PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (32)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Authors
more »
Year of Publication
1.  Recombinant ArtinM activates mast cells 
BMC Immunology  2016;17:22.
Background
Mast cells are hematopoietically derived cells that play a role in inflammatory processes such as allergy, as well as in the immune response against pathogens by the selective and rapid release of preformed and lipid mediators, and the delayed release of cytokines. The native homotetrameric lectin ArtinM, a D-mannose binding lectin purified from Artocarpus heterophyllus seeds, is one of several lectins that are able to activate mast cells. Besides activating mast cells, ArtinM has been shown to affect several biological responses, including immunomodulation and acceleration of wound healing. Because of the potential pharmacological application of ArtinM, a recombinant ArtinM (rArtinM) was produced in Escherichia coli. The current study evaluated the ability of rArtinM to induce mast cell degranulation and activation.
Results
The glycan binding specificity of rArtinM was similar to that of jArtinM. rArtinM, via its CRD, was able to degranulate, releasing β-hexosaminidase and TNF-α, and to promote morphological changes on the mast cell surface. Moreover, rArtinM induced the release of the newly-synthesized mediator, IL-4. rArtinM does not have a co-stimulatory effect on the FcεRI degranulation via. The IgE-dependent mast cell activation triggered by rArtinM seems to be dependent on NFkB activation.
Conclusions
The lectin rArtinM has the ability to activate and degranulate mast cells via their CRDs. The present study indicates that rArtinM is a suitable substitute for the native form, jArtinM, and that rArtinM may serve as an important and reliable pharmacological agent.
doi:10.1186/s12865-016-0161-0
PMCID: PMC4932716  PMID: 27377926
Mast cells; rArtinM; ArtinM; Degranulation; Lectin
2.  Characterization and optimization of ArtinM lectin expression in Escherichia coli 
BMC Biotechnology  2012;12:44.
Background
ArtinM is a d-mannose-specific lectin from Artocarpus integrifolia seeds that induces neutrophil migration and activation, degranulation of mast cells, acceleration of wound healing, induction of interleukin-12 production by macrophages and dendritic cells, and protective T helper 1 immune response against Leishmania major, Leishmania amazonensis and Paracoccidioides brasiliensis infections. Considering the important biological properties of ArtinM and its therapeutic applicability, this study was designed to produce high-level expression of active recombinant ArtinM (rArtinM) in Escherichia coli system.
Results
The ArtinM coding region was inserted in pET29a(+) vector and expressed in E. coli BL21(DE3)-Codon Plus-RP. The conditions for overexpression of soluble ArtinM were optimized testing different parameters: temperatures (20, 25, 30 or 37°C) and shaking speeds (130, 200 or 220 rpm) during induction, concentrations of the induction agent IPTG (0.01-4 mM) and periods of induction (1-19 h). BL21-CodonPlus(DE3)-RP cells induced under the optimized conditions (incubation at 20°C, at a shaking speed of 130 rpm, induction with 0.4 mM IPTG for 19 h) resulted in the accumulation of large amounts of soluble rArtinM. The culture provided 22.4 mg/L of rArtinM, which activity was determined by its one-step purification through affinity chromatography on immobilized d-mannose and glycoarray analysis. Gel filtration showed that rArtinM is monomeric, contrasting with the tetrameric form of the plant native protein (jArtinM). The analysis of intact rArtinM by mass spectrometry revealed a 16,099.5 Da molecular mass, and the peptide mass fingerprint and esi-cid-ms/ms of amino acid sequences of peptides from a tryptic digest covered 41% of the total ArtinM amino acid sequence. In addition, circular dichroism and fluorescence spectroscopy of rArtinM indicated that its global fold comprises β-sheet structure.
Conclusions
Overall, the optimized process to express rArtinM in E. coli provided high amounts of soluble, correctly folded and active recombinant protein, compatible with large scale production of the lectin.
doi:10.1186/1472-6750-12-44
PMCID: PMC3431236  PMID: 22857259
3.  Extracellular vesicles from Paracoccidioides brasiliensis induced M1 polarization in vitro 
Scientific Reports  2016;6:35867.
Extracellular vesicles (EVs) released by eukaryotes, archaea, and bacteria contain proteins, lipids, polysaccharides, and other molecules. The cargo analysis of EVs shows that they contain virulence factors suggesting a role in the pathogenesis of infection. The proteome, lipidome, RNA content, and carbohydrate composition of EVs from Paracoccidioides brasiliensis and Paracoccidioides lutzii were characterized. However, the effects of P. brasiliensis EVs on the host immune system have not yet been investigated. Herein, we verified that EVs from P. brasiliensis induce the production of proinflammatory mediators by murine macrophages in a dose-dependent manner. Addition of EV to macrophages also promoted transcription of the M1-polarization marker iNOs and diminish that of the M2 markers Arginase-1, Ym-1, and FIZZ-1. Furthermore, the augmented expression of M2-polarization markers, stimulated by IL-4 plus IL-10, was reverted toward an M1 phenotype in response to secondary stimulation with EVs from P. brasiliensis. The ability of EVs from P. brasiliensis to promote M1 polarization macrophages favoring an enhanced fungicidal activity, demonstrated by the decreased CFU recovery of internalized yeasts, with comparable phagocytic efficacy. Our results suggest that EVs from P. brasiliensis can modulate the innate immune response and affect the relationship between P. brasiliensis and host immune cells.
doi:10.1038/srep35867
PMCID: PMC5075875  PMID: 27775058
4.  Influence of N-glycans on Expression of Cell Wall Remodeling Related Genes in Paracoccidioides brasiliensis Yeast Cells 
Current Genomics  2016;17(2):112-118.
