Search tips
Search criteria

Results 1-12 (12)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Comprehensive analysis of published studies involving systemic treatment for chondrosarcoma of bone between 2000 and 2013 
The majority of patients with chondrosarcoma of bone have an excellent overall survival after local therapy. However, in case of unresectable locally advanced or metastatic disease the outcome is poor and limited treatment options exist. Therefore we conducted a survey of clinical phase I or II trials and retrospective studies that described systemic therapy for chondrosarcoma patients.
Materials and methods
Using PubMed,, the Cochrane controlled trial register and American Society of Clinical Oncology (ASCO) abstracts a literature survey was conducted. From the identified items, data were collected by a systematic analysis. We limited our search to semi-recent studies published between 2000 and 2013 to include modern drugs, imaging techniques and disease evaluations.
A total of 31 studies were found which met the criteria: 9 phase I trials, 11 phase II and 8 retrospective studies. In these studies 855 chondrosarcoma patients were reported. The tested drugs were mostly non-cytotoxic, either alone or in combination with another non-cytotoxic agent or chemotherapy. Currently two phase I trials, one phase IB/II trial and three phase II trials are enrolling chondrosarcoma patients.
Because chondrosarcoma of bone is an orphan disease it is difficult to conduct clinical trials. The meagre outcome data for locally advanced or metastatic patients indicate that new treatment options are needed. For the phase I trials it is difficult to draw conclusions because of the low numbers of chondrosarcoma patients enrolled, and at different dose levels. Some phase II trials show promising results which support further research. Retrospective studies are encouraged as they could add to the limited data available. Efforts to increase the number of studies for this orphan disease are urgently needed.
PMCID: PMC4131227  PMID: 25126409
Chondrosarcoma; Systemic treatment; Clinical trial
2.  Identification and systematic annotation of tissue-specific differentially methylated regions using the Illumina 450k array 
DNA methylation has been recognized as a key mechanism in cell differentiation. Various studies have compared tissues to characterize epigenetically regulated genomic regions, but due to differences in study design and focus there still is no consensus as to the annotation of genomic regions predominantly involved in tissue-specific methylation. We used a new algorithm to identify and annotate tissue-specific differentially methylated regions (tDMRs) from Illumina 450k chip data for four peripheral tissues (blood, saliva, buccal swabs and hair follicles) and six internal tissues (liver, muscle, pancreas, subcutaneous fat, omentum and spleen with matched blood samples).
The majority of tDMRs, in both relative and absolute terms, occurred in CpG-poor regions. Further analysis revealed that these regions were associated with alternative transcription events (alternative first exons, mutually exclusive exons and cassette exons). Only a minority of tDMRs mapped to gene-body CpG islands (13%) or CpG islands shores (25%) suggesting a less prominent role for these regions than indicated previously. Implementation of ENCODE annotations showed enrichment of tDMRs in DNase hypersensitive sites and transcription factor binding sites. Despite the predominance of tissue differences, inter-individual differences in DNA methylation in internal tissues were correlated with those for blood for a subset of CpG sites in a locus- and tissue-specific manner.
We conclude that tDMRs preferentially occur in CpG-poor regions and are associated with alternative transcription. Furthermore, our data suggest the utility of creating an atlas cataloguing variably methylated regions in internal tissues that correlate to DNA methylation measured in easy accessible peripheral tissues.
PMCID: PMC3750594  PMID: 23919675
Differentially methylated region; Illumina 450k; Annotation; Algorithm; Tissue
3.  BMP and TGFbeta pathways in human central chondrosarcoma: enhanced endoglin and Smad 1 signaling in high grade tumors 
BMC Cancer  2012;12:488.
As major regulators of normal chondrogenesis, the bone morphogenic protein (BMP) and transforming growth factor β (TGFB) signaling pathways may be involved in the development and progression of central chondrosarcoma. In order to uncover their possible implication, the aim of this study was to perform a systematic quantitative study of the expression of BMPs, TGFBs and their receptors and to assess activity of the corresponding pathways in central chondrosarcoma.
Gene expression analysis was performed by quantitative RT-PCR in 26 central chondrosarcoma and 6 healthy articular cartilage samples. Expression of endoglin and nuclear localization of phosphorylated Smad1/5/8 and Smad2 was assessed by immunohistochemical analysis.
