCND1 by miR-18a may also assist in this growth-suppression effect. The homeostatic function of miR-18a within the miR-17-92 cluster in colorectal cancer cells may be achieved through suppression of CDC42 and the PI3K pathway.
doi:10.1371/journal.pone.0112288
PMCID: PMC4224453  PMID: 25379703
3.  Hypoxia represses microRNA biogenesis proteins in breast cancer cells 
BMC Cancer  2014;14:533.
Background
Cancers are commonly characterised by hypoxia and also by global reductions in the levels of mature microRNAs. We have examined the hypothesis that hypoxia might mediate this reduction through repressive effects on microRNA biogenesis proteins.
Methods
Breast cancer cell lines were exposed to hypoxia and manipulations of hypoxia inducible factor (HIF) and HIF hydroxylase activity. The effects of hypoxia on the mRNA and protein levels of enzymes involved in microRNA biogenesis (Dicer, Drosha, TARPB2, DCGR8, XPO5) was determined by RT PCR and immunoblotting. The effect of hypoxia on microRNAs was determined with microarray studies, RT PCR and reporter assays.
Results
In breast cancer lines there was significant reduction of Dicer mRNA and protein levels in cells exposed to hypoxia. This effect was independent of HIF but dependent on the HIF hydroxylase PHD2 and was partly mediated by feedback effects via microRNAs. Furthermore, several other proteins with critical roles in microRNA biogenesis (Drosha, TARBP2 and DCGR8) also showed significant and co-ordinated repression under hypoxic conditions. Despite these substantial alterations no, or modest, changes were observed in mature microRNA production.
Conclusion
These observations provide further and important interfaces between oxygen availability and gene expression and a potential mechanistic explanation for the reduced levels of microRNAs observed in some cancers. They provide further support for the existence of feedback mechanisms in the regulation of the microRNA biogenesis pathway and the relative stability of microRNAs.
doi:10.1186/1471-2407-14-533
PMCID: PMC4223767  PMID: 25052766
Hypoxia; MicroRNA; Breast cancer; Dicer; Drosha; Oxygen
4.  miR-200 family expression is downregulated upon neoplastic progression of Barrett’s esophagus 
AIM: To investigate miR-200 family expression in Barrett’s epithelium, gastric and duodenal epithelia, and esophageal adenocarcinoma.
METHODS: Real-time reverse transcriptase-polymerase chain reaction was used to measure miR-200, ZEB1 and ZEB2 expression. Ingenuity Pathway Analysis of miR-200 targets was used to predict biological outcomes.
RESULTS: Barrett’s epithelium expressed lower levels of miR-141 and miR-200c than did gastric and duodenal epithelia (P < 0.001). In silico analysis indicated roles for the miR-200 family in molecular pathways that distinguish Barrett’s epithelium from gastric and duodenal epithelia, and which control apoptosis and proliferation. All miR-200 members were downregulated in adenocarcinoma (P < 0.02), and miR-200c expression was also downregulated in non-invasive epithelium adjacent to adenocarcinoma (P < 0.02). The expression of all miR-200 members was lower in Barrett’s epithelium derived high-grade dysplastic cell lines than in a cell line derived from benign Barrett’s epithelium. We observed significant inverse correlations between miR-200 family expression and ZEB1 and ZEB2 expression in Barrett’s epithelium and esophageal adenocarcinoma (P < 0.05).
CONCLUSION: miR-200 expression might contribute to the anti-apoptotic and proliferative phenotype of Barrett’s epithelium and regulate key neoplastic processes in this epithelium.