Paracoccidioidomycosis is the most prevalent systemic mycosis in Latin America. It is caused by the temperature-dependent dimorphic fungus Paracoccidioides brasiliensis. The P. brasiliensis cell wall is a dynamic outer structure, composed of a network of glycoproteins and polysaccharides, such as chitin, glucan and N-glycosylated proteins. These glycoproteins can interact with the host to affect infection rates, and are known to perform other functions. We inhibited N-linked glycosylation using tunicamycin (TM), and then evaluated the expression of P. brasiliensis genes related to cell wall remodeling. Our results suggest that cell wall synthesis related genes, such as β-1,3-glucanosyltransferase (PbGEL3), 1,3-β-D-glucan synthase (PbFKS1), and α-1,4-amylase (PbAMY), as well as cell wall degrading related genes, such as N-acetyl-β-D-glucosaminidase (PbNAG1), α-1,3-glucanase (PbAGN), and β-1,3-glucanase (PbBGN1 and PbBGN2), have their expression increased by the N-glycosylation inhibition, as detected by qRT-PCR. The observed increases in gene expression levels reveal possible compensatory mechanisms for diminished enzyme activity due to the lack of glycosylation caused by TM.
doi:10.2174/1389202917666151116212705
PMCID: PMC4864839  PMID: 27226767
N-glycan; Paracoccidioides brasiliensis; Cell wall; Fungal cell.
5.  Detrimental Effect of Fungal 60-kDa Heat Shock Protein on Experimental Paracoccidioides brasiliensis Infection 
PLoS ONE  2016;11(9):e0162486.
The genus Paracoccidioides comprises species of dimorphic fungi that cause paracoccidioidomycosis (PCM), a systemic disease prevalent in Latin America. Here, we investigated whether administration of native 60-kDa heat shock protein of P. brasiliensis (nPbHsp60) or its recombinant counterpart (rPbHsp60) affected the course of experimental PCM. Mice were subcutaneously injected with nPbHsp60 or rPbHsp60 emulsified in complete’s Freund Adjuvant (CFA) at three weeks after intravenous injection of P. brasiliensis yeasts. Infected control mice were injected with CFA or isotonic saline solution alone. Thirty days after the nPbHsp60 or rPbHsp60 administration, mice showed remarkably increased fungal load, tissue inflammation, and granulomas in the lungs, liver, and spleen compared with control mice. Further, rPbHsp60 treatment (i) decreased the known protective effect of CFA against PCM and (ii) increased the concentrations of IL-17, TNF-α, IL-12, IFN-γ, IL-4, IL-10, and TGF-β in the lungs. Together, our results indicated that PbHsp60 induced a harmful immune response, exacerbated inflammation, and promoted fungal dissemination. Therefore, we propose that PbHsp60 contributes to the fungal pathogenesis.
doi:10.1371/journal.pone.0162486
PMCID: PMC5012565  PMID: 27598463
6.  ArtinM offers new perspectives in the development of antifungal therapy 
The thermally dimorphic fungus Paracoccidioides brasiliensis is the causative agent of paracoccidioidomycosis (PCM), the most frequent systemic mycosis that affects the rural populations in Latin America. Despite significant developments in antifungal chemotherapy, its efficacy remains limited since drug therapy is prolonged and associated with toxic side effects and relapses. In response to these challenges, it is now recognized that several aspects of antifungal immunity can be modulated to better deal with fungal infections. A common idea for halting fungal infections has been the need to activate a cell-based, pro-inflammatory Th1 immune response to improve the fungal elimination. ArtinM, a D-mannose binding lectin from Artocarpus heterophyllus, has the property of modulating immunity against several intracellular pathogens. Here, we review the immunomodulatory activity of ArtinM during experimental PCM in mice. Both prophylactic and therapeutic protocols of ArtinM administration promotes a Th1 immune response balanced by IL-10, which outstandingly reduces the fungal load in organs of the treated mice while maintaining a controlled inflammation at the site of infection. A carbohydrate recognition-based interaction of ArtinM with Toll-like receptor 2 (TLR2) accounts for initiating the immunomodulatory effect of the lectin. The precise identification of the TLR2 N-glycan(s) targeted by ArtinM may support novel basis for the development of antifungal therapy.
doi:10.3389/fmicb.2012.00218
PMCID: PMC3375580  PMID: 22715337
Paracoccidioides brasiliensis; ArtinM; immunomodulation
7.  Data on IL-17 production induced by plant lectins 
Data in Brief  2016;7:1584-1587.
We reported in article da Silva et al. (2016) [2] that ArtinM induces the IL-17 production through interaction with CD4+ T cells and stimulation of IL-23 and IL-1. Besides ArtinM, other plant lectins (PLs) induce IL-17 production by murine spleen cells. The IL-17 production induced by PLs was evaluated regarding the involvement of IL-23, IL-6, Th1-, and Th2-cytokines. Furthermore, the effect exerted TLR2, TLR4, and CD14 on the PLs׳ performance in the induction of IL-17 was examined. The current data were compared to the known ArtinM ability to induce Th17 immunity.
doi:10.1016/j.dib.2016.04.053
PMCID: PMC4865662  PMID: 27222857
IL-17; Plant lectins; ArtinM; Carbohydrate recognition; Immunomodulation
8.  Jacalin-Activated Macrophages Exhibit an Antitumor Phenotype 
BioMed Research International  2016;2016:2925657.