The expression of TGFB3 and of the activin receptor-like kinase ALK2 was found to be significantly higher in grade III compared to grade I chondrosarcoma. Nuclear phosphorylated Smad1/5/8 and Smad2 were found in all tumors analyzed and the activity of both signaling pathways was confirmed by functional reporter assays in 2 chondrosarcoma cell lines. Immunohistochemical analysis furthermore revealed that phosphorylated Smad1/5/8 and endoglin expression were significantly higher in high-grade compared to low-grade chondrosarcoma and correlated to each other.
The BMP and TGFβ signaling pathways were found to be active in central chondrosarcoma cells. The correlation of Smad1/5/8 activity to endoglin expression suggests that, as described in other cell types, endoglin could enhance Smad1/5/8 signaling in high-grade chondrosarcoma cells. Endoglin expression coupled to Smad1/5/8 activation could thus represent a functionally important signaling axis for the progression of chondrosarcoma and a regulator of the undifferentiated phenotype of high-grade tumor cells.
PMCID: PMC3495847  PMID: 23088614
Conventional central chondrosarcoma; Bone tumor; Chondrogenic differentiation; Bone morphogenic proteins; Transforming growth factor β
4.  Three new chondrosarcoma cell lines: one grade III conventional central chondrosarcoma and two dedifferentiated chondrosarcomas of bone 
BMC Cancer  2012;12:375.
Chondrosarcoma is the second most common primary sarcoma of bone. High-grade conventional chondrosarcoma and dedifferentiated chondrosarcoma have a poor outcome. In pre-clinical research aiming at the identification of novel treatment targets, the need for representative cell lines and model systems is high, but availability is scarce.
We developed and characterized three cell lines, derived from conventional grade III chondrosarcoma (L835), and dedifferentiated chondrosarcoma (L2975 and L3252) of bone. Proliferation and migration were studied and we used COBRA-FISH and array-CGH for karyotyping and genotyping. Immunohistochemistry for p16 and p53 was performed as well as TP53 and IDH mutation analysis. Cells were injected into nude mice to establish their tumorigenic potential.
We show that the three cell lines have distinct migrative properties, L2975 had the highest migration rate and showed tumorigenic potential in mice. All cell lines showed chromosomal rearrangements with complex karyotypes and genotypic aberrations were conserved throughout late passaging of the cell lines. All cell lines showed loss of CDKN2A, while TP53 was wild type for exons 5–8. L835 has an IDH1 R132C mutation, L2975 an IDH2 R172W mutation and L3252 is IDH wild type.
Based on the stable culturing properties of these cell lines and their genotypic profile resembling the original tumors, these cell lines should provide useful functional models to further characterize chondrosarcoma and to evaluate new treatment strategies.
PMCID: PMC3484068  PMID: 22928481
Bone neoplasm; Chondrosarcoma; Cell line; IDH1; IDH2; p16
5.  Reclassification and subtyping of so-called malignant fibrous histiocytoma of bone: comparison with cytogenetic features 
The diagnostic entity malignant fibrous histiocytoma (MFH) of bone is, like its soft tissue counterpart, likely to be a misnomer, encompassing a variety of poorly differentiated sarcomas. When reviewing a series of 57 so-called MFH of bone within the framework of the EuroBoNeT consortium according to up-to-date criteria and ancillary immunohistochemistry, a fourth of all tumors were reclassified and subtyped.
In the present study, the cytogenetic data on 11 of these tumors (three myoepithelioma-like sarcomas, two leiomyosarcomas, one undifferentiated pleomorphic sarcoma with incomplete myogenic differentiation, two undifferentiated pleomorphic sarcomas, one osteosarcoma, one spindle cell sarcoma, and one unclassifiable biphasic sarcoma) are presented.
All tumors were high-grade lesions and showed very complex karyotypes. Neither the overall pattern (ploidy level, degree of complexity) nor specific cytogenetic features distinguished any of the subtypes. The subgroup of myoepithelioma-like sarcomas was further investigated with regard to the status of the EWSR1 and FUS loci; however, no rearrangement was found. Nor was any particular aberration that could differentiate any of the subtypes from osteosarcomas detected.
chromosome banding analysis is unlikely to reveal potential genotype-phenotype correlations between morphologic subtypes among so-called MFH of bone.