doi:10.3748/wjg.v17.i8.1036
PMCID: PMC3057147  PMID: 21448356
miRNA; Barrett’s esophagus; Esophageal adenocarcinoma; miR-200; Epithelial to mesenchymal transition; Apoptosis; Proliferation; Epithelium
5.  MicroRNAs, development of Barrett’s esophagus, and progression to esophageal adenocarcinoma 
Barrett’s esophagus is a premalignant condition caused by gastroesophageal reflux. Once developed, it can progress through varying grades of dysplasia to esophageal adenocarcinoma. Whilst it is well accepted that Barrett’s esophagus is caused by gastroesophageal reflux, the molecular mechanisms of its pathogenesis and progression to cancer remain unclear. MicroRNAs (miRNAs) are short segments of RNA that have been shown to control the expression of many human genes. They have been implicated in most cellular processes, and the role of miRNAs in disease development is becoming increasingly evident. Understanding altered miRNA expression is likely to help unravel the molecular mechanisms that underpin the development of Barrett’s esophagus and its progression to cancer.
doi:10.3748/wjg.v16.i5.531
PMCID: PMC2816263  PMID: 20128019
Barrett’s esophagus; MicroRNA; Esophageal adenocarcinoma; Transdifferentiation; Tumour suppressor
6.  Impact of gastro-oesophageal reflux on microRNA expression, location and function 
BMC Gastroenterology  2013;13:4.
Background
Ulceration of the oesophageal squamous mucosa (ulcerative oesophagitis) is a pathological manifestation of gastro-oesophageal reflux disease, and is a major risk factor for the development of Barrett’s oesophagus. Barrett’s oesophagus is characterised by replacement of reflux-damaged oesophageal squamous epithelium with a columnar intestinal-like epithelium. We previously reported discovery of microRNAs that are differentially expressed between oesophageal squamous mucosa and Barrett’s oesophagus mucosa. Now, to better understand early steps in the initiation of Barrett’s oesophagus, we assessed the expression, location and function of these microRNAs in oesophageal squamous mucosa from individuals with ulcerative oesophagitis.
Methods
Quantitative real-time PCR was used to compare miR-21, 143, 145, 194, 203, 205 and 215 expression levels in oesophageal mucosa from individuals without pathological gastro-oesophageal reflux to individuals with ulcerative oesophagitis. Correlations between microRNA expression and messenger RNA differentiation markers BMP-4, CK8 and CK14 were analyzed. The cellular localisation of microRNAs within the oesophageal mucosa was determined using in-situ hybridisation. microRNA involvement in proliferation and apoptosis was assessed following transfection of a human squamous oesophageal mucosal cell line (Het-1A).
Results
miR-143, miR-145 and miR-205 levels were significantly higher in gastro-oesophageal reflux compared with controls. Elevated miR-143 expression correlated with BMP-4 and CK8 expression, and elevated miR-205 expression correlated negatively with CK14 expression. Endogenous miR-143, miR-145 and miR-205 expression was localised to the basal layer of the oesophageal epithelium. Transfection of miR-143, 145 and 205 mimics into Het-1A cells resulted in increased apoptosis and decreased proliferation.
Conclusions
Elevated miR-143, miR-145 and miR-205 expression was observed in oesophageal squamous mucosa of individuals with ulcerative oesophagitis. These miRNAs localised to the basal layer of the oesophageal epithelium. They reduced proliferation and increased apoptosis, and may play roles in regulating epithelial restoration in response to injury caused by gastro-oesophageal reflux.
doi:10.1186/1471-230X-13-4
PMCID: PMC3553039  PMID: 23297865
microRNA; Gastro-oesophageal reflux disease; Ulcerative oesophagitis; Apoptosis; Proliferation; Barrett’s oesophagus
7.  Hypoxic enhancement of exosome release by breast cancer cells 
BMC Cancer  2012;12:421.
Background
Exosomes are nanovesicles secreted by tumour cells which have roles in paracrine signalling during tumour progression, including tumour-stromal interactions, activation of proliferative pathways and bestowing immunosuppression. Hypoxia is an important feature of solid tumours which promotes tumour progression, angiogenesis and metastasis, potentially through exosome-mediated signalling.
Methods
Breast cancer cell lines were cultured under either moderate (1% O2) or severe (0.1% O2) hypoxia. Exosomes were isolated from conditioned media and quantitated by nanoparticle tracking analysis (NTA) and immunoblotting for the exosomal protein CD63 in order to assess the impact of hypoxia on exosome release. Hypoxic exosome fractions were assayed for miR-210 by real-time reverse transcription polymerase chain reaction and normalised to exogenous and endogenous control genes. Statistical significance was determined using the Student T test with a P value of < 0.05 considered significant.