Tumor-associated macrophages (TAMs) have an ambiguous and complex role in the carcinogenic process, since these cells can be polarized into different phenotypes (proinflammatory, antitumor cells or anti-inflammatory, protumor cells) by the tumor microenvironment. Given that the interactions between tumor cells and TAMs involve several players, a better understanding of the function and regulation of TAMs is crucial to interfere with their differentiation in attempts to skew TAM polarization into cells with a proinflammatory antitumor phenotype. In this study, we investigated the modulation of macrophage tumoricidal activities by the lectin jacalin. Jacalin bound to macrophage surface and induced the expression and/or release of mainly proinflammatory cytokines via NF-κB signaling, as well as increased iNOS mRNA expression, suggesting that the lectin polarizes macrophages toward the antitumor phenotype. Therefore, tumoricidal activities of jacalin-stimulated macrophages were evaluated. High rates of tumor cell (human colon, HT-29, and breast, MCF-7, cells) apoptosis were observed upon incubation with supernatants from jacalin-stimulated macrophages. Taken together, these results indicate that jacalin, by exerting a proinflammatory activity, can direct macrophages to an antitumor phenotype. Deep knowledge of the regulation of TAM functions is essential for the development of innovative anticancer strategies.
doi:10.1155/2016/2925657
PMCID: PMC4828542  PMID: 27119077
9.  IL-17 Induction by ArtinM is Due to Stimulation of IL-23 and IL-1 Release and/or Interaction with CD3 in CD4+ T Cells 
PLoS ONE  2016;11(2):e0149721.
ArtinM is a D-mannose-binding lectin extracted from the seeds of Artocarpus heterophyllus that interacts with TLR2 N-glycans and activates antigen-presenting cells (APCs), as manifested by IL-12 production. In vivo ArtinM administration induces Th1 immunity and confers protection against infection with several intracellular pathogens. In the murine model of Candida albicans infection, it was verified that, in addition to Th1, ArtinM induces Th17 immunity manifested by high IL-17 levels in the treated animals. Herein, we investigated the mechanisms accounting for the ArtinM-induced IL-17 production. We found that ArtinM stimulates the IL-17 production by spleen cells in BALB/c or C57BL/6 mice, a response that was significantly reduced in the absence of IL-23, MyD88, or IL-1R. Furthermore, we showed that ArtinM directly induced the IL-23 mRNA expression and the IL-1 production by macrophages. Consistently, in cell suspensions depleted of macrophages, the IL-17 production stimulated by ArtinM was reduced by 53% and the exogenous IL-23 acted synergistically with ArtinM in promoting IL-17 production by spleen cell suspensions. We verified that the absence of IL-23, IL-1R, or MyD88 inhibited, but did not block, the IL-17 production by ArtinM-stimulated spleen cells. Therefore, we investigated whether ArtinM exerts a direct effect on CD4+ T cells in promoting IL-17 production. Indeed, spleen cell suspensions depleted of CD4+ T cells responded to ArtinM with very low levels of IL-17 release. Likewise, isolated CD4+ T cells under ArtinM stimulus augmented the expression of TGF-β mRNA and released high levels of IL-17. Considering the observed synergism between IL-23 and ArtinM, we used cells from IL-23 KO mice to assess the direct effect of lectin on CD4+ T cells. We verified that ArtinM increased the IL-17 production significantly, a response that was inhibited when the CD4+ T cells were pre-incubated with anti-CD3 antibody. In conclusion, ArtinM stimulates the production of IL-17 by CD4+ T cells in two major ways: (I) through the induction of IL-23 and IL-1 by APCs and (II) through the direct interaction with CD3 on the CD4+ T cells. This study contributes to elucidation of mechanisms accounting for the property of ArtinM in inducing Th17 immunity and opens new perspectives in designing strategies for modulating immunity by using carbohydrate recognition agents.
doi:10.1371/journal.pone.0149721
PMCID: PMC4767177  PMID: 26901413
10.  Toxoplasma gondii Chitinase Induces Macrophage Activation 
PLoS ONE  2015;10(12):e0144507.
Toxoplasma gondii is an obligate intracellular protozoan parasite found worldwide that is able to chronically infect almost all vertebrate species, especially birds and mammalians. Chitinases are essential to various biological processes, and some pathogens rely on chitinases for successful parasitization. Here, we purified and characterized a chitinase from T. gondii. The enzyme, provisionally named Tg_chitinase, has a molecular mass of 13.7 kDa and exhibits a Km of 0.34 mM and a Vmax of 2.64. The optimal environmental conditions for enzymatic function were at pH 4.0 and 50°C. Tg_chitinase was immunolocalized in the cytoplasm of highly virulent T. gondii RH strain tachyzoites, mainly at the apical extremity. Tg_chitinase induced macrophage activation as manifested by the production of high levels of pro-inflammatory cytokines, a pathogenic hallmark of T. gondii infection. In conclusion, to our knowledge, we describe for the first time a chitinase of T. gondii tachyzoites and provide evidence that this enzyme might influence the pathogenesis of T. gondii infection.
doi:10.1371/journal.pone.0144507
PMCID: PMC4684212  PMID: 26659253
11.  Vaccination with Recombinant Microneme Proteins Confers Protection against Experimental Toxoplasmosis in Mice 
PLoS ONE  2015;10(11):e0143087.
Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, is an important public health problem and veterinary concern. Although there is no vaccine for human toxoplasmosis, many attempts have been made to develop one. Promising vaccine candidates utilize proteins, or their genes, from microneme organelle of T. gondii that are involved in the initial stages of host cell invasion by the parasite. In the present study, we used different recombinant microneme proteins (TgMIC1, TgMIC4, or TgMIC6) or combinations of these proteins (TgMIC1-4 and TgMIC1-4-6) to evaluate the immune response and protection against experimental toxoplasmosis in C57BL/6 mice. Vaccination with recombinant TgMIC1, TgMIC4, or TgMIC6 alone conferred partial protection, as demonstrated by reduced brain cyst burden and mortality rates after challenge. Immunization with TgMIC1-4 or TgMIC1-4-6 vaccines provided the most effective protection, since 70% and 80% of mice, respectively, survived to the acute phase of infection. In addition, these vaccinated mice, in comparison to non-vaccinated ones, showed reduced parasite burden by 59% and 68%, respectively. The protective effect was related to the cellular and humoral immune responses induced by vaccination and included the release of Th1 cytokines IFN-γ and IL-12, antigen-stimulated spleen cell proliferation, and production of antigen-specific serum antibodies. Our results demonstrate that microneme proteins are potential vaccines against T. gondii, since their inoculation prevents or decreases the deleterious effects of the infection.
doi:10.1371/journal.pone.0143087
PMCID: PMC4648487  PMID: 26575028
12.  Saccharomyces cerevisiae Expressing Gp43 Protects Mice against Paracoccidioides brasiliensis Infection 
PLoS ONE  2015;10(3):e0120201.
The dimorphic fungus Paracoccidioides brasiliensis is the etiological agent of paracoccidioidomycosis (PCM). It is believed that approximately 10 million people are infected with the fungus and approximately 2% will eventually develop the disease. Unlike viral and bacterial diseases, fungal diseases are the ones against which there is no commercially available vaccine. Saccharomyces cerevisiae may be a suitable vehicle for immunization against fungal infections, as they require the stimulation of different arms of the immune response. Here we evaluated the efficacy of immunizing mice against PCM by using S. cerevisiae yeast expressing gp43. When challenged by inoculation of P. brasiliensis yeasts, immunized animals showed a protective profile in three different assays. Their lung parenchyma was significantly preserved, exhibiting fewer granulomas with fewer fungal cells than found in non-immunized mice. Fungal burden was reduced in the lung and spleen of immunized mice, and both organs contained higher levels of IL-12 and IFN-γ compared to those of non-vaccinated mice, a finding that suggests the occurrence of Th1 immunity. Taken together, our results indicate that the recombinant yeast vaccine represents a new strategy to confer protection against PCM.
doi:10.1371/journal.pone.0120201
PMCID: PMC4366343  PMID: 25790460
13.  Therapeutic Administration of Recombinant Paracoccin Confers Protection against Paracoccidioides brasiliensis Infection: Involvement of TLRs 
Background
Paracoccin (PCN) is an N-acetylglucosamine-binding lectin from the human pathogenic fungus Paracoccidioides brasiliensis. Recombinant PCN (rPCN) induces a T helper (Th) 1 immune response when prophylactically administered to BALB/c mice, protecting them against subsequent challenge with P. brasiliensis. In this study, we investigated the therapeutic effect of rPCN in experimental paracoccidioidomycosis (PCM) and the mechanism accounting for its beneficial action.
Methodology/Principal Findings
Four distinct regimens of rPCN administration were assayed to identify which was the most protective, relative to vehicle administration. In all rPCN-treated mice, pulmonary granulomas were less numerous and more compact. Moreover, fewer colony-forming units were recovered from the lungs of rPCN-treated mice. Although all therapeutic regimens of rPCN were protective, maximal efficacy was obtained with two subcutaneous injections of 0.5 µg rPCN at 3 and 10 days after infection. The rPCN treatment was also associated with higher pulmonary levels of IL-12, IFN-γ, TNF-α, nitric oxide (NO), and IL-10, without IL-4 augmentation. Encouraged by the pulmonary cytokine profile of treated mice and by the fact that in vitro rPCN-stimulated macrophages released high levels of IL-12, we investigated the interaction of rPCN with Toll-like receptors (TLRs). Using a reporter assay in transfected HEK293T cells, we verified that rPCN activated TLR2 and TLR4. The activation occurred independently of TLR2 heterodimerization with TLR1 or TLR6 and did not require the presence of the CD14 or CD36 co-receptors. The interaction between rPCN and TLR2 depended on carbohydrate recognition because it was affected by mutation of the receptor's N-glycosylation sites. The fourth TLR2 N-glycan was especially critical for the rPCN-TLR2 interaction.
Conclusions/Significance
Based on our results, we propose that PCN acts as a TLR agonist. PCN binds to N-glycans on TLRs, triggers regulated Th1 immunity, and exerts a therapeutic effect against P. brasiliensis infection.
Author Summary
Paracoccidioides brasiliensis is a pathogenic fungus that causes paracoccidioidomycosis (PCM) in humans, a debilitating fungal infection that mainly affects the lungs and is widespread in Latin America. Paracoccin (PCN) is a sugar-binding protein produced by this fungus. Previous studies have shown that PCN contributes to the colonization of host tissues by the fungus and induces the production of inflammatory factors (i.e., cytokines and nitric oxide) by immune cells such as macrophages. Here we investigated the therapeutic efficacy of recombinant PCN (rPCN) on the course of P. brasiliensis infection in mice. Histopathological analysis of lungs of animals treated with rPCN showed much lower inflammation in comparison to untreated, control mice. In addition, fewer infective P. brasiliensis yeast forms were recovered from the lung of rPCN-treated animals than from that of control animals. Administration of rPCN was associated with a profile of pro- and anti-inflammatory factors in the lung that was conducive to host protection. These effects were associated with PCN binding to sugar chains linked to innate immunity receptors, namely Toll-like receptors 2 and 4. These findings reveal a mechanism by which rPCN confers protection against PCM.
doi:10.1371/journal.pntd.0003317
PMCID: PMC4256291  PMID: 25474158
14.  Evaluating the Equilibrium Association Constant between ArtinM Lectin and Myeloid Leukemia Cells by Impedimetric and Piezoelectric Label Free Approaches 
Biosensors  2014;4(4):358-369.