PMCID: PMC3351725  PMID: 22588017
Malignant fibrous histiocytoma of bone; chromosome banding; EWSR1; FUS
6.  Primary vascular tumors of bone: a spectrum of entities? 
Vascular tumors of bone are a heterogeneous group. Numerous terms have been introduced as well as different classification systems. None of the classification schemes have been accepted due to lack of consistent terminology, accepted histologic criteria, and limited correlation with clinical outcome. It is acknowledged that vascular tumors of bone originate from endothelial cells, resulting in variable expression of endothelial markers. None of these markers are useful to discriminate between benign and malignant lesions. Although radiologic appearance is not specific, radiologic multifocality should trigger to include a vascular neoplasm in the differential diagnosis. This review gives an overview of current literature by describing all different histologic subtypes in correspondence with clinical, radiologic and genetic data. We propose the classification of vascular tumors of bone according to the three-tiered World Health Organization classification scheme for soft tissue tumors dividing entities into a benign, intermediate and malignant category. Hemangioma is the most often and commonly recognized benign lesion. Epithelioid hemangioma has been better defined over the past few years. Based on its locally aggressive behavior and occurrence of lymph node metastases, classification within the intermediate category could be considered. Angiosarcoma is the only accepted term for high-grade malignant vascular tumor of bone and so far, epithelioid hemangioendo-thelioma is the only accepted low-grade malignant vascular tumor of bone. It is still unclear whether other low-grade malignant vascular tumors of bone (e.g. hemangioendothelioma) truly exist. Unfortunately, molecular / genetic studies of vascular tumors of bone which might support the proposed classification are very sparse.
PMCID: PMC3160606  PMID: 21904630
vascular tumor of bone; hemangioma; epithelioid hemangioma; epithelioid hemangioendothelioma; angiosarcoma; bone tumor
7.  Expression of aromatase and estrogen receptor alpha in chondrosarcoma, but no beneficial effect of inhibiting estrogen signaling both in vitro and in vivo 
Chondrosarcomas are malignant cartilage-forming tumors which are highly resistant to conventional chemotherapy and radiotherapy. Estrogen signaling is known to play an important role in proliferation and differentiation of chondrocytes and in growth plate regulation at puberty. Our experiments focus on unraveling the role of estrogen signaling in the regulation of neoplastic cartilage growth and on interference with estrogen signaling in chondrosarcomas in vitro and in vivo.
We investigated the protein expression of estrogen receptor alpha (ESR1), androgen receptor (AR), and aromatase in tumor specimens of various chondrosarcoma subtypes, and (primary) chondrosarcoma cultures. Dose-response curves were generated of conventional central chondrosarcoma cell lines cultured in the presence of 17β-estradiol, dihydrotestosterone, 4-androstene-3,17 dione, 4-hydroxytamoxifen, fulvestrant and aromatase inhibitors. In a pilot series, the effect of anastrozole (n = 4) or exemestane (n = 2) treatment in 6 chondrosarcoma patients with progressive disease was explored.
We showed protein expression of ESR1 and aromatase in a large majority of all subtypes. Only a minority of the tumors showed few AR positive cells. The dose-response assays showed no effect of any of the compounds on proliferation of conventional chondrosarcoma in vitro. The median progression-free survival of the patients treated with aromatase inhibitors did not significantly deviate from untreated patients.
The presence of ESR1 and aromatase in chondrosarcoma tumors and primary cultures supports a possible role of estrogen signaling in chondrosarcoma proliferation. However, our in vitro and pilot in vivo studies have shown no effect of estrogen-signaling inhibition on tumor growth.
PMCID: PMC3372281  PMID: 22613849
8.  Genome-wide analysis of Ollier disease: Is it all in the genes? 
Ollier disease is a rare, non-hereditary disorder which is characterized by the presence of multiple enchondromas (ECs), benign cartilaginous neoplasms arising within the medulla of the bone, with an asymmetric distribution. The risk of malignant transformation towards central chondrosarcoma (CS) is increased up to 35%. The aetiology of Ollier disease is unknown.