Results
Exposure of three different breast cancer cell lines to moderate (1% O2) and severe (0.1% O2) hypoxia resulted in significant increases in the number of exosomes present in the conditioned media as determined by NTA and CD63 immunoblotting. Activation of hypoxic signalling by dimethyloxalylglycine, a hypoxia-inducible factor (HIF) hydroxylase inhibitor, resulted in significant increase in exosome release. Transfection of cells with HIF-1α siRNA prior to hypoxic exposure prevented the enhancement of exosome release by hypoxia. The hypoxically regulated miR-210 was identified to be present at elevated levels in hypoxic exosome fractions.
Conclusions
These data provide evidence that hypoxia promotes the release of exosomes by breast cancer cells, and that this hypoxic response may be mediated by HIF-1α. Given an emerging role for tumour cell-derived exosomes in tumour progression, this has significant implications for understanding the hypoxic tumour phenotype, whereby hypoxic cancer cells may release more exosomes into their microenvironment to promote their own survival and invasion.
doi:10.1186/1471-2407-12-421
PMCID: PMC3488584  PMID: 22998595
Hypoxia; Exosomes; Breast cancer cells; Nanoparticle tracking analysis; Nanosight; ExoquickTM
8.  Global analysis of the mammalian RNA degradome reveals widespread miRNA-dependent and miRNA-independent endonucleolytic cleavage 
Nucleic Acids Research  2011;39(13):5658-5668.
The Ago2 component of the RNA-induced silencing complex (RISC) is an endonuclease that cleaves mRNAs that base pair with high complementarity to RISC-bound microRNAs. Many examples of such direct cleavage have been identified in plants, but not in vertebrates, despite the conservation of catalytic capacity in vertebrate Ago2. We performed parallel analysis of RNA ends (PAREs), a deep sequencing approach that identifies 5′-phosphorylated, polyadenylated RNAs, to detect potential microRNA-directed mRNA cleavages in mouse embryo and adult tissues. We found that numerous mRNAs are potentially targeted for cleavage by endogenous microRNAs, but at very low levels relative to the mRNA abundance, apart from miR-151-5p-guided cleavage of the N4BP1 mRNA. We also find numerous examples of non-miRNA-directed cleavage, including cleavage of a group of mRNAs within a CA-repeat consensus sequence. The PARE analysis also identified many examples of adenylated small non-coding RNAs, including microRNAs, tRNA processing intermediates and various other small RNAs, consistent with adenylation being part of a widespread proof-reading and/or degradation pathway for small RNAs.
doi:10.1093/nar/gkr110
PMCID: PMC3141239  PMID: 21427086
9.  The VHL-dependent regulation of microRNAs in renal cancer 
BMC Medicine  2010;8:64.
Background
The commonest histological type of renal cancer, clear cell renal cell carcinoma (cc RCC), is associated with genetic and epigenetic changes in the von Hippel-Lindau (VHL) tumour suppressor. VHL inactivation leads to induction of hypoxia-inducible factors (HIFs) and a hypoxic pattern of gene expression. Differential levels of specific microRNAs (miRNAs) are observed in several tumours when compared to normal tissue. Given the central role of VHL in renal cancer formation, we examined the VHL-dependent regulation of miRNAs in renal cancer.
Methods
VHL-dependent miRNA expression in cc RCC was determined by microarray analysis of renal cell line RCC4 with mutated VHL (RCC4-VHL) and reintroduced wild-type VHL (RCC4 + VHL). Five miRNAs highly upregulated in RCC4 + VHL and five miRNAs highly downregulated in RCC4 + VHL were studied further, in addition to miR-210, which is regulated by the HIF-VHL system. miRNA expression was also measured in 31 cc RCC tumours compared to adjacent normal tissue.