Label-free methods for evaluating lectin–cell binding have been developed to determine the lectin–carbohydrate interactions in the context of cell-surface oligosaccharides. In the present study, mass loading and electrochemical transducer signals were compared to characterize the interaction between lectin and cellular membranes by measuring the equilibrium association constant, Ka, between ArtinM lectin and the carbohydrate sites of NB4 leukemia cells. By functionalizing sensor interfaces with ArtinM, it was possible to determine Ka over a range of leukemia cell concentrations to construct analytical curves from impedimetric and/or mass-associated frequency shifts with analytical signals following a Langmuir pattern. Using the Langmuir isotherm-binding model, the Ka obtained were (8.9 ± 1.0) × 10−5 mL/cell and (1.05 ± 0.09) × 10−6 mL/cell with the electrochemical impedance spectroscopy (EIS) and quartz crystal microbalance (QCM) methods, respectively. The observed differences were attributed to the intrinsic characteristic sensitivity of each method in following Langmuir isotherm premises.
doi:10.3390/bios4040358
PMCID: PMC4287707  PMID: 25587428
ArtinM; lectin; myeloid leukemia cells; electrochemical impedance spectroscopy; quartz crystal microbalance; Langmuir isotherm; equilibrium association constant (Ka)
15.  α-(1,4)-Amylase, but not α- and β-(1,3)-glucanases, may be responsible for the impaired growth and morphogenesis of Paracoccidioides brasiliensis induced by N-glycosylation inhibition 
Yeast (Chichester, England)  2013;31(1):1-11.
The cell wall of Paracoccidioides brasiliensis, which consists of a network of polysaccharides and glycoproteins, is essential for fungal pathogenesis. We have previously reported that N-glycosylation of proteins such as N-acetyl-β-d-glucosaminidase is required for the growth and morphogenesis of P. brasiliensis. In the present study, we investigated the influence of tunycamicin (TM)-mediated inhibition of N-linked glycosylation on α- and β-(1,3)-glucanases and on α-(1,4)-amylase in P. brasiliensis yeast and mycelium cells. The addition of 15 µg/ml TM to the fungal cultures did not interfere with either α- or β-(1,3)-glucanase production and secretion. Moreover, incubation with TM did not alter α- and β-(1,3)-glucanase activity in yeast and mycelium cell extracts. In contrast, α-(1,4)-amylase activity was significantly reduced in underglycosylated yeast and mycelium extracts after exposure to TM. In spite of its importance for fungal growth and morphogenesis, N-glycosylation was not required for glucanase activities. This is surprising because these activities are directed to wall components that are crucial for fungal morphogenesis. On the other hand, N-glycans were essential for α-(1,4)-amylase activity involved in the production of malto-oligosaccharides that act as primer molecules for the biosynthesis of α-(1,3)-glucan. Our results suggest that reduced fungal α-(1,4)-amylase activity affects cell wall composition and may account for the impaired growth of underglycosylated yeast and mycelium cells. © 2013 The Authors. Yeast published by John Wiley & Sons Ltd.
doi:10.1002/yea.2983
PMCID: PMC4235422  PMID: 24155051
N-glycan; Paracoccidioides brasiliensis; glucanase; amylase; cell wall
16.  Recognition of TLR2 N-Glycans: Critical Role in ArtinM Immunomodulatory Activity 
PLoS ONE  2014;9(6):e98512.
TLR2 plays a critical role in the protection against Paracoccidioides brasiliensis conferred by ArtinM administration. ArtinM, a D-mannose-binding lectin from Artocarpus heterophyllus, induces IL-12 production in macrophages and dendritic cells, which accounts for the T helper1 immunity that results from ArtinM administration. We examined the direct interaction of ArtinM with TLR2using HEK293A cells transfected with TLR2, alone or in combination with TLR1 or TLR6, together with accessory proteins. Stimulation with ArtinM induced NF-κB activation and interleukin (IL)-8 production in cells transfected with TLR2, TLR2/1, or TLR2/6. Murine macrophages that were stimulated with ArtinM had augmented TLR2 mRNA expression. Furthermore, pre-incubation of unstimulated macrophages with an anti-TLR2 antibody reduced the cell labeling with ArtinM. In addition, a microplate assay revealed that ArtinM bound to TLR2 molecules that had been captured by specific antibodies from a macrophages lysate. Notably,ArtinM binding to TLR2 was selectively inhibited when the lectin was pre-incubated with mannotriose. The biological relevance of the direct interaction of ArtinM with TLR2 glycans was assessed using macrophages from TLR2-KOmice, which produced significantly lower levels of IL-12 and IL-10 in response to ArtinM than macrophages from wild-type mice. Pre-treatment of murine macrophages with pharmacological inhibitors of signaling molecules demonstrated the involvement of p38 MAPK and JNK in the IL-12 production induced by ArtinM and the involvement ofPI3K in IL-10 production. Thus, ArtinM interacts directly with TLR2 or TLR2 heterodimers in a carbohydrate recognition-dependent manner and functions as a TLR2 agonist with immunomodulatory properties.
doi:10.1371/journal.pone.0098512
PMCID: PMC4043963  PMID: 24892697
17.  Activation of spleen cells by ArtinM may account for its immunomodulatory properties 
Cell and Tissue Research  2014;357(3):719-730.