We undertook genome-wide copy number and loss of heterozygosity (LOH) analysis using Affymetrix SNP 6.0 array on 37 tumours of 28 Ollier patients in combination with expression array using Illumina BeadArray v3.0 for 7 ECs of 6 patients.
Non-recurrent EC specific copy number alterations were found at FAM86D, PRKG1 and ANKS1B. LOH with copy number loss of chromosome 6 was found in two ECs from two unrelated Ollier patients. One of these patients also had LOH at chromosome 3. However, no common genomic alterations were found for all ECs. Using an integration approach of SNP and expression array we identified loss as well as down regulation of POU5F1 and gain as well as up regulation of NIPBL. None of these candidate regions were affected in more than two Ollier patients suggesting these changes to be random secondary events in EC development. An increased number of genetic alterations and LOH were found in Ollier CS which mainly involves chromosomes 9p, 6q, 5q and 3p.
We present the first genome-wide analysis of the largest international series of Ollier ECs and CS reported so far and demonstrate that copy number alterations and LOH are rare and non-recurrent in Ollier ECs while secondary CS are genetically unstable. One could predict that instead small deletions, point mutations or epigenetic mechanisms play a role in the origin of ECs of Ollier disease.
PMCID: PMC3027091  PMID: 21235737
9.  Kinome profiling of myxoid liposarcoma reveals NF-kappaB-pathway kinase activity and Casein Kinase II inhibition as a potential treatment option 
Molecular Cancer  2010;9:257.
Myxoid liposarcoma is a relatively common malignant soft tissue tumor, characterized by a (12;16) translocation resulting in a FUS-DDIT3 fusion gene playing a pivotal role in its tumorigenesis. Treatment options in patients with inoperable or metastatic myxoid liposarcoma are relatively poor though being developed and new hope is growing.
Using kinome profiling and subsequent pathway analysis in two cell lines and four primary cultures of myxoid liposarcomas, all of which demonstrated a FUS-DDIT3 fusion gene including one new fusion type, we aimed at identifying new molecular targets for systemic treatment. Protein phosphorylation by activated kinases was verified by Western Blot and cell viability was measured before and after treatment of the myxoid liposarcoma cells with kinase inhibitors. We found kinases associated with the atypical nuclear factor-kappaB and Src pathways to be the most active in myxoid liposarcoma. Inhibition of Src by the small molecule tyrosine kinase inhibitor dasatinib showed only a mild effect on cell viability of myxoid liposarcoma cells. In contrast, inhibition of the nuclear factor-kappaB pathway, which is regulated by the FUS-DDIT3 fusion product, in myxoid liposarcoma cells using casein kinase 2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) showed a significant decrease in cell viability, decreased phosphorylation of nuclear factor-kappaB pathway proteins, and caspase 3 mediated apoptosis. Combination of dasatinib and TBB showed an enhanced effect.
Kinases associated with activation of the atypical nuclear factor-kappaB and the Src pathways are the most active in myxoid liposarcoma in vitro and inhibition of nuclear factor-kappaB pathway activation by inhibiting casein kinase 2 using TBB, of which the effect is enhanced by Src inhibition using dasatinib, offers new potential therapeutic strategies for myxoid liposarcoma patients with advanced disease.
PMCID: PMC2955617  PMID: 20863376
10.  Enchondromatosis: insights on the different subtypes 
Enchondromatosis is a rare, heterogeneous skeletal disorder in which patients have multiple enchondromas. Enchondromas are benign hyaline cartilage forming tumors in the medulla of metaphyseal bone. The disorder manifests itself early in childhood without any significant gender bias. Enchondromatosis encompasses several different subtypes of which Ollier disease and Maffucci syndrome are most common, while the other subtypes (metachondromatosis, genochondromatosis, spondyloenchondrodysplasia, dysspondyloenchondromatosis and cheirospondyloenchondromatosis) are extremely rare. Most subtypes are non-hereditary, while some are autosomal dominant or recessive. The gene(s) causing the different enchondromatosis syndromes are largely unknown. They should be distinguished and adequately diagnosed, not only to guide therapeutic decisions and genetic counseling, but also with respect to research into their etiology. For a longtime enchondromas have been considered a developmental disorder caused by the failure of normal endochondral bone formation. With the identification of genetic abnormalities in enchondromas however, they were being thought of as neoplasms. Active hedgehog signaling is reported to be important for enchondroma development and PTH1R mutations have been identified in ∼10% of Ollier patients. One can therefore speculate that the gene(s) causing the different enchondromatosis subtypes are involved in hedgehog/PTH1R growth plate signaling. Adequate distinction within future studies will shed light on whether these subtypes are different ends of a spectrum caused by a single gene, or that they represent truely different diseases. We therefore review the available clinical information for all enchondromatosis subtypes and discuss the little molecular data available hinting towards their cause.