Results
A significant increase in miR-210, miR-155 and miR-21 expression was observed in the tumour tissue. miR-210 levels also showed a correlation with a HIF-regulated mRNA, carbonic anhydrase IX (CAIX), and with VHL mutation or promoter methylation. An inverse correlation was observed between miR-210 expression and patient survival, and a putative target of miR-210, iron-sulfur cluster assembly protein (ISCU1/2), shows reciprocal levels of mRNA expression in the tumours.
Conclusions
We have identified VHL-regulated miRNAs and found that for some the regulation is HIF-dependent and for others it is HIF-independent. This pattern of regulation was also seen in renal cancer tissue for several of these miRNAs (miR-210, miR-155, let-7i and members of the miR-17-92 cluster) when compared with normal tissue. miR-210 showed marked increases in expression in renal cancer and levels correlated with patient survival. The inverse correlation between miR-210 levels and ISCU1/2 provides support for the hypothesis that ISCU1/2 is a target of miR-210 and that it may contribute to the anaerobic respiration seen in renal (and other) tumours.
See Commentary: http://www.biomedcentral.com/1741-7015/8/65
doi:10.1186/1741-7015-8-64
PMCID: PMC2978113  PMID: 20964835
10.  Gene expression microarray analysis of early oxygen-induced retinopathy in the rat 
Different inbred strains of rat differ in their susceptibility to oxygen-induced retinopathy (OIR), an animal model of human retinopathy of prematurity. We examined gene expression in Sprague–Dawley (susceptible) and Fischer 344 (resistant) neonatal rats after 3 days exposure to cyclic hyperoxia or room air, using Affymetrix rat Genearrays. False discovery rate analysis was used to identify differentially regulated genes. Such genes were then ranked by fold change and submitted to the online database, DAVID. The Sprague–Dawley list returned the term “response to hypoxia,” absent from the Fischer 344 output. Manual analysis indicated that many genes known to be upregulated by hypoxia-inducible factor-1α were downregulated by cyclic hyperoxia. Quantitative real-time RT-PCR analysis of Egln3, Bnip3, Slc16a3, and Hk2 confirmed the microarray results. We conclude that combined methodologies are required for adequate dissection of the pathophysiology of strain susceptibility to OIR in the rat.
Electronic supplementary material
The online version of this article (doi:10.1007/s12177-009-9041-7) contains supplementary material, which is available to authorized users.
doi:10.1007/s12177-009-9041-7
PMCID: PMC2821581  PMID: 20157446
Cyclic hyperoxia; Gene expression; Oxygen-induced retinopathy; Affymetrix microarray; Inbred rat
11.  Gene expression microarray analysis of early oxygen-induced retinopathy in the rat 
Different inbred strains of rat differ in their susceptibility to oxygen-induced retinopathy (OIR), an animal model of human retinopathy of prematurity. We examined gene expression in Sprague–Dawley (susceptible) and Fischer 344 (resistant) neonatal rats after 3 days exposure to cyclic hyperoxia or room air, using Affymetrix rat Genearrays. False discovery rate analysis was used to identify differentially regulated genes. Such genes were then ranked by fold change and submitted to the online database, DAVID. The Sprague–Dawley list returned the term “response to hypoxia,” absent from the Fischer 344 output. Manual analysis indicated that many genes known to be upregulated by hypoxia-inducible factor-1α were downregulated by cyclic hyperoxia. Quantitative real-time RT-PCR analysis of Egln3, Bnip3, Slc16a3, and Hk2 confirmed the microarray results. We conclude that combined methodologies are required for adequate dissection of the pathophysiology of strain susceptibility to OIR in the rat.
Electronic supplementary material
The online version of this article (doi:10.1007/s12177-009-9041-7) contains supplementary material, which is available to authorized users.
doi:10.1007/s12177-009-9041-7
PMCID: PMC2821581  PMID: 20157446
Cyclic hyperoxia; Gene expression; Oxygen-induced retinopathy; Affymetrix microarray; Inbred rat

Results 1-11 (11)