ArtinM is a D-mannose-binding lectin extracted from Artocarpus heterophyllus that promotes interleukin-12 production by macrophages and dendritic cells. This property is considered responsible for T helper 1 immunity induced in vivo after ArtinM administration. In this study, we investigated the effect of native (jArtinM) and recombinant (rArtinM) forms of lectin on murine spleen cells and isolated T lymphocytes. We found that ArtinM binds to the surface of spleen cells. This interaction, which was blocked by D-mannose, induced cell activation, as manifested by increased mitochondrial activity, interleukin-2 production, and cell proliferation. We verified that a 30-times higher concentration of rArtinM was required to trigger optimal activation of spleen cells compared with that needed with jArtinM, although these proteins have identical sugar recognition properties and use the same signaling molecules to trigger cell activation. Because the distinction between native and recombinant is restricted to their tertiary structure (tetrameric and monomeric, respectively), we postulated that the multi-valence of jArtinM accounts for its superiority in promoting clustering of cell surface glycoreceptors and activation. The jArtinM and rArtinM activation effect exerted on spleen cells was reproduced on purified CD4+ T cells. Our results suggest that ArtinM interaction with T cells leads to responses that may act in concert with the interleukin-12 produced by antigen-presenting cells to modulate immunity toward the T helper 1 axis. Further studies are necessary to dissect ArtinM/T-cell interactions to more fully understand the immunomodulation induced by carbohydrate recognition.
doi:10.1007/s00441-014-1879-8
PMCID: PMC4148593  PMID: 24842046
ArtinM; Spleen cells; T lymphocytes; Carbohydrate recognition; Immunomodulation
18.  Toxoplasma gondii 70 kDa Heat Shock Protein: Systemic Detection Is Associated with the Death of the Parasites by the Immune Response and Its Increased Expression in the Brain Is Associated with Parasite Replication 
PLoS ONE  2014;9(5):e96527.
The heat shock protein of Toxoplasma gondii (TgHSP70) is a parasite virulence factor that is expressed during T. gondii stage conversion. To verify the effect of dexamethasone (DXM)-induced infection reactivation in the TgHSP70-specific humoral immune response and the presence of the protein in the mouse brain, we produced recombinant TgHSP70 and anti-TgHSP70 IgY antibodies to detect the protein, the specific antibody and levels of immune complexes (ICs) systemically, as well as the protein in the brain of resistant (BALB/c) and susceptible (C57BL/6) mice. It was observed higher TgHSP70-specific antibody titers in serum samples of BALB/c compared with C57BL/6 mice. However, the susceptible mice presented the highest levels of TgHSP70 systemically and no detection of specific ICs. The DXM treatment induced increased parasitism and lower inflammatory changes in the brain of C57BL/6, but did not interfere with the cerebral parasitism in BALB/c mice. Additionally, DXM treatment decreased the serological TgHSP70 concentration in both mouse lineages. C57BL/6 mice presented high expression of TgHSP70 in the brain with the progression of infection and under DXM treatment. Taken together, these data indicate that the TgHSP70 release into the bloodstream depends on the death of the parasites mediated by the host immune response, whereas the increased TgHSP70 expression in the brain depends on the multiplication rate of the parasite.
doi:10.1371/journal.pone.0096527
PMCID: PMC4011789  PMID: 24801069
19.  Recombinant Paracoccin Reproduces the Biological Properties of the Native Protein and Induces Protective Th1 Immunity against Paracoccidioides brasiliensis Infection 
Background
Paracoccin is a dual-function protein of the yeast Paracoccidioides brasiliensis that has lectin properties and N-acetylglucosaminidase activities. Proteomic analysis of a paracoccin preparation from P. brasiliensis revealed that the sequence matched that of the hypothetical protein encoded by PADG-3347 of isolate Pb-18, with a polypeptide sequence similar to the family 18 endochitinases. These endochitinases are multi-functional proteins, with distinct lectin and enzymatic domains.
Methodology/principal findings
The multi-exon assembly and the largest exon of the predicted ORF (PADG-3347), was cloned and expressed in Escherichia coli cells, and the features of the recombinant proteins were compared to those of the native paracoccin. The multi-exon protein was also used for protection assays in a mouse model of paracoccidioidomycosis.
Conclusions/Significance
Our results showed that the recombinant protein reproduced the biological properties described for the native protein—including binding to laminin in a manner that is dependent on carbohydrate recognition—showed N-acetylglucosaminidase activity, and stimulated murine peritoneal macrophages to produce high levels of TNF-α and nitric oxide. Considering the immunomodulatory potential of glycan-binding proteins, we also investigated whether prophylactic administration of recombinant paracoccin affected the course of experimental paracoccidioidomycosis in mice. In comparison to animals injected with vehicle (controls), mice treated with recombinant paracoccin displayed lower pulmonary fungal burdens and reduced pulmonary granulomas. These protective effects were associated with augmented pulmonary levels of IL-12 and IFN-γ. We also observed that injection of paracoccin three days before challenge was the most efficient administration protocol, as the induced Th1 immunity was balanced by high levels of pulmonary IL-10, which may prevent the tissue damage caused by exacerbated inflammation. The results indicated that paracoccin is the protein encoded by PADG-3347, and we propose that this gene and homologous proteins in other P. brasiliensis strains be called paracoccin. We also concluded that recombinant paracoccin confers resistance to murine P. brasiliensis infection by exerting immunomodulatory effects.