PMCID: PMC2907117  PMID: 20661403
Ollier disease; Maffucci syndrome; enchondroma; metachondromatosis; enchondromatosis; central chondrosarcoma
11.  Multiple osteochondromas 
Multiple osteochondromas (MO) is characterised by development of two or more cartilage capped bony outgrowths (osteochondromas) of the long bones. The prevalence is estimated at 1:50,000, and it seems to be higher in males (male-to-female ratio 1.5:1). Osteochondromas develop and increase in size in the first decade of life, ceasing to grow when the growth plates close at puberty. They are pedunculated or sessile (broad base) and can vary widely in size. The number of osteochondromas may vary significantly within and between families, the mean number of locations is 15–18. The majority are asymptomatic and located in bones that develop from cartilage, especially the long bones of the extremities, predominantly around the knee. The facial bones are not affected. Osteochondromas may cause pain, functional problems and deformities, especially of the forearm, that may be reason for surgical removal. The most important complication is malignant transformation of osteochondroma towards secondary peripheral chondrosarcoma, which is estimated to occur in 0.5–5%. MO is an autosomal dominant disorder and is genetically heterogeneous. In almost 90% of MO patients germline mutations in the tumour suppressor genes EXT1 or EXT2 are found. The EXT genes encode glycosyltransferases, catalyzing heparan sulphate polymerization. The diagnosis is based on radiological and clinical documentation, supplemented with, if available, histological evaluation of osteochondromas. If the exact mutation is known antenatal diagnosis is technically possible. MO should be distinguished from metachondromatosis, dysplasia epiphysealis hemimelica and Ollier disease. Osteochondromas are benign lesions and do not affect life expectancy. Management includes removal of osteochondromas when they give complaints. Removed osteochondromas should be examined for malignant transformation towards secondary peripheral chondrosarcoma. Patients should be well instructed and regular follow-up for early detection of malignancy seems justified. For secondary peripheral chondrosarcoma, en-bloc resection of the lesion and its pseudocapsule with tumour-free margins, preferably in a bone tumour referral centre, should be performed.
PMCID: PMC2276198  PMID: 18271966
12.  Multiple Osteochondromas: Clinicopathological and Genetic Spectrum and Suggestions for Clinical Management 
Multiple Osteochondromas is an autosomal dominant disorder characterised by the presence of multiple osteochondromas and a variety of orthopaedic deformities. Two genes causative of Multiple Osteochondromas, Exostosin-1 (EXT1) and Exostosin-2 (EXT2), have been identified, which act as tumour suppressor genes. Osteochondroma can progress towards its malignant counterpart, secondary peripheral chondrosarcoma and therefore adequate follow-up of Multiple Osteochondroma patients is important in order to detect malignant transformation early.
This review summarizes the considerable recent basic scientific and clinical understanding resulting in a multi-step genetic model for peripheral cartilaginous tumorigenesis. This enabled us to suggest guidelines for clinical management of Multiple Osteochondroma patients. When a patient is suspected to have Multiple Osteochondroma, the radiologic documentation, histology and patient history have to be carefully reviewed, preferably by experts and if indicated for Multiple Osteochondromas, peripheral blood of the patient can be screened for germline mutations in either EXT1 or EXT2. After the Multiple Osteochondroma diagnosis is established and all tumours are identified, a regular follow-up including plain radiographs and base-line bone scan are recommended.
PMCID: PMC2840003  PMID: 20233460
bone neoplasm; multiple osteochondromas; genetics; clinical management; chondrosarcoma; exostosis

Results 1-12 (12)