Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  L-DOPA decarboxylase mRNA expression is associated with tumor stage and size in head and neck squamous cell carcinoma: a retrospective cohort study 
BMC Cancer  2012;12:484.
Head and neck squamous cell carcinoma (HNSCC) represents one of the most commonly diagnosed malignancies worldwide. The DDC gene encodes L-DOPA decarboxylase, an enzyme catalyzing the decarboxylation of L-DOPA to dopamine. We have recently shown that DDC mRNA is a significant predictor of patients’ prognosis in colorectal adenocarcinoma and prostate cancer. The aim of the current study was to analyze the DDC mRNA expression in HNSCC patients.
53 malignant tumors were resected from the larynx, pharynx, tongue, buccal mucosa, parotid glands, and nasal cavity, as well as from 34 adjacent non-cancerous tissues of HNSCC patients, and were homogenized. Total RNA was isolated and converted into first-strand cDNA. An ultrasensitive real-time PCR method based on the SYBR Green chemistry was used for DDC mRNA quantification in head and neck tissue specimens. Relative quantification was performed using the comparative Ct (2-ddCt) method.
DDC mRNA levels were lower in squamous cell carcinomas (SCCs) of the larynx and tongue than in adjacent non-cancerous tissue specimens. Furthermore, low DDC mRNA expression was noticed in laryngeal and tongue tumors of advanced TNM stage or bigger size, compared to early-stage or smaller tumors, respectively. No statistically significant differences were observed between SCCs resected from pharynx, buccal mucosa, or nasal cavity, and their normal counterparts.
This is the first study examining the DDC mRNA expression in HNSCC. According to our results, DDC mRNA expression may constitute a potential prognostic biomarker in tongue and/or larynx SCCs, which principally represent the overwhelming majority of HNSCC cases.
PMCID: PMC3495033  PMID: 23083099
Oral cancer; Larynx; Tongue; Tumor biomarkers; Quantitative real-time PCR
2.  l-DOPA Decarboxylase (DDC) Expression Status as a Novel Molecular Tumor Marker for Diagnostic and Prognostic Purposes in Laryngeal Cancer1 
Translational Oncology  2012;5(4):288-296.
l-DOPA decarboxylase (DDC) plays an essential role in the enzymatic synthesis of dopamine and alterations in its gene expression have been reported in several malignancies. Our objective was to analyze DDC messenger RNA (mRNA) and protein expression in laryngeal tissues and to evaluate the clinical implication of this molecule in laryngeal cancer. In this study, total RNA was isolated from 157 tissue samples surgically removed from 100 laryngeal cancer patients. A highly sensitive real-time polymerase chain reaction methodology based on SYBR Green I fluorescent dye was developed for the quantification of DDC mRNA levels. In addition, Western blot analysis was performed for the detection of DDC protein. DDC mRNA expression was revealed to be significantly downregulated in primary laryngeal cancer samples compared with their nonmalignant counterparts (P = .001). A significant negative association was also disclosed between DDC mRNA levels and TNM staging (P = .034). Univariate analysis showed that patients bearing DDC-positive tumors had a significantly decreased risk of death (hazard ratio = 0.23, P = .012) and local recurrence (hazard ratio = 0.32, P =.006), whereas DDC expression retained its favorable prognostic significance in the multivariate analysis. Kaplan-Meier curves further demonstrated that DDC-positive patients experienced longer overall and disease-free survival periods (P = .006 and P = .004, respectively). Moreover, DDC protein was detected in both neoplastic and noncancerous tissues. Therefore, our results suggest that DDC expression status could qualify as a promising biomarker for the future clinical management of laryngeal cancer patients.
PMCID: PMC3431039  PMID: 22937181
3.  Cc RNase: the Ceratitis capitata ortholog of a novel highly conserved protein family in metazoans 
Nucleic Acids Research  2003;31(12):3092-3100.
Complementary DNA encoding a protein, designated Cc RNase, was isolated from the insect Ceratitis capitata. Deduced amino acid sequence analysis demonstrates that the Cc RNase has strong sequence homology with other uncharacterized proteins predicted from EST sequences belonging to different animal species, therefore defining a new protein family, which is conserved from Caenorhabditis elegans to humans. Phylogenetic analysis data in addition to extensive homolog searches in all available complete genomes suggested that all family members are true orthologs. Proteins belonging to this family are composed of 95–101 amino acids. The C.capitata orthologous protein was expressed in Escherichia coli. Despite the fact that the amino acid sequence of Cc RNase does not share any significant similarities with other known ribonucleases, our data give strong evidence in support of the assignment of enzymatic activity to the recombinant protein. The expressed molecule exhibits ribonucleolytic activity against poly(C) and poly(U) synthetic substrates, as well as rRNA. It is also demonstrated that expression of Cc RNase in E.coli inhibits growth of the host cells.
PMCID: PMC162248  PMID: 12799437

Results 1-3 (3)