Author Summary
Paracoccin is a constituent of Paracoccidioides brasiliensis, a human pathogen that causes paracoccidioidomycosis, the most prevalent systemic mycosis in Latin America. Paracoccin is a dual function protein with domains for lectin and N-acetylglucosaminidase activities. Proteomic analysis of paracoccin preparation revealed its correspondence to a hypothetical protein from the P. brasiliensis isolate Pb-18, annotated as PADG-3347, which has a polypeptide sequence similar to family 18 endochitinases. These endochitinases are multi-functional proteins with distinct lectin and enzymatic activity domains. The multi-exon assembly of the correspondent gene (PADG-3347) was cloned and expressed in E. coli, and the physical and biological features of the recombinant protein was compared to those of the native paracoccin. Moreover, recombinant PADG-3347 was evaluated for its immunomodulatory properties and its ability to confer protection against murine P. brasiliensis infection. The results presented herein showed that mice treated with recombinant paracoccin displayed lower pulmonary fungal burdens and reduced pulmonary granulomas. These protective effects were associated with augmented pulmonary levels of IL-12 and IFN-γ.
doi:10.1371/journal.pntd.0002788
PMCID: PMC3990478  PMID: 24743161
20.  Eutirucallin, a RIP-2 Type Lectin from the Latex of Euphorbia tirucalli L. Presents Proinflammatory Properties 
PLoS ONE  2014;9(2):e88422.
Lectins are carbohydrate-binding proteins that recognize and modulate physiological activities and have been used as a toll for detection and identification of biomolecules, and therapy of diseases. In this study we have isolated a lectin present in the latex of Euphorbia tirucalli, and named it Eutirucallin. The latex protein extract was subjected to ion exchange chromatography and showed two peaks with haemagglutinating activity. Polypeptides of 32 kDa protein extract strongly interacted with immobilized galactose (α-lactose > D-N-acetylgalactosamine). The Eutirucallin was obtained with a yield of 5.6% using the α-lactose column. The lectin domain has 32 kDa subunits and at least two of which are joined by disulfide bridges. The agglutinating capacity for human erythrocytes A+, B+ and O+ is inhibited by D-galactose. The haemagglutinating activity of Eutirucallin was independent of Ca2+ and maintained until the temperature of 55°C. Eutirucallin presented biological activities such as neutrophils recruitment and cytokine prodution by macrophages. The analysis of the trypsin-digested Eutirucallin by ms/ms in ESI-Q-TOFF resulted in nine peptides similar to type 2 ribosome-inactivating protein (type-2 RIP). It's partial sequence showed a similarity of 67.4 – 83.1% for the lectin domain of type-2 RIP [Ricin and Abrin (83.1%), Viscumin, Ebulin, Pulchellin, Cinnamomin, Volkensin and type-2 RIP Iris hollandica]. Our data suggest that Eutirucallin is a new member of type 2 ribosome-inactivating protein and presents biotechnological potential.
doi:10.1371/journal.pone.0088422
PMCID: PMC3928152  PMID: 24558388
21.  Monocyte Migration Driven by Galectin-3 Occurs through Distinct Mechanisms Involving Selective Interactions with the Extracellular Matrix 
ISRN inflammation  2013;2013:259256.
Monocyte migration into tissues, an important event in inflammation, requires an intricate interplay between determinants on cell surfaces and extracellular matrix (ECM). Galectin-3 is able to modulate cell-ECM interactions and is an important mediator of inflammation. In this study, we sought to investigate whether interactions established between galectin-3 and ECM glycoproteins are involved in monocyte migration, given that the mechanisms by which monocytes move across the endothelium and through the extravascular tissue are poorly understood. Using the in vitro transwell system, we demonstrated that monocyte migration was potentiated in the presence of galectin-3 plus laminin or fibronectin, but not vitronectin, and was dependent on the carbohydrate recognition domain of the lectin. Only galectin-3-fibronectin combinations potentiated the migration of monocyte-derived macrophages. In binding assays, galectin-3 did not bind to fibronectin, whereas both the full-length and the truncated forms of the lectin, which retains carbohydrate binding ability, were able to bind to laminin. Our results show that monocytes migrate through distinct mechanisms and selective interactions with the extracellular matrix driven by galectin-3. We suggest that the lectin may bridge monocytes to laminin and may also activate these cells, resulting in the positive regulation of other adhesion molecules and cell adhesion to fibronectin.
doi:10.1155/2013/259256
PMCID: PMC3767352  PMID: 24049657
22.  The immunomodulatory effect of plant lectins: a review with emphasis on ArtinM properties 
Glycoconjugate Journal  2013;30(7):641-657.
Advances in the glycobiology and immunology fields have provided many insights into the role of carbohydrate-protein interactions in the immune system. We aim to present a comprehensive review of the effects that some plant lectins exert as immunomodulatory agents, showing that they are able to positively modify the immune response to certain pathological conditions, such as cancer and infections. The present review comprises four main themes: (1) an overview of plant lectins that exert immunomodulatory effects and the mechanisms accounting for these activities; (2) general characteristics of the immunomodulatory lectin ArtinM from the seeds of Artocarpus heterophyllus; (3) activation of innate immunity cells by ArtinM and consequent induction of Th1 immunity; (4) resistance conferred by ArtinM administration in infections with intracellular pathogens, such as Leishmania (Leishmania) major, Leishmania (Leishmania) amazonensis, and Paracoccidioides brasiliensis. We believe that this review will be a valuable resource for more studies in this relatively neglected area of research, which has the potential to reveal carbohydrate targets for novel prophylactic and therapeutic strategies.
doi:10.1007/s10719-012-9464-4
PMCID: PMC3769584  PMID: 23299509
Plant lectins; ArtinM lectin; Immunomodulation; Toll-like receptor; Leishmania; Paracoccidioides brasiliensis
23.  Characterization of PbPga1, an Antigenic GPI-Protein in the Pathogenic Fungus Paracoccidioides brasiliensis 
PLoS ONE  2012;7(9):e44792.
Paracoccidioides brasiliensis is the etiologic agent of paracoccidioidomycosis (PCM), one of the most prevalent mycosis in Latin America. P. brasiliensis cell wall components interact with host cells and influence the pathogenesis of PCM. Cell wall components, such as glycosylphosphatidylinositol (GPI)-proteins play a critical role in cell adhesion and host tissue invasion. Although the importance of GPI-proteins in the pathogenesis of other medically important fungi is recognized, little is known about their function in P. brasiliensis cells and PCM pathogenesis. We cloned the PbPga1 gene that codifies for a predicted GPI-anchored glycoprotein from the dimorphic pathogenic fungus P. brasiliensis. PbPga1 is conserved in Eurotiomycetes fungi and encodes for a protein with potential glycosylation sites in a serine/threonine-rich region, a signal peptide and a putative glycosylphosphatidylinositol attachment signal sequence. Specific chicken anti-rPbPga1 antibody localized PbPga1 on the yeast cell surface at the septum between the mother cell and the bud with stronger staining of the bud. The exposure of murine peritoneal macrophages to rPbPga1 induces TNF-α release and nitric oxide (NO) production by macrophages. Furthermore, the presence of O-glycosylation sites was demonstrated by β-elimination under ammonium hydroxide treatment of rPbPga1. Finally, sera from PCM patients recognized rPbPga1 by Western blotting indicating the presence of specific antibodies against rPbPga1. In conclusion, our findings suggest that the PbPga1gene codifies for a cell surface glycoprotein, probably attached to a GPI-anchor, which may play a role in P. brasiliensis cell wall morphogenesis and infection. The induction of inflammatory mediators released by rPbPga1 and the reactivity of PCM patient sera toward rPbPga1 imply that the protein favors the innate mechanisms of defense and induces humoral immunity during P. brasiliensis infection.
doi:10.1371/journal.pone.0044792
PMCID: PMC3443090  PMID: 23024763
24.  Influence of N-Glycosylation on the Morphogenesis and Growth of Paracoccidioides brasiliensis and on the Biological Activities of Yeast Proteins 
PLoS ONE  2011;6(12):e29216.
The fungus Paracoccidioides brasiliensis is a human pathogen that causes paracoccidioidomycosis, the most prevalent systemic mycosis in Latin America. The cell wall of P. brasiliensis is a network of glycoproteins and polysaccharides, such as chitin, that perform several functions. N-linked glycans are involved in glycoprotein folding, intracellular transport, secretion, and protection from proteolytic degradation. Here, we report the effects of tunicamycin (TM)-mediated inhibition of N-linked glycosylation on P. brasiliensis yeast cells. The underglycosylated yeasts were smaller than their fully glycosylated counterparts and exhibited a drastic reduction of cell budding, reflecting impairment of growth and morphogenesis by TM treatment. The intracellular distribution in TM-treated yeasts of the P. brasiliensis glycoprotein paracoccin was investigated using highly specific antibodies. Paracoccin was observed to accumulate at intracellular locations, far from the yeast wall. Paracoccin derived from TM-treated yeasts retained the ability to bind to laminin despite their underglycosylation. As paracoccin has N-acetyl-β-d-glucosaminidase (NAGase) activity and induces the production of TNF-α and nitric oxide (NO) by macrophages, we compared these properties between glycosylated and underglycosylated yeast proteins. Paracoccin demonstrated lower NAGase activity when underglycosylated, although no difference was detected between the pH and temperature optimums of the two forms. Murine macrophages stimulated with underglycosylated yeast proteins produced significantly lower levels of TNF-α and NO. Taken together, the impaired growth and morphogenesis of tunicamycin-treated yeasts and the decreased biological activities of underglycosylated fungal components suggest that N-glycans play important roles in P. brasiliensis yeast biology.
doi:10.1371/journal.pone.0029216
PMCID: PMC3244461  PMID: 22216217
25.  The Recognition of N-Glycans by the Lectin ArtinM Mediates Cell Death of a Human Myeloid Leukemia Cell Line 
PLoS ONE  2011;6(11):e27892.
ArtinM, a d-mannose-binding lectin from Artocarpus heterophyllus (jackfruit), interacts with N-glycosylated receptors on the surface of several cells of hematopoietic origin, triggering cell migration, degranulation, and cytokine release. Because malignant transformation is often associated with altered expression of cell surface glycans, we evaluated the interaction of ArtinM with human myelocytic leukemia cells and investigated cellular responses to lectin binding. The intensity of ArtinM binding varied across 3 leukemia cell lines: NB4>K562>U937. The binding, which was directly related to cell growth suppression, was inhibited in the presence of Manα1-3(Manα1-6)Manβ1, and was reverted in underglycosylated NB4 cells. ArtinM interaction with NB4 cells induced cell death (IC50 = 10 µg/mL), as indicated by cell surface exposure of phosphatidylserine and disruption of mitochondrial membrane potential unassociated with caspase activation or DNA fragmentation. Moreover, ArtinM treatment of NB4 cells strongly induced reactive oxygen species generation and autophagy, as indicated by the detection of acidic vesicular organelles in the treated cells. NB4 cell death was attributed to ArtinM recognition of the trimannosyl core of N-glycans containing a ß1,6-GlcNAc branch linked to α1,6-mannose. This modification correlated with higher levels of N-acetylglucosaminyltransferase V transcripts in NB4 cells than in K562 or U937 cells. Our results provide new insights into the potential of N-glycans containing a β1,6-GlcNAc branch linked to α1,6-mannose as a novel target for anti-leukemia treatment.
doi:10.1371/journal.pone.0027892
PMCID: PMC3223207  PMID: 22132163

Results 1-25 (32)